Compact Polarimetry Response to Modeled Fast Sea Ice Thickness
"> Figure 1
<p>Map of the experimental site showing the location of Resolute Bay and Fjord X. Red polygons indicate the selected samples.</p> "> Figure 2
<p>Temporal evolution of (<b>a</b>) the air temperature and (<b>b</b>) the estimated fast sea ice thickness in RB and FX and ice bulk salinity for FX.</p> "> Figure 2 Cont.
<p>Temporal evolution of (<b>a</b>) the air temperature and (<b>b</b>) the estimated fast sea ice thickness in RB and FX and ice bulk salinity for FX.</p> "> Figure 3
<p>Modeled bulk salinity and ice thickness variation with air temperature before and after 20 October 2017. This date marks the ice thickness of 40 cm. Data are obtained from RB and FX.</p> "> Figure 4
<p>Variation of backscattering coefficients (<b>a</b>) <math display="inline"><semantics> <mrow> <msubsup> <mi mathvariant="sans-serif">σ</mi> <mrow> <mi>RH</mi> </mrow> <mn>0</mn> </msubsup> </mrow> </semantics></math>, (<b>b</b>) <math display="inline"><semantics> <mrow> <msubsup> <mi mathvariant="sans-serif">σ</mi> <mrow> <mi>RV</mi> </mrow> <mn>0</mn> </msubsup> </mrow> </semantics></math>, (<b>c</b>) <math display="inline"><semantics> <mrow> <msubsup> <mi mathvariant="sans-serif">σ</mi> <mrow> <mi>RL</mi> </mrow> <mn>0</mn> </msubsup> </mrow> </semantics></math>, and (<b>d</b>) <math display="inline"><semantics> <mrow> <msubsup> <mi mathvariant="sans-serif">σ</mi> <mrow> <mi>RR</mi> </mrow> <mn>0</mn> </msubsup> </mrow> </semantics></math> with ice thickness. Red trend line is included for the range when the parameter is sensitive to ice thickness. R is the correlation coefficient of linearly regressed data.</p> "> Figure 4 Cont.
<p>Variation of backscattering coefficients (<b>a</b>) <math display="inline"><semantics> <mrow> <msubsup> <mi mathvariant="sans-serif">σ</mi> <mrow> <mi>RH</mi> </mrow> <mn>0</mn> </msubsup> </mrow> </semantics></math>, (<b>b</b>) <math display="inline"><semantics> <mrow> <msubsup> <mi mathvariant="sans-serif">σ</mi> <mrow> <mi>RV</mi> </mrow> <mn>0</mn> </msubsup> </mrow> </semantics></math>, (<b>c</b>) <math display="inline"><semantics> <mrow> <msubsup> <mi mathvariant="sans-serif">σ</mi> <mrow> <mi>RL</mi> </mrow> <mn>0</mn> </msubsup> </mrow> </semantics></math>, and (<b>d</b>) <math display="inline"><semantics> <mrow> <msubsup> <mi mathvariant="sans-serif">σ</mi> <mrow> <mi>RR</mi> </mrow> <mn>0</mn> </msubsup> </mrow> </semantics></math> with ice thickness. Red trend line is included for the range when the parameter is sensitive to ice thickness. R is the correlation coefficient of linearly regressed data.</p> "> Figure 5
<p>Temporal evolution of (<b>a</b>) surface scattering, (<b>b</b>) volume scattering, and (<b>c</b>) double-bounce scattering from m-χ decomposition. Red trend line is included for values in the range sensitive to ice thickness. R is the correlation coefficient of linearly regressed data.</p> "> Figure 6
<p>Evolution of the surface backscattering in FX on (<b>a</b>) 27 September (estimated ice thickness = 14.3 cm), (<b>b</b>) 10 October (estimated ice thickness = 29.6 cm), and (<b>c</b>) 25 December (estimated ice thickness = 122.1 cm) within the selected sample polygon. Background is the total backscattering power (SPAN) of 23 September 2017.</p> "> Figure 7
<p>Temporal evolution of the Stokes elements with ice thickness for (<b>a</b>) SV0, (<b>b</b>) SV1, (<b>c</b>) SV2, and (<b>d</b>) SV3. Red trend line is included for values in the range sensitive to ice thickness. R is the correlation coefficient of linearly regressed data.</p> "> Figure 7 Cont.
<p>Temporal evolution of the Stokes elements with ice thickness for (<b>a</b>) SV0, (<b>b</b>) SV1, (<b>c</b>) SV2, and (<b>d</b>) SV3. Red trend line is included for values in the range sensitive to ice thickness. R is the correlation coefficient of linearly regressed data.</p> "> Figure 8
<p>Temporal evolution of the (<b>a</b>) intensity and (<b>b</b>) polarimetric components of the Shannon entropy with ice thickness. Red trend line is included for values in the range sensitive to ice thickness. R is the correlation coefficient of linearly regressed data.</p> "> Figure 8 Cont.
<p>Temporal evolution of the (<b>a</b>) intensity and (<b>b</b>) polarimetric components of the Shannon entropy with ice thickness. Red trend line is included for values in the range sensitive to ice thickness. R is the correlation coefficient of linearly regressed data.</p> "> Figure 9
<p>Temporal evolution of (<b>a</b>) m, (<b>b</b>) μ, and (<b>c</b>) <math display="inline"><semantics> <mrow> <msub> <mi mathvariant="sans-serif">ρ</mi> <mrow> <mi>RHRV</mi> </mrow> </msub> </mrow> </semantics></math> with ice thickness. Red trend line is included for values in the range sensitive to ice thickness. R is the correlation coefficient of linearly regressed data.</p> "> Figure 10
<p>Temporal evolution of (<b>a</b>) <math display="inline"><semantics> <mrow> <msubsup> <mi mathvariant="sans-serif">σ</mi> <mrow> <mi>RR</mi> </mrow> <mn>0</mn> </msubsup> <mo>/</mo> <msubsup> <mi mathvariant="sans-serif">σ</mi> <mrow> <mi>RL</mi> </mrow> <mn>0</mn> </msubsup> </mrow> </semantics></math>, (<b>b</b>) <math display="inline"><semantics> <mrow> <msub> <mi mathvariant="sans-serif">α</mi> <mi mathvariant="normal">s</mi> </msub> </mrow> </semantics></math>, and (<b>c</b>) <math display="inline"><semantics> <mrow> <msub> <mi mathvariant="sans-serif">δ</mi> <mrow> <mi>RHRV</mi> </mrow> </msub> </mrow> </semantics></math> with ice thickness. Red trend line is included for values in the range sensitive to ice thickness. R is the correlation coefficient of linearly regressed data.</p> "> Figure 10 Cont.
<p>Temporal evolution of (<b>a</b>) <math display="inline"><semantics> <mrow> <msubsup> <mi mathvariant="sans-serif">σ</mi> <mrow> <mi>RR</mi> </mrow> <mn>0</mn> </msubsup> <mo>/</mo> <msubsup> <mi mathvariant="sans-serif">σ</mi> <mrow> <mi>RL</mi> </mrow> <mn>0</mn> </msubsup> </mrow> </semantics></math>, (<b>b</b>) <math display="inline"><semantics> <mrow> <msub> <mi mathvariant="sans-serif">α</mi> <mi mathvariant="normal">s</mi> </msub> </mrow> </semantics></math>, and (<b>c</b>) <math display="inline"><semantics> <mrow> <msub> <mi mathvariant="sans-serif">δ</mi> <mrow> <mi>RHRV</mi> </mrow> </msub> </mrow> </semantics></math> with ice thickness. Red trend line is included for values in the range sensitive to ice thickness. R is the correlation coefficient of linearly regressed data.</p> "> Figure 11
<p>Temporal evolution of m with estimated ice bulk salinity. Red trend line is included for values in the range sensitive to ice salinity. R is the correlation coefficient of linearly regressed data.</p> "> Figure 12
<p>Absolute correlation between the CP parameters.</p> ">
Abstract
:1. Introduction
2. Study Area and SAR Imagery
3. Methodology
3.1. Ice Thickness Modeling
3.2. Ice Salinity Modeling
3.3. CP SAR Simulation
4. Backscattering Variation in Early Ice Growth
5. Results
5.1. Evolution of Air Temperature, Ice Thickness, and Bulk Salinity
5.2. CP Sensitivity to Ice Thickness
5.2.1. Backscattering Coefficients
5.2.2. Scattering Mechanisms
5.2.3. Stokes Vector
5.2.4. Shannon Entropy
5.2.5. Degree of Polarization, Conformity, and RH RV Correlation Coefficients
5.2.6. Circular Polarization Ratio, Alpha Angle, and RH-RV Phase Difference
6. Discussion
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Séguin, G.; Ahmed, S. RADARSAT constellation, project objectives and status. In Proceeding of the 2nd International Electronic Conference on Remote Sensing, Cape Town, South Africa, 12–17 July 2009; pp. 894–897. [Google Scholar]
- Raney, R.K. Hybrid-polarity SAR architecture. IEEE Trans. Geosci. Remote Sens. 2007, 45, 3397–3404. [Google Scholar] [CrossRef] [Green Version]
- Dabboor, M.; Iris, S.; Singhroy, V. The RADARSAT constellation mission in support of environmental applications. Proceedings 2018, 2, 323. [Google Scholar] [CrossRef] [Green Version]
- Dabboor, M.; Geldsetzer, T. Towards sea ice classification using simulated RADARSAT constellation mission compact polarimetric SAR imagery. Remote Sens. Environ. 2014, 140, 189–195. [Google Scholar] [CrossRef]
- Geldsetzer, T.; Arkett, M.; Zagon, T.; Charbonneau, F.; Yackel, J.; Scharien, R. All-season compact-polarimetry C-band SAR observations of sea ice. Can. J. Remote Sens. 2015, 41, 485–504. [Google Scholar] [CrossRef]
- Dabboor, M.; Montpetit, B.; Howell, S. Assessment of the high resolution SAR mode of the RADARSAT constellation mission for first year ice and multiyear ice characterization. Remote Sens. 2018, 10, 594. [Google Scholar] [CrossRef] [Green Version]
- Ghanbari, M.; Clausi, D.A.; Xu, L.; Jiang, M. Contextual classification of sea-ice types using compact polarimetric SAR data. IEEE Trans. Geosci. Remote Sens. 2019, 57, 7476–7491. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, J.; Liu, M.; Meng, J. Assessment of C-band compact polarimetry SAR for sea ice classification. Acta Oceanol. Sin. 2016, 35, 79–88. [Google Scholar] [CrossRef]
- Li, H.; Perrie, W.; Li, Q.; Hou, Y. Estimation of melt pond fractions on first year sea ice using compact polarization SAR. J. Geophys. Res. Oceans 2017, 122, 8145–8166. [Google Scholar] [CrossRef]
- Zhang, X.; Dierking, W.; Zhang, J.; Meng, J.; Lang, H. Retrieval of the thickness of undeformed sea ice from simulated C-band compact polarimetric SAR images. Cryosphere 2016, 10, 1529–1545. [Google Scholar] [CrossRef] [Green Version]
- Espeseth, M.M.; Brekke, C.; Johansson, A.M. Assessment of RISAT-1 and Radarsat-2 for Sea Ice Observations from a Hybrid-Polarity Perspective. Remote Sens. 2017, 9, 1088. [Google Scholar] [CrossRef] [Green Version]
- Singha, S.; Ressel, R. Arctic sea ice characterization using RISAT-1 compact-pol SAR imagery and feature evaluation: A case study over Northeast Greenland. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 3504–3514. [Google Scholar] [CrossRef] [Green Version]
- Shokr, M.; Dabboor, M. Observations of SAR polarimetric parameters of lake and fast sea ice during the early growth phase. Remote Sens. Environ. 2020, 247, 111910. [Google Scholar] [CrossRef]
- Ashton, G.D. Thin ice growth. Water Resour. Res. 1989, 25, 564–566. [Google Scholar] [CrossRef]
- Ulaby, F.; Moore, R.K.; Fung, A.K. Microwave Remote Sensing: Active and Passive, Vol. II: Radar Remote Sensing and Surface Scattering and Emission Theory; Artech House Inc.: Norwood, MA, USA, 1982. [Google Scholar]
- Cox, G.F.N.; Weeks, W.F. Salinity variation in sea ice. J. Glaciol. 1974, 13, 109–120. [Google Scholar] [CrossRef] [Green Version]
- Weeks, W.F. On Sea Ice; University of Alaska Press: Fairbanks, AK, USA, 2010. [Google Scholar]
- Shokr, M.; Sinha, N. Sea Ice: Physics and Remote Sensing; John Wiley and Sons: Hoboken, NJ, USA, 2015. [Google Scholar]
- Truong-Loi, M.; Freeman, A.; Dubois-Fernandez, P.; Pottier, E. Estimation of soil moisture and Faraday rotation from bare surfaces using compact polarimetry. IEEE Trans. Geosci. Remote Sens. 2009, 47, 3608–3615. [Google Scholar] [CrossRef]
- Raney, R.K.; Cahill, J.T.S.; Patterson, G.W.; Bussey, D.B. The m-chi decomposition of hybrid dual-polarimetric radar data with application to lunar craters. J. Geophys. Res. 2012, 117, E00H21. [Google Scholar] [CrossRef]
- Réfrégier, P.; Goudail, F.; Chavel, P.; Friberg, A. Entropy of partially polarized light and application to statistical processing techniques. JOSA 2004, 21, 2124–2134. [Google Scholar] [CrossRef] [Green Version]
- Cloude, S.R.; Goodenough, D.G.; Chen, H. Compact decomposition theory. IEEE Trans. Geosci. Remote Sens. 2011, 9, 28–32. [Google Scholar] [CrossRef]
- Charbonneau, F.; Brian, B.; Raney, K.; McNairn, H.; Liu, C.; Vachon, P.; Shang, J.; De Abreu, R.; Champagne, C.; Merzouki, A.; et al. Compact polarimetry overview and applications assessment. Can. J. Remote Sens. 2010, 36, S298–S315. [Google Scholar] [CrossRef]
- Grenfell, T.C.; Cavalierie, D.I.; Comiso, I.; Drinkwater, M.R.; Onstott, R.; Rubinstein, I.; Steffen, K.; Winebrenner, D.P. Considerations for microwave remote sensing of thin sea ice. In Microwave Remote Sensing of Sea Ice; Carsey, F., Ed.; American Geophysical Union: Washington, DC, USA, 1992. [Google Scholar]
- Beaven, S.G.; Gogineni, S.P.; Shanablen, M. Radar backscatter signatures of thin sea ice in the central Arctic. Int. J. Remote Sens. 1994, 15, 1149–1154. [Google Scholar] [CrossRef]
- Nghiem, S.V.; Kwok, R.; Yuch, S.H.; Gow, A.J.; Perovich, D.K.; Kong, J.A.; Hsu, C.C. Evolution in polarimetric signatures of thin saline ice under constant growth. Radio Sci. 1997, 32, 127–151. [Google Scholar] [CrossRef]
- Nihashi, S.; Ohshima, K.I. Circumpolar mapping of antarctic coastal polynyas and landfast sea ice: Relationship and variability. J. Clim. 2015, 28, 3650–3670. [Google Scholar] [CrossRef]
- Lee, J.S.; Pottier, E. Polarimetric Radar Imaging: From Basics to Applications; CRC Press: Boca Raton, FL, USA, 2009. [Google Scholar]
- Patterson, M.; Grandell, J.; Carlstrom, A.; Pallonen, J.; Ulander, L.M.H.; Hallikainen, M. Analysis of C-band backscatter measurements of thin Arctic sea ice. In Proceedings of the International Geoscience and Remote Sensing Symposium, Florence, Italy, 10–14 July 1995; pp. 262–360. [Google Scholar]
- Weathington, B.L.; Cunningham, C.J.L.; Pittenger, D.J. Understanding Business Research; John Wiley & Sons: Hoboken, NJ, USA, 2012. [Google Scholar]
Beam | Incident Angle | Date | |
---|---|---|---|
Near | Far | ||
FQ7W | 24.9° | 28.3° | 27-09-2017 |
FQ7W | 21-10-2017 | ||
FQ7W | 14-11-2017 | ||
FQ8W | 26.1° | 29.4° | 20-09-2017 |
FQ8W | 14-10-2017 | ||
FQ8W | 07-11-2017 | ||
FQ8W | 01-12-2017 | ||
FQ8W | 25-12-2017 | ||
FQ10W | 28.4° | 31.6° | 07-10-2017 |
FQ10W | 31-10-2017 | ||
FQ10W | 18-12-2017 | ||
FQ12W | 30.6° | 33.7° | 30-09-2017 |
FQ12W | 24-10-2017 | ||
FQ12W | 17-11-2017 | ||
FQ12W | 11-12-2017 | ||
FQ13W | 31.7° | 34.7° | 10-11-2017 |
FQ13W | 04-12-2017 | ||
FQ13W | 28-12-2017 | ||
FQ14W | 32.7° | 35.7° | 23-09-2017 |
FQ14W | 17-10-2017 | ||
FQ15W | 33.7° | 36.7° | 10-10-2017 |
FQ15W | 03-11-2017 | ||
FQ15W | 27-11-2017 | ||
FQ15W | 21-12-2017 | ||
FQ16W | 34.8° | 37.6° | 03-10-2017 |
FQ16W | 20-11-2017 | ||
FQ16W | 14-12-2017 | ||
FQ17W | 35.7° | 38.6° | 27-10-2017 |
FQ18W | 36.7° | 39.5° | 23-11-2017 |
FQ20W | 38.6° | 41.3° | 30-11-2017 |
FQ21W | 39.5° | 42.1° | 07-12-2017 |
Short Form | Description |
---|---|
Sigma naught backscattering—right circular transmit and horizontal linear, vertical linear, left circular, or right circular receive polarization [4] | |
m-χ_S, m-χ_V, m-χ_DB | Surface, volume, and double bounce scattering from m-χ decomposition [20] |
m-δ_S, m-δ_V, m-δ_DB | Surface, volume, and double bounce scattering from m-δ decomposition [2] |
SV0, SV1, SV2, SV3 | Stokes vector elements [20] |
SE_Pol, SE_Int | Shannon entropy polarimetric and intensity components [21] |
m | Degree of polarization [20] |
μ | Conformity coefficient [19] |
RH RV correlation coefficient [4] | |
Circular polarization ratio [2] | |
Alpha feature related to the ellipticity of the compact scattered wave [22] | |
RH RV phase difference [23] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dabboor, M.; Shokr, M. Compact Polarimetry Response to Modeled Fast Sea Ice Thickness. Remote Sens. 2020, 12, 3240. https://doi.org/10.3390/rs12193240
Dabboor M, Shokr M. Compact Polarimetry Response to Modeled Fast Sea Ice Thickness. Remote Sensing. 2020; 12(19):3240. https://doi.org/10.3390/rs12193240
Chicago/Turabian StyleDabboor, Mohammed, and Mohammed Shokr. 2020. "Compact Polarimetry Response to Modeled Fast Sea Ice Thickness" Remote Sensing 12, no. 19: 3240. https://doi.org/10.3390/rs12193240