OpenSWAP, an Open Architecture, Low Cost Class of Autonomous Surface Vehicles for Geophysical Surveys in the Shallow Water Environment
"> Figure 1
<p>An OpenSWAP vehicle during a test phase.</p> "> Figure 2
<p>CFD simulation of the hulls behavior during the design phase of the vehicle at 7 km/h of speed. Note minimum turbulence between the two hulls.</p> "> Figure 3
<p>Photo and technical details of the latest OpenSWAP vehicle.</p> "> Figure 4
<p>Block-diagram (<b>top</b>) and photo (<b>bottom</b>) of the OpenSWAP mainboard.</p> "> Figure 5
<p>Block diagram showing OpenSWAP hardware/software architecture.</p> "> Figure 6
<p>Block model of <span class="html-italic">DUNVAG</span>, the hearth of the system which implement autonomous navigation algorithms.</p> "> Figure 7
<p>Screenshots of OSN and SwapController (<b>inset</b>) during a survey. Planned lines are marked in white, while navigation performed is indicated by green lines.</p> "> Figure 8
<p>Navigation performance test along a 1 km straight line. <b>Left</b>: screenshot of OSN with first (white) and second (red) navigation lines. <b>Right</b>: distribution of the error modules between the two paths.</p> "> Figure 9
<p>Echographic survey carried out along the Reno River close to an urban bridge (Bologna, Italy). (<b>a</b>) Configuration of the survey before start; (<b>b</b>) example of 200 kHz echogram in very shallow water; (<b>c</b>) morphobathymetric map highlighting the presence of a deep erosion close to the bridge pillar; (<b>d</b>) reflectivity map obtained using the same data showing sectors of prevalent erosion (red) and deposition (blue).</p> "> Figure 10
<p>Top: side-scan sonar image of the Cavo Napoleonico artificial channel close to the epicenter of the Emilia 2012 earthquake, showing slumps and gravitative failures affecting the channel-floor. Bottom: SBP profile collected in the same area, penetrating the first meters of alluvial sediments, showing paleo-channels and displacements reaching up to the surface.</p> "> Figure 11
<p>Example of seismic reflection profiles along the same navigation line collected with two different systems in Lake Trasimeno. <b>Top</b>: Chirp III Teledyne-Benthos, with 4 Massa transducers; <b>Bottom</b>: <span class="html-italic">µ<span class="html-small-caps">Chirp</span></span> with 4 Monacor transducers. Unconsolidated sediments are penetrated down to 15–20 ms. below the lake floor, by both systems, with high vertical resolutions (tens of cm), enabling a detailed imaging the sedimentary structures.</p> "> Figure 12
<p>Bathymetric data collected using a Klein Hydrochart 3500 multibeam echosounder onboard of an OpenSWAP vehicle, including: (<b>a</b>) a first survey; (<b>b</b>) a second acquisition performed next day; and (<b>c</b>) the point-to-point difference between the two DTMs. Note that over 95% (colored dots) are within ±30 cm of difference. Red and blue undulations in c result from short-term seafloor changes, probably due to sand-ripple migration.</p> ">
Abstract
:1. Introduction
2. OpenSWAP, Philosophy and Motivations
3. Design of the Vehicles
3.1. Nautical Aspects
3.2. Electronic Boards
3.3. Software Architecture
3.3.1. DUNVAG, the Autonomous Navigation Firmware
3.3.2. The Embedded SBE/SBP Instruments
3.4. OpenSWAPNav, the Mission Control Software
4. Performances of the Vehicles and Data Acquisition Examples
4.1. Navigation Accuracy
4.2. SBE
4.3. Side-Scan Sonar Imaging
4.4. High-Resolution Imaging of the Subsurface Using the Embedded SBP
4.5. Multibeam Echosounder Repeated Surveys
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gasperini, L.; Del Bianco, F.; Stanghellini, G.; Priore, F. Acquisition of geophysical data in shallow-water environments using autonomous vehicles: State of the art, perspectives and case histories. GNGTS 2014, 1, 10–11. [Google Scholar]
- Dal Forno, G.; Gasperini, L. Chircor: A new tool for generating synthetic chirp-sonar seismograms. Comput. Geosci. 2008, 34, 103–114. [Google Scholar] [CrossRef]
- Gasperini, L.; Stanghellini, G. SeisPrho: An interactive computer program for processing and interpretation of high-resolution seismic reflection profiles. Comput. Geosci. 2009, 35, 1497–1504. [Google Scholar] [CrossRef]
- Stanghellini, G.; Carrara, G. Segy-change: The swiss army knife for the SEG-Y files. Software-X 2017, 6, 42–47. [Google Scholar] [CrossRef]
- Kalman, R.E. A new approach to linear filtering and prediction problems. J. Basic Eng. 1960, 82, 35–45. [Google Scholar] [CrossRef] [Green Version]
- Foxlin, E. Inertial head-tracker sensor fusion by a complementary separate-bias kalman filter. In Proceedings of the Virtual Reality Annual International Symposium the IEEE, Santa Clara, CA, USA, 30 March–3 April 1996; pp. 185–194. [Google Scholar]
- Luinge, H.J.; Veltink, P.H.; Baten, C.T.M. Estimation of orientation with gyroscopes and accelerometers. In Proceedings of the First Joint [Engineering in Medicine and Biology 21st Annual Conf and the 1999 Annual Fall Meeting of the Biomedical Engineering Soc.] BMES/EMBS Conference, Atlanta, GA, USA, 13–16 October 1999; Volume 2, p. 844. [Google Scholar]
- Sabatini, A.M. Quaternion-based extended kalman filter for determining orientation by inertial and magnetic sensing. IEEE Trans. Biomed. Eng. 2006, 53, 1346–1356. [Google Scholar] [CrossRef]
- Madgwick, S.O.H.; Harrison, A.J.L.; Vaidyanathan, R. Estimation of IMU and MARG orientation using a gradient descent algorithm. In Proceedings of the IEEE International Conference on Rehabilitation Robotics, Zurich, Switzerland, 29 June–1 July 2011; pp. 1–7. [Google Scholar] [CrossRef]
- Wessel, P.; Smith, W.H.F.; Scharroo, R.; Luis, J.; Wobbe, F. Generic mapping tools: Improved version released. Eos Trans. Am. Geophys. Union 2013, 94, 409–410. [Google Scholar] [CrossRef] [Green Version]
- Caress, D.W.; Chayes, D.N. Improved processing of Hydrosweep DS multibeam data on the R/V Maurice Ewing. Mar. Geophys. Res. 1996, 18, 631–650. [Google Scholar] [CrossRef]
- Stockwell, J.W., Jr. Free software in education: A case study of CWP/SU: Seismic Unix. Lead. Edge 1997, 16, 1045–1049. [Google Scholar] [CrossRef]
- Barry, K.M.; Cavers, D.A.; Kneale, C.W. Recommended standards for digital tape formats. Geophysics 1975, 40, 244–352. [Google Scholar] [CrossRef]
- Haynes, R.; Huws, D.G.; Davis, A.M.; Bennell, J.D. Geophysical sea-floor sensing in a carbonate sediment regime. Geo-Mar. Lett. 1997, 17, 253–259. [Google Scholar] [CrossRef]
- Richardson, M.D.; Briggs, K.B. In situ and laboratory geoacoustic measurements in soft mud and hard-packed sand sediments: Implications for high-frequency acoustic propagation and scattering. Geo-Mar. Lett. 1996, 16, 196–203. [Google Scholar] [CrossRef]
- Shumway, G. Sound speed and absorption studies of marine sediments by a resonance method. Geophysics 1960, 25, 451–467. [Google Scholar] [CrossRef]
- McCann, C.; McCann, D.M. The attenuation of compressional waves in marine sediments. Geophysics 1969, 34, 882–892. [Google Scholar] [CrossRef]
- McCann, C.; McCann, D.M. A theory of compressional wave attenuation in non-cohesive sediments. Geophysics 1985, 50, 1311–1317. [Google Scholar] [CrossRef]
- Dunlop, J.I. Measurement of acoustic attenuation in marine sediments by impedance tube. J. Acoust. Soc. Am. 1992, 91, 460–469. [Google Scholar] [CrossRef]
- Gasperini, L. Extremely Shallow-Water Morphobathymetric Surveys: The Valle Fattibello (Comacchio, Italy) Test Case. Mar. Geophys. Res. 2005, 26, 97–107. [Google Scholar] [CrossRef]
- Galli, P.; Castenetto, S.; Peronace, E. May 2012 Emilia earthquakes (Mw 6, Northern Italy): Macroseismic effects distribution and seismotectonic implications. Alp. Mediterr. Quat. 2012, 25, 105–123. [Google Scholar]
- Salvi, S.; Tolomei, C.; Boncori, J.P.M.; Pezzo, G.; Atzori, S.; Antonioli, A.; Trasatti, E.; Giulini, R.; Zoffoli, S.; Coletta, A. Activation of the SIGRIS monitoring system for ground deformation mapping during the Emilia 2012 seismic sequence, using COSMO-SkyMed InSAR data. Ann. Geophys. 2012, 55, 797–802. [Google Scholar]
- Tizzani, P.; Castaldo, R.; Solaro, G.; Pepe, A.; Bonano, M.; Casu, F.; Manunta, M.; Manzo, M.; Samsonov, S.V.; Lanari, R.; et al. New insights into the 2012 Emilia (Italy) seismic sequence through advanced numerical modeling of ground deformation InSAR measurements. Geophys. Res. Lett. 2013, 40, 1971–1977. [Google Scholar] [CrossRef]
- Gasperini, L.; Barchi, M.R.; Bellucci, L.G.; Bortoluzzi, G.; Ligi, M.; Pauselli, C. Tectonostratigraphy of Lake Trasimeno (Italy) and the geological evolution of the Northern Apennines. Tectonophysics 2010, 492, 164–174. [Google Scholar] [CrossRef]
- Borgia, L.; Colombero, C.; Comina, C.; Del Bianco, F.; Gasperini, L.; Priore, F.; Sambuelli, L.; Stanghellini, G.; Trippetti, S. First results of a waterborne geophysical survey around Malpasso site (Tuoro sul Trasimeno, Italy) for geological and archeological characterization. GNGTS 2013, 3, 186–189. [Google Scholar]
- Polonia, A.; Torelli, L.; Mussoni, P.; Gasperini, L.; Artoni, A.; Klaeschen, D. The Calabrian Arc subduction complex in the Ionian Sea: Regional architecture, active deformation, and seismic hazard. Tectonics 2011, 30, TC5018. [Google Scholar] [CrossRef] [Green Version]
- Polonia, A.E.; Bonatti, E.; Camerlenghi, A.; Lucchi, R.G.; Panieri, G.; Gasperini, L. Mediterranean megaturbidite triggered by the AD 365 Crete earthquake and tsunami. Sci. Rep. 2013, 3, 1285. [Google Scholar] [CrossRef] [PubMed]
- Bortoluzzi, G.; Polonia, A.; Torelli, L.; Artoni, A.; Carlini, M.; Carone, S.; Carrara, G.; Cuffaro, M.; Del Bianco, F.; D’Oriano, F.; et al. Styles and rates of deformation in the frontal accretionary wedge of the Calabrian Arc (Ionian Sea): Controls exerted by the structure of the lower African plate. Ital. J. Geosci. 2017, 136, 347–364. [Google Scholar] [CrossRef] [Green Version]
- Forte, E.; Pipan, M. Review of multi-offset GPR applications: Data acquisition, processing and analysis. Signal Process. 2017, 132, 210–220. [Google Scholar] [CrossRef]
- Sambuelli, L.; Fiorucci, A.; Dabove, P.; Pascal, I.; Colombero, C.; Comina, C. Case history: A 5 km long waterborne geophysical surveyalong the Po river within the city of Turin (northwest Italy). Geophysics 2017, 82, 1–11. [Google Scholar] [CrossRef] [Green Version]
Open HW/SW architectures, widely documented and easily modified by the end-users |
Innovative hulls design which optimize navigation and data acquisition |
Embedded geophysical instrumentation, including a single-beam echosounder (with full echogram recording), and a “chirp” sub-bottom profiler |
High accuracy (within +/−30 cm) in repeating programmed navigation lines |
Modular HW/SW interfaces which enable for integrating thirty-party instruments, both for navigation and data acquisition |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stanghellini, G.; Del Bianco, F.; Gasperini, L. OpenSWAP, an Open Architecture, Low Cost Class of Autonomous Surface Vehicles for Geophysical Surveys in the Shallow Water Environment. Remote Sens. 2020, 12, 2575. https://doi.org/10.3390/rs12162575
Stanghellini G, Del Bianco F, Gasperini L. OpenSWAP, an Open Architecture, Low Cost Class of Autonomous Surface Vehicles for Geophysical Surveys in the Shallow Water Environment. Remote Sensing. 2020; 12(16):2575. https://doi.org/10.3390/rs12162575
Chicago/Turabian StyleStanghellini, Giuseppe, Fabrizio Del Bianco, and Luca Gasperini. 2020. "OpenSWAP, an Open Architecture, Low Cost Class of Autonomous Surface Vehicles for Geophysical Surveys in the Shallow Water Environment" Remote Sensing 12, no. 16: 2575. https://doi.org/10.3390/rs12162575
APA StyleStanghellini, G., Del Bianco, F., & Gasperini, L. (2020). OpenSWAP, an Open Architecture, Low Cost Class of Autonomous Surface Vehicles for Geophysical Surveys in the Shallow Water Environment. Remote Sensing, 12(16), 2575. https://doi.org/10.3390/rs12162575