Assessment of Leaf Chlorophyll Content Models for Winter Wheat Using Landsat-8 Multispectral Remote Sensing Data
<p>Location of the study site (standard true-color composite of a Landsat-8 OLI image) and the distribution of elementary sampling units (ESUs).</p> "> Figure 2
<p>A schematic diagram of leaf chlorophyll content (LCC) retrieval methods adopted in the present study.</p> "> Figure 3
<p>Cross-validation results of different VIs for LCC assessment. (<b>a</b>–<b>i</b>) are results for NDVI, GNDVI, SR, MSR, OSAVI, MSAVI, EVI, EVI2, and MTVI2, respectively.</p> "> Figure 4
<p>Cross-validation results of different MLRAs for LCC estimation. (<b>a</b>–<b>f</b>) are results for PLSR, RF, FNN, SVR, KRR, and GPR, respectively.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Experiments
2.2. Ground Data Measurements
2.3. Landsat-8 Imagery Processing
2.4. PROSAIL Simulated Dataset
2.5. Chlorophyll Modelling Methods
2.5.1. Vegetation Indices
2.5.2. Machine Learning Regression Algorithms
2.5.3. LUT-Based Inversion Strategies
2.5.4. Hybrid Regression Methods
2.6. Statistical Analysis
3. Results
3.1. LCC Estimation with VIs
3.2. MLRAs in LCC Assessment
3.3. LUT-Based Inversion for LCC Estimation
3.4. Hybrid Regression Methods in LCC Modelling
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Project, G.C. International Geosphere-Biosphere Programme; IGBP: Stockholm, Sweden, 2010; Volume 21, p. 36. [Google Scholar]
- Nobel, P.S. Physicochemical and Environmental Plant Physiology, 4th ed.; Elsevier Academic Press: Amsterdam, The Netherlands, 2009. [Google Scholar]
- Haboudane, D.; Miller, J.R.; Tremblay, N.; Zarco-Tejada, P.J.; Dextraze, L. Integrated narrow-band vegetation indices for prediction of crop chlorophyll content for application to precision agriculture. Remote Sens. Environ. 2002, 81, 416–426. [Google Scholar] [CrossRef]
- Yu, K.; Lenz-Wiedemann, V.; Chen, X.; Bareth, G. Estimating leaf chlorophyll of barley at different growth stages using spectral indices to reduce soil background and canopy structure effects. ISPRS J. Photogramm. Remote Sens. 2014, 97, 58–77. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Vina, A.; Ciganda, V.; Rundquist, D.C. Remote estimation of canopy chlorophyll content in crops. Geophys. Res. Lett. 2005, 32. [Google Scholar] [CrossRef] [Green Version]
- Zhao, K.; Valle, D.; Popescu, S.; Zhang, X.; Malick, B. Hyperspectral remote sensing of plant biochemistry using Bayesian model averaging with variable and band selection. Remote Sens. Environ. 2013, 132, 102–119. [Google Scholar] [CrossRef]
- Verrelst, J.; Munoz, J.; Alonso, L.; Delegido, J.; Pablo Rivera, J.; Camps-Valls, G.; Moreno, J. Machine learning regression algorithms for biophysical parameter retrieval: Opportunities for Sentinel-2 and -3. Remote Sens. Environ. 2012, 118, 127–139. [Google Scholar] [CrossRef]
- Malenovsky, Z.; Homolova, L.; Zurita-Milla, R.; Lukes, P.; Kaplan, V.; Hanus, J.; Gastellu-Etchegorry, J.P.; Schaepman, M.E. Retrieval of spruce leaf chlorophyll content from airborne image data using continuum removal and radiative transfer. Remote Sens. Environ. 2013, 131, 85–102. [Google Scholar] [CrossRef] [Green Version]
- Verrelst, J.; Pablo Rivera, J.; Veroustraete, F.; Munoz-Mari, J.; Clevers, J.G.P.W.; Camps-Valls, G.; Moreno, J. Experimental Sentinel-2 LAI estimation using parametric, non-parametric and physical retrieval methods—A comparison. ISPRS J. Photogramm. Remote Sens. 2015, 108, 260–272. [Google Scholar] [CrossRef]
- Pu, R.; Gong, P. Hyperspectral Remote Sensing and Its Applications; Higher Education Press: Beijing, China, 2000. [Google Scholar]
- Dash, J.; Curran, P.J. The MERIS terrestrial chlorophyll index. Int. J. Remote Sens. 2004, 25, 5403–5413. [Google Scholar] [CrossRef]
- Verrelst, J.; Malenovsky, Z.; Van Der Tol, C.; Camps-Valls, G.; Gastellu Etchegorry, J.-P.; Lewis, P.; North, P.; Moreno, J. Quantifying Vegetation Biophysical Variables from Imaging Spectroscopy Data: A Review on Retrieval Methods. Surv. Geophys. 2019, 40, 589–629. [Google Scholar] [CrossRef] [Green Version]
- Tang, X.G.; Song, K.S.; Liu, D.W.; Wang, Z.M.; Wang, Y.D. Comparison of Methods for Estimating Soybean Chlorophyll Content Based on Visual/Near Infrared Reflection Spectra. Spectrosc. Spectr. Anal. 2011, 31, 371–374. [Google Scholar]
- Verrelst, J.; Alonso, L.; Rivera Caicedo, J.P.; Moreno, J.; Camps-Valls, G. Gaussian Process Retrieval of Chlorophyll Content From Imaging Spectroscopy Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 6, 867–874. [Google Scholar] [CrossRef]
- Feret, J.B.; Francis, C.; Asner, G.P.; Gitelson, A.A.; Martin, R.E.; Bidel, L.P.R.; Ustin, S.L.; Le Maire, G.; Jacquemoud, S. PROSPECT-4 and 5: Advances in the leaf optical properties model separating photosynthetic pigments. Remote Sens. Environ. 2008, 112, 3030–3043. [Google Scholar] [CrossRef]
- Darvishzadeh, R.; Matkan, A.A.; Ahangar, A.D. Inversion of a Radiative Transfer Model for Estimation of Rice Canopy Chlorophyll Content Using a Lookup-Table Approach. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2012, 5, 1222–1230. [Google Scholar] [CrossRef] [Green Version]
- Rivera, J.P.; Verrelst, J.; Leonenko, G.; Moreno, J. Multiple Cost Functions and Regularization Options for Improved Retrieval of Leaf Chlorophyll Content and LAI through Inversion of the PROSAIL Model. Remote Sens. 2013, 5, 3280–3304. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Wang, Q. Inverse Retrieval of Chlorophyll from Reflected Spectra for Assimilating Branches of Drought-Tolerant Tamarix ramosissima. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 1498–1505. [Google Scholar] [CrossRef]
- Croft, H.; Arabian, J.; Chen, J.; Shang, J.; Liu, J. Mapping within-field leaf chlorophyll content in agricultural crops for nitrogen management using Landsat-8 imagery. Precis. Agric. 2019, 21, 1–25. [Google Scholar] [CrossRef] [Green Version]
- Verrelst, J.; Dethier, S.; Rivera, J.P.; Munoz-Mari, J.; Camps-Valls, G.; Moreno, J. Active Learning Methods for Efficient Hybrid Biophysical Variable Retrieval. IEEE Geosci. Remote Sens. Lett. 2016, 13, 1012–1016. [Google Scholar] [CrossRef]
- Upreti, D.; Huang, W.; Kong, W.; Pascucci, S.; Pignatti, S.; Zhou, X.; Ye, H.; Casa, R. A Comparison of Hybrid Machine Learning Algorithms for the Retrieval of Wheat Biophysical Variables from Sentinel-2. Remote Sens. 2019, 11, 481. [Google Scholar] [CrossRef] [Green Version]
- Dorigo, W.A. Improving the Robustness of Cotton Status Characterisation by Radiative Transfer Model Inversion of Multi-Angular CHRIS/PROBA Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2012, 5, 18–29. [Google Scholar] [CrossRef]
- Roy, D.P.; Wulder, M.A.; Loveland, T.R.; Woodcock, C.E.; Zhu, Z. Landsat-8: Science and Product Vision for Terrestrial Global Change Research. Remote Sens. Environ. 2014, 145, 154–172. [Google Scholar] [CrossRef] [Green Version]
- Houborg, R.; Mccabe, M.; Cescatti, A.; Gao, F.; Schull, M.; Gitelson, A. Joint leaf chlorophyll content and leaf area index retrieval from Landsat data using a regularized model inversion system (REGFLEC). Remote Sens. Environ. 2015, 159, 203–221. [Google Scholar] [CrossRef] [Green Version]
- Croft, H.; Chen, J.M.; Zhang, Y.; Simic, A.; Noland, T.L.; Nesbitt, N.; Arabian, J. Evaluating leaf chlorophyll content prediction from multispectral remote sensing data within a physically-based modelling framework. ISPRS J. Photogramm. Remote Sens. 2015, 102, 85–95. [Google Scholar] [CrossRef]
- Cerovic, Z.G.; Masdoumier, G.; Ghozlen, N.M.B.; Latouche, G. A new optical leaf-clip meter for simultaneous non-destructive assessment of leaf chlorophyll and epidermal flavonoids. Physiol. Plant. 2012, 146, 251–260. [Google Scholar] [CrossRef] [PubMed]
- Verhoef, W.; Jia, L.; Xiao, Q.; Su, Z. Unified Optical-Thermal Four-Stream Radiative Transfer Theory for Homogeneous Vegetation Canopies. IEEE Trans. Geosci. Remote Sens. 2007, 45, 1808–1822. [Google Scholar] [CrossRef]
- Campbell, G.S. Derivation of an angle density function for canopies with ellipsoidal leaf angle distributions. Agric. For. Meteorol. 1990, 49, 173–176. [Google Scholar] [CrossRef]
- Weiss, M.; Baret, F. S2ToolBox Level 2 Products: LAI, FAPAR, FCOVER. 2016. Available online: https://step.esa.int/docs/extra/ATBD_S2ToolBox_L2B_V1.1.pdf (accessed on 24 June 2020).
- Rouse, J.W.; Haas, R.H., Jr.; Schell, J.A.; Deering, D.W. Monitoring vegetation systems in the Great Plains with ERTS. In Third ERTS-1 Symposium; NASA: Washington, DC, USA, 1974; pp. 309–317. [Google Scholar]
- Gitelson, A.A.; Kaufman, Y.J.; Merzlyak, M.N. Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote Sens. Environ. 1996, 58, 289–298. [Google Scholar] [CrossRef]
- Jordan, C.F. Derivation of Leaf-Area Index from Quality of Light on the Forest Floor. Ecology 1969, 50, 663–666. [Google Scholar] [CrossRef]
- Chen, J.M. Evaluation of Vegetation Indices and a Modified Simple Ratio for Boreal Applications. Can. J. Remote Sens. 1996, 22, 229–242. [Google Scholar] [CrossRef]
- Liu, H.Q.; Huete, A.R. A feedback based modification of the NDVI to minimize canopy background and atmospheric noise. IEEE Trans. Geosci. Remote Sens. 1995, 33, 457–465. [Google Scholar] [CrossRef]
- Jiang, Z.; Huete, A.R.; Didan, K.; Miura, T. Development of a two-band enhanced vegetation index without a blue band. Remote Sens. Environ. 2008, 112, 3833–3845. [Google Scholar] [CrossRef]
- Rondeaux, G.; Steven, M.; Baret, F. Optimization of soil-adjusted vegetation indices. Remote Sens. Environ. 1996, 55, 95–107. [Google Scholar] [CrossRef]
- Qi, J.; Chehbouni, A.; Huete, A.R.; Kerr, Y.H.; Sorooshian, S. A modified soil adjusted vegetation index. Remote Sens. Environ. 1994, 48, 119–126. [Google Scholar] [CrossRef]
- Haboudane, D.; Miller, J.R.; Pattey, E.; Zarco-Tejada, P.J.; Strachan, I.B. Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture. Remote Sens. Environ. 2004, 90, 337–352. [Google Scholar] [CrossRef]
- Geladi, P.; Kowalski, B.R. Partial Least-Squares Regression: A Tutorial. Anal. Chim. Acta 1986, 185, 1–17. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Hagan, M.T.; Menhaj, M.B. Training feedforward networks with the Marquardt algorithm. IEEE Trans. Neural Netw. 1994, 5, 989–993. [Google Scholar] [CrossRef]
- Vapnik, V.; Golowich, S.; Smola, A. Support Vector Method for Function Approximation, Regression Estimation, and Signal Processing. Adv. Neural Inf. Process. Syst. 1997, 9, 281–287. [Google Scholar]
- Suykens, J.A.K.; Vandewalle, J. Least Squares Support Vector Machine Classifiers. Neural Process. Lett. 1999, 9, 293–300. [Google Scholar] [CrossRef]
- Rasmussen, C.E.; Williams, C.K.I. Gaussian Processes for Machine Learning; The MIT Press: New York, NY, USA, 2006. [Google Scholar]
- Li, H.; Chen, Z.X.; Jiang, Z.W.; Wen-Bin, W.U.; Ren, J.Q.; Liu, B.; Hasi, T. Comparative analysis of GF-1, HJ-1, and Landsat-8 data for estimating the leaf area index of winter wheat. J. Integr. Agric. 2017, 16, 266–285. [Google Scholar] [CrossRef]
- Lessio, A.; Fissore, V.; Borgognomondino, E. Preliminary Tests and Results Concerning Integration of Sentinel-2 and Landsat-8 OLI for Crop Monitoring. J. Imaging 2017, 3, 49. [Google Scholar] [CrossRef] [Green Version]
- Meng, Q.; Zhang, L.; Xie, Q.; Yao, S.; Chen, X.; Zhang, Y. Combined Use of GF-3 and Landsat-8 Satellite Data for Soil Moisture Retrieval over Agricultural Areas Using Artificial Neural Network. Adv. Meteorol. 2018, 2018, 1–11. [Google Scholar] [CrossRef]
- Yin, C.; He, B.; Quan, X.; Liao, Z. Chlorophyll content estimation in arid grasslands from Landsat-8 OLI data. Int. J. Remote Sens. 2016, 37, 615–632. [Google Scholar] [CrossRef]
- Markwell, J.; Osterman, J.C.; Mitchell, J.L. Calibration of the Minolta SPAD-502 leaf chlorophyll meter. Photosynth. Res. 1995, 46, 467–472. [Google Scholar] [CrossRef] [PubMed]
- Verger, A.; Baret, F.; Weiss, M. Performances of neural networks for deriving LAI estimates from existing CYCLOPES and MODIS products. Remote Sens. Environ. 2008, 112, 2789–2803. [Google Scholar] [CrossRef]
- Verger, A.; Baret, F.; Camacho, F. Optimal modalities for radiative transfer-neural network estimation of canopy biophysical characteristics: Evaluation over an agricultural area with CHRIS/PROBA observations. Remote Sens. Environ. 2011, 115, 415–426. [Google Scholar] [CrossRef]
- Pullanagari, R.R.; Kereszturi, G.; Yule, I.J. Mapping of macro and micro nutrients of mixed pastures using airborne AisaFENIX hyperspectral imagery. ISPRS J. Photogramm. Remote Sens. 2016, 117, 1–10. [Google Scholar] [CrossRef]
- Han, Z.; Zhu, X.; Fang, X.; Wang, Z.; Wang, L.; Zhao, G. Hyperspectral estimation of apple tree canopy LAI based on SVM and RF regression. Spectrosc. Spectr. Anal. 2016, 3, 800–805. [Google Scholar]
- Rivera, J.; Verrelst, J.; Delegido, J.; Moreno, J. On the Semi-Automatic Retrieval of Biophysical Parameters Based on Spectral Index Optimization. Remote Sens. 2014, 6, 4927–4951. [Google Scholar] [CrossRef] [Green Version]
- Campos-Taberne, M.; Garcia-Haro, F.; Camps-Valls, G.; Grau-Muedra, G.; Nutini, F.; Crema, A.; Boschetti, M. Multitemporal and multiresolution leaf area index retrieval for operational local rice crop monitoring. Remote Sens. Environ. 2016, 187, 102–118. [Google Scholar] [CrossRef]
- Kempeneers, P.; Zarco-tejada, P.J.; North, P.R.; Backer, S.D.; Delalieux, S.; Sepulcre-Canto, G.; Morales, F.; Aardt, J.A.N.V.; Sagardoy, R.; Coppin, P.; et al. Model inversion for chlorophyll estimation in open canopies from hyperspectral imagery. Int. J. Remote Sens. 2008, 29, 5093–5111. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, J.M.; Miller, J.R.; Norland, T.L. Leaf chlorophyll content retrieval from airborne hyperspectral remote sensing imagery. Remote Sens. Environ. 2008, 112, 3234–3247. [Google Scholar] [CrossRef]
- Verrelst, J.; Rivera, J.P.; Leonenko, G.; Alonso, L. Optimizing LUT-Based RTM Inversion for Semiautomatic Mapping of Crop Biophysical Parameters from Sentinel-2 and -3 Data: Role of Cost Functions. IEEE Trans. Geosci. Remote Sens. 2014, 52, 257–269. [Google Scholar] [CrossRef]
Field Data Collection Date | Growth Stage | Imagery Date | ESUs | Leaf Chlorophyll Content (μg·cm−2) a | ||
---|---|---|---|---|---|---|
AVG | MAX | MIN | ||||
2016/04/20 | Booting | 2016/04/18 | 24 | 54.33 | 66.77 | 28.06 |
2016/05/03 | Heading | 2016/05/04 | 24 | 59.89 | 77.65 | 29.78 |
2016/05/18 | Flowering | 2016/05/20 | 24 | 61.64 | 78.98 | 41.59 |
2016/06/07 | Milking | 2016/06/05 | 24 | 47.78 | 64.49 | 18.33 |
Model Parameter | Units | Range | Distribution a | Number | |
---|---|---|---|---|---|
PROSPECT-5 | Leaf structure index (N) | unitless | 1.0–1.8 | Gaussian (μ: 1.4, SD: 0.5) | 3 |
Leaf chlorophyll content (LChl) | [μg/cm2] | 10–100 | Gaussian (μ: 50, SD: 30) | 50 | |
Leaf carotenoid content (LCar) | [μg/cm2] | 12 | 1 | ||
Leaf dry matter content (Cm) | [g/cm2] | 0.001–0.01 | Gaussian (μ: 0.005, SD: 0.005) | 3 | |
Leaf water content (Cw) | [cm] | 0.01 | 1 | ||
Brown pigments (Cbp) | unitless | 0 | 1 | ||
4SAIL | Leaf area index (LAI) | [m2/m2] | 0–10 | Gaussian (μ: 3, SD: 4) | 10 |
Average leaf angle (ALA) | [°] | 40–70 | Gaussian (μ: 55, SD: 10) | 3 | |
Soil scaling factor (αsoil) | unitless | 0–1 | Gaussian (μ: 0.5, SD: 0.3) | 3 | |
Hot spot parameter (hots) | unitless | 0.1–0.5 | Gaussian (μ: 0.2, SD: 0.5) | 3 | |
Fraction of diffuse incoming solar radiation (skyl) | unitless | 10 | 1 | ||
Sun zenith angle (θS) | [°] | 30 | 1 | ||
View zenith angle (θV) | [°] | 8 | 1 | ||
Sun-sensor azimuth angle (Φ) | [°] | 135 | 1 |
Spectral Index | Formula a | Reference |
---|---|---|
Normalized difference vegetation index (NDVI) | [30] | |
Green normalized difference vegetation index (GNDVI) | [31] | |
Simple ratio (SR) | [32] | |
Modified simple ratio (MSR) | [33] | |
Enhanced vegetation index (EVI) | [34] | |
Enhanced vegetation index 2 (EVI2) | [35] | |
Optimized soil adjusted vegetation index (OSAVI) | [36] | |
Modified soil adjusted vegetation index (MSAVI) | [37] | |
Modified triangular vegetation index (MTVI2) | [38] |
Methods | Brief Description | Reference |
---|---|---|
Partial least square regression (PLSR) | PLSR combines principal component analysis with canonical correlation analysis, which could overcome the problem of multicollinearity between traditional independent variables, and the extracted PLS factors could explain most of the variation in both the predictors and response variables. | [39] |
Random forest (RF) | RF regression is a fusion algorithm based on a decision tree classifier, which uses a bootstrap resampling method to extract multiple samples, and decision trees are constructed for each sample; then, the predicted average values of all decision trees are taken as the final prediction results. | [40] |
Feedforward neural networks (FNN) | Neural networks (NN) refer to a complex network structure formed by the interconnection of a large number of processing units (neurons). Here, the standard multi-layer FNN model was adopted, and the Levenberg-Marquardt learning algorithm with a squared loss function was selected to optimize the established NN structure. | [41] |
Support vector regression (SVR) | SVR maps training samples to a high-dimensional space and transforms a nonlinear problem in low-dimensional space to a linear problem in high-dimensional space, and then carries on linear modeling. Here, a radial basis function was used to transform nonlinear problems to linear ones. | [42] |
Kernel ridge regression (KRR) | KRR is a regression algorithm based on the kernel method. It uses a kernel function to map original data to a high-dimensional space. The mapped data show a linear relationship in the high-dimensional space, and the established model has a strong generalization ability. | [43] |
Gaussian processes regression (GPR) | GPR is a statistical learning method under the Bayesian framework, which is often used in nonlinear modeling. It can transform a prior distribution into a posterior model by training historical data, so as to obtain prediction results with probability significance. | [44] |
Category | Cost Function | Algorithm a |
---|---|---|
Information measures | Pearson chi-square | |
K-divergence Lin | ||
Negative exponential disparity | ||
Jeffreys-Kullback-Leibler | ||
M-estimates | Root mean square error | |
Least absolute error | ||
Geman and McClure | ||
Minimum contrast estimates | K(x) = -log (x) + x | |
K(x) = log (x) + 1/x | ||
K(x) = log (x)2 |
Index | Equation | R2 | RMSE (μg·cm−2) | RRMSE (%) |
---|---|---|---|---|
NDVI | y = 48.61x + 28.16 | 0.42 ** | 6.61 | 11.58 |
GNDVI | y = 37.01x + 35.92 | 0.28 ** | 7.39 | 12.95 |
SR | y = 3.53x + 41.79 | 0.34 ** | 7.09 | 12.41 |
MSR | y = 12.21x + 40.02 | 0.38 ** | 6.87 | 12.04 |
EVI | y = 41.83x + 33.78 | 0.37 ** | 6.91 | 12.10 |
EVI2 | y = 66.55x + 28.04 | 0.52 ** | 6.02 | 10.54 |
OSAVI | y = 61.50x + 25.52 | 0.49 ** | 6.23 | 10.90 |
MSAVI | y = 67.65x + 28.51 | 0.52 ** | 6.01 | 10.53 |
MTVI2 | y = 70.62x + 29.87 | 0.55 ** | 5.82 | 10.19 |
Cost Function | Rank | RMSE (μg·cm−2) | RRMSE (%) | Mult. Sol. (%) |
---|---|---|---|---|
Pearson chi-square | 2 | 8.94 | 15.65 | 8 |
K-divergence Lin | 7 | 16.15 | 28.29 | 30 |
Negative exponential disparity | 10 | 18.54 | 32.48 | 30 |
Jeffreys-Kullback-Leibler | 8 | 16.47 | 28.84 | 30 |
Root mean square error | 9 | 17.75 | 31.08 | 30 |
Least absolute error | 4 | 11.70 | 20.49 | 30 |
Geman and McClure | 3 | 10.20 | 17.86 | 30 |
K(x) = −log (x) + x | 1 | 8.08 | 14.14 | 4 |
K(x) = log (x) + 1/x | 6 | 13.32 | 23.33 | 30 |
K(x) = log (x)2 | 5 | 12.99 | 22.75 | 12 |
Method | Cross-Validation | Ground-Validation | ||
---|---|---|---|---|
RMSE (μg·cm−2) | RRMSE (%) | RMSE (μg·cm−2) | RRMSE (%) | |
GPR + CBD | 13.83 | 24.60 | 14.53 | 25.44 |
GPR + EBD | 14.59 | 25.87 | 14.46 | 25.33 |
GPR + ABD | 15.19 | 26.92 | 16.44 | 28.78 |
GPR + PAL | 14.73 | 26.12 | 14.13 | 24.74 |
GPR + EQB | 17.02 | 30.17 | 12.43 | 21.77 |
GPR + RSAL | 14.75 | 26.15 | 13.17 | 23.06 |
GPR | 16.93 | 30.00 | 31.98 | 56.00 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, X.; Zhang, J.; Chen, D.; Huang, Y.; Kong, W.; Yuan, L.; Ye, H.; Huang, W. Assessment of Leaf Chlorophyll Content Models for Winter Wheat Using Landsat-8 Multispectral Remote Sensing Data. Remote Sens. 2020, 12, 2574. https://doi.org/10.3390/rs12162574
Zhou X, Zhang J, Chen D, Huang Y, Kong W, Yuan L, Ye H, Huang W. Assessment of Leaf Chlorophyll Content Models for Winter Wheat Using Landsat-8 Multispectral Remote Sensing Data. Remote Sensing. 2020; 12(16):2574. https://doi.org/10.3390/rs12162574
Chicago/Turabian StyleZhou, Xianfeng, Jingcheng Zhang, Dongmei Chen, Yanbo Huang, Weiping Kong, Lin Yuan, Huichun Ye, and Wenjiang Huang. 2020. "Assessment of Leaf Chlorophyll Content Models for Winter Wheat Using Landsat-8 Multispectral Remote Sensing Data" Remote Sensing 12, no. 16: 2574. https://doi.org/10.3390/rs12162574