NOx Emission Flux Measurements with Multiple Mobile-DOAS Instruments in Beijing
"> Figure 1
<p>The annual NO<sub>X</sub> emissions of vehicles in Beijing from 2011 to 2017 and the percentage of vehicles emitting NOx over total NOx emissions in Beijing. (NO<sub>X</sub> emission data source: Beijing Municipal Ecological Environment Bureau).</p> "> Figure 2
<p>The ring roads of Beijing, China. Map data © Google Earth (point A is the location of the wind profile radar).</p> "> Figure 3
<p>(<b>a</b>) The mobile zenith-sky differential optical absorption spectroscopy (DOAS) system; (<b>b</b>) the measurement principle of the mobile-DOAS system.</p> "> Figure 4
<p>(Upper plot) DOAS fitting example for NO<sub>2</sub>; (bottom plot) fitting residual.</p> "> Figure 5
<p>Retrieval comparison results. (<b>a</b>) The retrieval homogeneity of the 2 mobile-DOAS instruments with a correlation coefficient (R<sup>2</sup>) of 0.976; (<b>b</b>) the comparison result for mobile-DOAS (DOAS1) and MAX-DOAS with a correlation coefficient (R<sup>2</sup>) of 0.932.</p> "> Figure 6
<p>NO<sub>2</sub> VCD distribution of Beijing’s ring roads on April 18th, 20th, 24th, 25th, and 26th. From outside to inside, the ring roads are the fifth ring, fourth ring, third ring, and second ring.</p> "> Figure 7
<p>(<b>a</b>–<b>e</b>) are the mobile-DOAS and satellite tropospheric NO<sub>2</sub> VCD spatial distribution; (<b>f</b>) is the correlation coefficient (R<sup>2</sup>).</p> "> Figure 8
<p>The NO<sub>X</sub> emission flux and its error for the ring roads in Beijing; measurements taken on April 18th, 20th, 24th, 25th, and 26th, 2018.</p> "> Figure 9
<p>The <math display="inline"><semantics> <mrow> <msubsup> <mi>R</mi> <mi>i</mi> <mn>2</mn> </msubsup> </mrow> </semantics></math> of the ring roads measured on April 18th and 20th. Group A’s main error source is the wind direction uncertainty. Group B’s main error source is the wind speed uncertainty. Group C’s main error is both the wind direction uncertainty and the wind speed uncertainty.</p> "> Figure 10
<p>The emission flux error change rate (<math display="inline"><semantics> <mrow> <mrow> <msub> <mi>r</mi> <mrow> <mrow> <mi>θ</mi> <mo>|</mo> <mover> <mo>¯</mo> <mi>w</mi> </mover> </mrow> </mrow> </msub> </mrow> <mo>/</mo> <mrow> <msub> <mi>r</mi> <mrow> <mrow> <mi>w</mi> <mo>|</mo> <mover> <mo>¯</mo> <mi>θ</mi> </mover> </mrow> </mrow> </msub> </mrow> </mrow> </semantics></math>) varied with the wind direction/speed change rate (<math display="inline"><semantics> <mrow> <mi mathvariant="sans-serif">Δ</mi> <mrow> <mi>θ</mi> <mo>/</mo> </mrow> <mi mathvariant="sans-serif">Δ</mi> <mrow> <mi>w</mi> <mo> </mo> </mrow> </mrow> </semantics></math>) on April 18th and 20th. The higher the slope, the more sensitive it is to the NO<sub>X</sub> emission flux error.</p> "> Figure 11
<p>The NO<sub>2</sub> VCD spatial distribution of the fifth ring and third ring on April 20th (The blue arrow is the averaged wind field of the fifth ring. The red arrow is the averaged wind field of the third ring).</p> "> Figure 12
<p>The variation in the R<sup>2</sup> of NO<sub>X</sub>/NO<sub>2</sub> ratio uncertainty with NO<sub>X</sub>/NO<sub>2</sub> ratio uncertainty.</p> ">
Abstract
:1. Introduction
2. Experiment and Methodology
2.1. Experiment Overview
2.2. Mobile-DOAS
2.2.1. Mobile-DOAS Instrument
2.2.2. Retrieval Algorithm
2.2.3. Retrieval Comparison
2.3. Wind Field Measurement and Average Wind Field
2.3.1. Wind Profile Radar
2.3.2. Wind Field Statistics
2.4. Determination of the NOX Emission Flux
3. Results
3.1. Average Wind Field
3.2. Determination of NO2 VCD
3.3. Comparison of TROPOMI and Mobile-DOAS VCDs
4. Discussion
4.1. NOX Emission Flux Error Sources
4.2. NOX Emission Flux and Error
4.3. Error Budget and Sensitivity
4.3.1. Error Budget
4.3.2. Sensitivity to Wind Field Uncertainty
4.3.3. Sensitivity to Other Error Sources
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Seinfeld, J.H.; Pandis, S.N. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change; Wiley: Hoboken, NJ, USA, 2016. [Google Scholar]
- Cheng, L.X.; Tao, J.H.; Valks, P.; Yu, C.; Liu, S.; Wang, Y.; Xiong, X.Z.; Wang, Z.F.; Chen, L.F. NO2 Retrieval from the Environmental Trace Gases Monitoring Instrument (EMI): Preliminary Results and Intercomparison with OMI and TROPOMI. Remote Sens. 2019, 11, 3017. [Google Scholar] [CrossRef] [Green Version]
- Mak, H.W.L.; Laughner, J.L.; Fung, J.C.H.; Zhu, Q.; Cohen, R.C. Improved Satellite Retrieval of Tropospheric NO2 Column Density via Updating of Air Mass Factor (AMF): Case Study of Southern China. Remote Sens. 2018, 10, 1789. [Google Scholar] [CrossRef] [Green Version]
- Squires, F.A.; Nemitz, E.; Langford, B.; Wild, O.; Drysdale, W.S.; Acton, W.J.F.; Fu, P.; Grimmond, C.S.B.; Hamilton, J.F.; Hewitt, C.N.; et al. Measurements of traffic dominated pollutant emissions in a Chinese megacity. Atmos. Chem. Phys. 2020, 20, 8737–8761. [Google Scholar] [CrossRef]
- Wang, Y.; Tao, J.; Cheng, L.; Yu, C.; Wang, Z.; Chen, L. A Retrieval of Glyoxal from OMI over China: Investigation of the Effects of Tropospheric NO2. Remote Sens. 2019, 11, 137. [Google Scholar] [CrossRef] [Green Version]
- Wen, L.; Xue, L.; Wang, X.; Xu, C.; Chen, T.; Yang, L.; Wang, T.; Zhang, Q.; Wang, W. Summertime fine particulate nitrate pollution in the North China Plain: Increasing trends, formation mechanisms and implications for control policy. Atmos. Chem. Phys. 2018, 18, 11261–11275. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.X.; Liu, C.; Chan, K.L.; Hu, Q.H.; Liu, H.R.; Li, B.; Xing, C.Z.; Tan, W.; Zhou, H.J.; Si, F.Q.; et al. First observation of tropospheric nitrogen dioxide from the Environ-mental Trace Gases Monitoring Instrument onboard the GaoFen-5 satellite. Light Sci. Appl. 2020, 9, 66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Q.J.; Beekmann, M.; Freney, E.; Sellegri, K.; Pichon, J.M.; Schwarzenboeck, A.; Colomb, A.; Bourrianne, T.; Michoud, V.; Borbon, A. Formation of secondary organic aerosol in the Paris pollution plume and its impact on surrounding regions. Atmos. Chem. Phys. 2015, 15, 13973–13992. [Google Scholar]
- Wang, Y.; Beirle, S.; Lampel, J.; Koukouli, M.; De Smedt, I.; Theys, N.; Li, A.; Wu, D.; Xie, P.; Liu, C.; et al. Validation of OMI, GOME-2A and GOME-2B tropospheric NO2, SO2 and HCHO products using MAX-DOAS observations from 2011 to 2014 in Wuxi, China: Investigation of the effects of priori profiles and aerosols on the satellite products. Atmos. Chem. Phys. 2017, 17, 5007–5033. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Zheng, Y.X.; Tong, D.; Shao, M.; Wang, S.X.; Zhang, Y.H.; Xu, X.D.; Wang, J.N.; He, H.; Liu, W.Q.; et al. Drivers of improved PM2.5air quality in China from 2013 to 2017. Proc. Natl. Acad. Sci. USA 2019, 116, 24463–24469. [Google Scholar] [CrossRef] [Green Version]
- Platt, U. Dry Deposition of SO2. Atmos. Environ. 1978, 12, 363–367. [Google Scholar] [CrossRef]
- Platt, U.; Stutz, J. Differential Optical Absorption Spectroscopy, Principles and Applications; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Wagner, T.; Dix, B.; Friedeburg, C.V.; Frieß, U.; Sanghavi, S.; Sinreich, R. MAX-DOAS O4 measurements: A new technique to derive information on atmospheric aerosols—Principles and information content. J. Geophys. Res. 2004, 109, D22205. [Google Scholar] [CrossRef] [Green Version]
- Bortoli, D.; Silva, A.M.; Costa, M.J.; Domingues, A.F.; Giovanelli, G. Monitoring of atmospheric minor compounds at the Evora Station–Portugal. Int. J. Remote Sens. 2009, 30, 4209–4226. [Google Scholar] [CrossRef]
- Premuda, M.; Petritoli, A.; Masieri, S.; Palazzi, E.; Kostadinov, I.; Bortoli, D.; Ravegnani, F.; Giovanelli, G. A study of O3 and NO2 vertical structure in a coastal wooded zone near a metropolitan area, by means of DOAS measurements. Atmos. Environ. 2013, 71, 104–114. [Google Scholar] [CrossRef]
- Premuda, M.; Masieri, S.; Bortoli, D.; Kostadinov, I.; Petritoli, A.; Giovanelli, G. Evaluation of vessel emissions in a lagoon area with ground based Multi axis DOAS measurements. Atmos. Environ. 2011, 45, 5212–5219. [Google Scholar] [CrossRef]
- Wagner, T.; Ibrahim, O.; Shaiganfar, R.; Platt, U. Mobile MAX DOAS observations of tropospheric trace gases. Atmos. Meas. Tech. 2010, 3, 129–140. [Google Scholar] [CrossRef] [Green Version]
- Johanssona, M.; Galle, M.; Yu, T.; Tang, L.; Chen, D.L.; Li, H.J.; Li, J.X.; Zhang, Y. Quantification of total emission of air pollutants from Beijing using mobile mini-DOAS. Atmos. Environ. 2008, 42, 6926–6933. [Google Scholar] [CrossRef]
- Oetjen, H.; Baidar, S.; Krotkov, N.A.; Lamsal, L.N.; Lechner, M.; Volkamer, R. Airborne MAX-DOAS measurements over California: Testing the NASA OMI tropospheric NO2 product. J. Geophys. Res. Atmos. 2013, 118, 7400–7413. [Google Scholar] [CrossRef] [Green Version]
- Wang, P.; Richter, A.; Bruns, M.; Burrows, J.P.; Scheele, R.; Junkermann, W.; Heue, K.-P.; Wagner, T.; Platt, U.; Pundt, I. Airborne multi-axis DOAS measurements of tropospheric SO2 plumes in the Po-valley, Italy. Atmos. Chem. Phys. 2006, 6, 329–338. [Google Scholar] [CrossRef] [Green Version]
- Wang, R.W.; Xie, P.H.; Xu, J.; Li, A.; Sun, Y.W. Observation of CO2 Regional Distribution Using an Airborne Infrared Remote Sensing Spectrometer (Air-IRSS) in the North China Plain. Remote Sens. 2019, 11, 123. [Google Scholar] [CrossRef] [Green Version]
- Rivera, C.; Mellqvist, J.; Samuelsson, J.; Lefer, B.; Alvarez, S.; Patel, M.R. Quantification of NO2 and SO2 emissions from Houston Ship Channel and Texas City industrial areas during the 2006 Texas Air Quality Study. J. Geophys. Res. 2010, 115, D08301. [Google Scholar] [CrossRef] [Green Version]
- Constantin, D.-E.; Merlaud, A.; van Roozendael, M.; Voiculescu, M.; Fayt, C.; Hendrick, F.; Pinardi, G.; Georgescu, L. Measurements of Tropospheric NO2 in Romania Using a Zenith-Sky Mobile DOAS System and Comparisons with Satellite Observations. Sensors 2013, 13, 3922–3940. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ibrahim, O.; Shaiganfar, R.; Sinreich, R.; Stein, T.; Platt, U.; Wagner, T. Car MAX-DOAS measurements around entire cities: Quantification of NOX emissions from the cities of Mannheim and Ludwigshafen (Germany). Atmos. Meas. Tech. 2010, 3, 709–721. [Google Scholar] [CrossRef] [Green Version]
- Frins, E.; Bobrowski, N.; Osorio, M.; Casaballe, N.; Belsterli, G.; Wagner, T.; Platt, U. Scanning and mobile multi-axis DOAS measurements of SO2 and NO2 emissions from an electric power plant in Montevideo, Uruguay. Atmos. Environ. 2014, 98, 347–356. [Google Scholar] [CrossRef]
- Davis, Z.Y.W.; Baray, S.; McLinden, C.A.; Khanbabakhani, A.; Fujs, W.; Csukat, C.; Debosz, J.; McLaren, R. Estimation of NOX and SO2 emissions from Sarnia, Ontario, using a mobile MAX-DOAS (Multi-AXis Differential Optical Absorption Spectroscopy) and a NOX analyzer. Atmos. Chem. Phys. 2019, 19, 13871–13889. [Google Scholar] [CrossRef] [Green Version]
- Rivera, C.; Sosa, G.; Wöhrnschimmel, H.; de Foy, B.; Johansson, M.; Galle, B. Tula industrial complex (Mexico) emissions of SO2 and NO2 during the MCMA 2006 field campaign using a mobile mini-DOAS system. Atmos. Chem. Phys. 2009, 9, 6351–6361. [Google Scholar] [CrossRef] [Green Version]
- Rivera, C.; Barrera, H.; Grutter, M.; Zavala, M.; Galle, B.; Bei, N.F.; Li, G.H.; Molina, L.T. NO2 fluxes from Tijuana using a mobile mini-DOAS during Cal-Mex 2010. Atmos. Environ. 2012, 70, 532–539. [Google Scholar] [CrossRef]
- Shaiganfar, R.; Beirle, S.; Sharma, M.; Chauhan, A.; Singh, R.P.; Wagner, T. Estimation of NOX emissions from Delhi using Car MAX-DOAS observations and comparison with OMI satellite data. Atmos. Chem. Phys. 2011, 11, 10871–10887. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.S.; Zhou, B.; Wang, Z.R.; Yang, S.N.; Hao, N.; Valks, P.; Trautmann, T.; Chen, L.M. Remote sensing of NO2 emission from the central urban area of Shanghai (China) using the mobile DOAS technique. J. Geophys. Res. 2012, 117, D13305. [Google Scholar] [CrossRef]
- Shaiganfar, R.; Beirle, S.; Denier van der Gon, H.; Jonkers, S.; Kuenen, J.; Petetin, H.; Zhang, Q.; Beekmann, M.; Wagner, T. Estimation of the Paris NOX emissions from mobile MAX-DOAS observations and CHIMERE model simulations during the MEGAPOLI campaign using the closed integral method. Atmos. Chem. Phys. 2017, 17, 7853–7890. [Google Scholar] [CrossRef] [Green Version]
- Tan, W.; Zhao, S.H.; Liu, C.; Chan, K.L.; Xie, Z.Q.; Zhu, Y.; Sub, W.J.; Zhang, C.X.; Liu, H.R.; Xing, C.Z.; et al. Estimation of winter time NOX emissions in Hefei, a typical inland city of China, using mobile MAX-DOAS observations. Atmos. Environ. 2019, 200, 228–242. [Google Scholar] [CrossRef]
- Danckaert, T.; Fayt, C.; van Roozendael, M.; de Smedt, I.; Letocart, V.; Merlaud, A.; Pinardi, G. QDOAS Software User Manual. 2017. Available online: http://uv-vis.aeronomie.be/software/QDOAS/QDOAS_manual.pdf (accessed on 9 September 2017).
- Wu, F.C.; Li, A.; Xie, P.H.; Chen, H.; Hu, Z.K.; Zhang, Q.; Liu, J.G.; Liu, W.Q. Emission Flux Measurement Error with a Mobile DOAS System and Application to NOX Flux Observations. Sensors 2017, 17, 231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, F.; Xie, P.; Li, A.; Mou, F.; Chen, H.; Zhu, Y.; Zhu, T.; Liu, J.; Liu, W. Investigations of temporal and spatial distribution of precursors SO2 and NO2 vertical columns in the North China Plain using mobile DOAS. Atmos. Chem. Phys. 2018, 18, 1535–1554. [Google Scholar] [CrossRef] [Green Version]
- Wu, F.C.; Xie, P.H.; Li, A.; Chan, K.L.; Hartl, A.; Wang, Y.; Si, F.Q.; Zeng, Y.; Qin, M.; Xu, J.; et al. Observations of SO2 and NO2 by mobile DOAS in the Guangzhou eastern area during the Asian Games 2010. Atmos. Meas. Tech. 2010, 6, 2277–2292. [Google Scholar] [CrossRef] [Green Version]
- Deutschmann, T.; Beirle, S.; Frieß, U.; Grzegorski, M.; Kern, C.; Kritten, L.; Platt, U.; Prados-Roman, C.; Pukite, J.; Wagner, T.; et al. The Monte Carlo atmospheric radiative transfer model McArtim: Introduction and validation of Jacobians and 3-D features. J. Quant. Spectrosc. Radiat. Transf. 2011, 112, 1119–1137. [Google Scholar] [CrossRef]
- Farrugia, P.S.; Micallef, A. Vectorial statistics for the standard deviation of wind direction. Meteorol. Atmos. Phys. 2017, 129, 495–506. [Google Scholar] [CrossRef]
- Bowers, J.A.; Morton, I.D.; Mould, G.I. Mould. Directional statistics of the wind and waves. Appl. Ocean. Res. 1999, 22, 13–30. [Google Scholar] [CrossRef]
- Mardia, K.V.; Peter, E.J. Directional Statistics; John Wiley & Sons: Chichester, UK, 1999. [Google Scholar]
- Li, A.; Zhang, J.; Xie, P.H.; Hu, Z.K.; Xu, J.; Mou, F.S.; Wu, F.C.; Liu, J.G.; Liu, W.Q. Variation of temporal and spatial patterns of NO2 in Beijing using OMI and mobile DOAS. Sci. China Chem. 2015, 58, 1367–1376. [Google Scholar] [CrossRef]
- Steffen Beirle, S.; Borger, C.; Dörner, S.; Li, A.; Hu, Z.K.; Liu, F.; Wang, Y.; Wagner, T. Pinpointing nitrogen oxide emissions from space. Sci. Adv. 2019, 5, eaax9800. [Google Scholar] [CrossRef] [Green Version]
Fitting Parameter | NO2 |
---|---|
Fitting windows | (338~370) nm |
Polynomial order | 5 |
NO2 | Vandaele, 1996 (220K, 298k) |
O3 | Bogumil, 2003 (223K, 243K) |
O4 | Thalman, 2013 (293K) |
HCHO | Meller, 2000 (297K) |
Ring | by DOASIS |
Date (2018) | Ring Roads and Measuring Time (Beijing Time) | Averaged Wind Speed and Its Uncertainty (m/s) | Averaged Wind Direction and Its Uncertainty (°) |
---|---|---|---|
April 18th | The second ring (12:40~13:27) | 2.325 ± 0.643 | 55.644 ± 17.039 |
The third ring (12:03~13:11) | 2.285 ± 0.638 | 65.176 ± 13.735 | |
The fourth ring (9:39~11:24) | 1.738 ± 0.501 | 70.651 ± 17.302 | |
The fifth ring (9:27~11:56) | 1.736 ± 0.494 | 67.317 ± 15.497 | |
April 20th | The second ring (13:18~14:32) | 2.905 ± 0.779 | 68.607 ± 15.859 |
The third ring (12:01~13:21) | 3.553 ± 0.959 | 64.944 ± 13.220 | |
The fourth ring (9:33~11:21) | 3.423 ± 0.919 | 61.889 ± 20.926 | |
The fifth ring (9:24~12:22) | 3.501 ± 0.942 | 60.662 ± 15.265 | |
April 24th | The second ring (11:24~12:15) | 2.183 ± 0.551 | 255.665 ± 13.897 |
The third ring (9:56~11:03) | 2.721 ± 0.704 | 260.323 ± 20.409 | |
The fourth ring (11:09~12:47) | 1.973 ± 0.512 | 255.457 ± 13.760 | |
The fifth ring (9:41~11:03) | 2.83 ± 0.737 | 260.666 ± 21.051 | |
April 25th | The second ring (13:19~14:07) | 2.826 ± 0.730 | 44.126 ± 8.448 |
The third ring (12:28~13:36) | 2.621 ± 0.676 | 43.218 ± 9.216 | |
The fourth ring (11:03~12:26) | 1.956 ± 0.545 | 41.982 ± 21.501 | |
The fifth ring (9:58~12:28) | 2.14 ± 0.582 | 45.945 ± 19.045 | |
April 26th | The second ring (12:08~13:30) | 1.912 ± 0.506 | 273.92 ± 17.226 |
The third ring (11:36~13:10) | 1.537 ± 0.413 | 276.556 ± 15.009 | |
The fourth ring (9:42~11:32) | 1.686 ± 0.459 | 255.23 ± 14.349 | |
The fifth ring (9:33~11:53) | 1.571 ± 0.431 | 254.648 ± 14.211 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, Y.; Li, A.; Xie, P.; Hu, Z.; Xu, J.; Fang, X.; Ren, H.; Li, X.; Dang, B. NOx Emission Flux Measurements with Multiple Mobile-DOAS Instruments in Beijing. Remote Sens. 2020, 12, 2527. https://doi.org/10.3390/rs12162527
Huang Y, Li A, Xie P, Hu Z, Xu J, Fang X, Ren H, Li X, Dang B. NOx Emission Flux Measurements with Multiple Mobile-DOAS Instruments in Beijing. Remote Sensing. 2020; 12(16):2527. https://doi.org/10.3390/rs12162527
Chicago/Turabian StyleHuang, Yeyuan, Ang Li, Pinhua Xie, Zhaokun Hu, Jin Xu, Xiaoyi Fang, Hongmei Ren, Xiaomei Li, and Bing Dang. 2020. "NOx Emission Flux Measurements with Multiple Mobile-DOAS Instruments in Beijing" Remote Sensing 12, no. 16: 2527. https://doi.org/10.3390/rs12162527
APA StyleHuang, Y., Li, A., Xie, P., Hu, Z., Xu, J., Fang, X., Ren, H., Li, X., & Dang, B. (2020). NOx Emission Flux Measurements with Multiple Mobile-DOAS Instruments in Beijing. Remote Sensing, 12(16), 2527. https://doi.org/10.3390/rs12162527