The Fusion of Spectral and Structural Datasets Derived from an Airborne Multispectral Sensor for Estimation of Pasture Dry Matter Yield at Paddock Scale with Time
"> Figure 1
<p>Location of B paddocks (Yellow boundary) and associated 10 × 10 m sampling areas (purple squares) that were used to select three sub-samples for destructive sampling (Image source: ESRI, World Imagery).</p> "> Figure 2
<p>Data analysis approach for spatial-temporal estimation of pasture dry matter yield.</p> "> Figure 3
<p>Boxplots depicting the distribution of pasture DM yield across three sub-paddocks within the B paddocks at each of four field sampling dates. The horizontal bold black line within the boxplot depicts the mean value associated with that sub-paddock and sampling date.</p> "> Figure 4
<p>The graphical summary of the model quality evaluation using Lin’s concordance correlation, RMSE and normalised RMSE for three tested models with respect to four flying altitudes. Results are summarised for both leave-one-out cross-validation and independent validation.</p> "> Figure 4 Cont.
<p>The graphical summary of the model quality evaluation using Lin’s concordance correlation, RMSE and normalised RMSE for three tested models with respect to four flying altitudes. Results are summarised for both leave-one-out cross-validation and independent validation.</p> "> Figure 5
<p>Evaluation of different model prediction capabilities with respect to the reference pasture dry matter yield in an independent validation test. All models were validated using the same independent samples (<span class="html-italic">n</span> = 20) for meaningful comparison. The horizontal black line within the boxplot depicts the estimated mean value in each case.</p> "> Figure 6
<p>The variable importance plot generated from the best performing Random Forest model developed from the data generated at different flying altitudes (Note: Refer <a href="#remotesensing-12-02017-t004" class="html-table">Table 4</a> for abbreviations).</p> "> Figure 7
<p>The spatial-temporal prediction of pasture dry matter (DM) yield (kg DM/ha) and changes of herbage DM accumulation in measurement weeks 1–4 after mechanical harvesting, using the best performing model (S<span class="html-italic">f</span>M+VI) for flying altitude 25, 50, 75 and 100 m. Note: 14 October 2019: Measurement week 1; 22 October 2019: Measurement week 2; 28 October 2019: Measurement week 3; 5 November 2019: Measurement week 4.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling Design and Field Data Collection
2.3. Acquisition of UAV-Borne Datasets
2.4. Processing of UAV Datasets and Deriving Structural and Spectral Features
2.4.1. Preprocessing of the UAV-Derived Datasets
2.4.2. Evaluation of the Accuracy of the SfM Z Estimates
2.4.3. Deriving Structural and Spectral Features
2.5. Data Modelling
2.6. Spatial-Temporal Predictions across the Landscape
3. Results
3.1. Temporal Variation of Pasture Dry Matter Yield
3.2. The Relationship between Pasture Dry Matter Yield and the Derived Model Features
3.3. Data Quality of the SfM Z Estimates
3.4. Evaluation of the Model Performances
3.5. Model Drivers for Best Performing Models
3.6. Spatial-Temporal Pasture DM Yield Maps
4. Discussion
4.1. Field Data Collection, Deriving Features and Preparation of Dataset for the Model Development
4.2. Modelling Framework and Key Features Associated with Spatial-Temporal Dry Matter Yield Prediction
4.3. Comparison of the Model Quality
4.4. Practical Uses of the Derived Maps
4.5. Limitations and Uncertainties Associated with the Current Study, Recommendations and Future Directions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Garcia, S.C.; Clark, C.; Kerrisk, K.; Islam, M.; Farina, S.; Evans, J. Gaps and Variability in Pasture Utilisation in Australian Pasture-Based Dairy Systems. In Proceedings of the 22nd International Grasslands Congress, Sydney, Australia, 15–19 September 2013. [Google Scholar]
- Wales, W.J.; Kolver, E.S. Challenges of Feeding Dairy Cows in Australia and New Zealand. Anim. Prod. Sci. 2017, 57, 1366–1383. [Google Scholar] [CrossRef] [Green Version]
- Jacobs, J.L. Challenges in Ration Formulation in Pasture-Based Milk Production Systems. Anim. Prod. Sci. 2014, 54, 1130–1140. [Google Scholar] [CrossRef]
- Insua, J.R.; Utsumi, S.A.; Basso, B. Estimation of Spatial and Temporal Variability of Pasture Growth and Digestibility in Grazing Rotations Coupling Unmanned Aerial Vehicle (UAV) with Crop Simulation Models. PLoS ONE 2019, 14, e0212773. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santillan, R.A.; Ocumpaugh, W.R.; Mott, G.O. Estimating Forage Yield with a Disk Meter1. Agron. J. 1979, 71, 71–74. [Google Scholar] [CrossRef]
- Earle, D.; McGowan, A. Evaluation and Calibration of an Automated Rising Plate Meter for Estimating Dry Matter Yield of Pasture. Aust. J. Exp. Agric. 1979, 19, 337–343. [Google Scholar] [CrossRef]
- Sanderson, M.A.; Rotz, C.A.; Fultz, S.W.; Rayburn, E.B. Estimating Forage Mass with a Commercial Capacitance Meter, Rising Plate Meter, and Pasture Ruler. Agron. J. 2001, 93, 1281–1286. [Google Scholar] [CrossRef] [Green Version]
- Legg, M.; Bradley, S. Ultrasonic Proximal Sensing of Pasture Biomass. Remote Sens. 2019, 11, 2459. [Google Scholar] [CrossRef] [Green Version]
- Trotter, M.G.; Lamb, D.W.; Donald, G.E.; Schneider, D.A. Evaluating an Active Optical Sensor for Quantifying and Mapping Green Herbage Mass and Growth in a Perennial Grass Pasture. Crop Pasture Sci. 2010, 61, 389–398. [Google Scholar] [CrossRef]
- Schaefer, T.M.; Lamb, W.D. A Combination of Plant NDVI and LiDAR Measurements Improve the Estimation of Pasture Biomass in Tall Fescue (Festuca Arundinacea Var. Fletcher). Remote Sens. 2016, 8, 109. [Google Scholar] [CrossRef] [Green Version]
- Wijesingha, J.; Moeckel, T.; Hensgen, F.; Wachendorf, M. Evaluation of 3D Point Cloud-Based Models for the Prediction of Grassland Biomass. Int. J. Appl. Earth Obs. Geoinf. 2019, 78, 352–359. [Google Scholar] [CrossRef]
- Grüner, E.; Astor, T.; Wachendorf, M. Biomass Prediction of Heterogeneous Temperate Grasslands Using an SfM Approach Based on UAV Imaging. Agronomy 2019, 9, 54. [Google Scholar] [CrossRef] [Green Version]
- Edirisinghe, A.; Hill, M.J.; Donald, G.E.; Hyder, M. Quantitative Mapping of Pasture Biomass Using Satellite Imagery. Int. J. Remote Sens. 2011, 32, 2699–2724. [Google Scholar] [CrossRef]
- Edirisinghe, A.; Clark, D.; Waugh, D. Spatio-Temporal Modelling of Biomass of Intensively Grazed Perennial Dairy Pastures Using Multispectral Remote Sensing. Int. J. Appl. Earth Obs. Geoinf. 2012, 16, 5–16. [Google Scholar] [CrossRef]
- Bendig, J.; Bolten, A.; Bennertz, S.; Broscheit, J.; Eichfuss, S.; Bareth, G. Estimating Biomass of Barley Using Crop Surface Models (CSMs) Derived from UAV-Based RGB Imaging. Remote Sens. 2014, 6, 10395–10412. [Google Scholar] [CrossRef] [Green Version]
- Han, L.; Yang, G.; Dai, H.; Xu, B.; Yang, H.; Feng, H.; Li, Z.; Yang, X. Modeling Maize Above-Ground Biomass Based on Machine Learning Approaches Using UAV Remote-Sensing Data. Plant Methods 2019, 15, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bendig, J.; Yu, K.; Aasen, H.; Bolten, A.; Bennertz, S.; Broscheit, J.; Gnyp, M.L.; Bareth, G. Combining UAV-Based Plant Height from Crop Surface Models, Visible, and near Infrared Vegetation Indices for Biomass Monitoring in Barley. Int. J. Appl. Earth Obs. Geoinf. 2015, 39, 79–87. [Google Scholar] [CrossRef]
- Viljanen, N.; Honkavaara, E.; Näsi, R.; Hakala, T.; Niemeläinen, O.; Kaivosoja, J. A Novel Machine Learning Method for Estimating Biomass of Grass Swards Using a Photogrammetric Canopy Height Model, Images and Vegetation Indices Captured by a Drone. Agriculture 2018, 8, 70. [Google Scholar] [CrossRef] [Green Version]
- Lussem, U.; Bolten, A.; Gnyp, M.L.; Jasper, J.; Bareth, G. Evaluation of RGB-Based Vegetation Indices from UAV Imagery to Estimate Forage Yield in Grassland. ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2018, 42, 1215–1219. [Google Scholar] [CrossRef] [Green Version]
- Gebremedhin, A.; Badenhorst, P.; Wang, J.; Giri, K.; Spangenberg, G.; Smith, K. Development and Validation of a Model to Combine NDVI and Plant Height for High-Throughput Phenotyping of Herbage Yield in a Perennial Ryegrass Breeding Program. Remote Sens. 2019, 11, 2494. [Google Scholar] [CrossRef] [Green Version]
- Geipel, J.; Korsaeth, A. Hyperspectral Aerial Imaging for Grassland Yield Estimation. Adv. Anim. Biosci. 2017, 8, 770–775. [Google Scholar] [CrossRef]
- Michez, A.; Lejeune, P.; Bauwens, S.; Herinaina, A.A.; Blaise, Y.; Castro Muñoz, E.; Lebeau, F.; Bindelle, J. Mapping and Monitoring of Biomass and Grazing in Pasture with an Unmanned Aerial System. Remote Sens. 2019, 11, 473. [Google Scholar] [CrossRef] [Green Version]
- Cooper, D.S.; Roy, P.D.; Schaaf, B.C.; Paynter, I. Examination of the Potential of Terrestrial Laser Scanning and Structure-from-Motion Photogrammetry for Rapid Nondestructive Field Measurement of Grass Biomass. Remote Sens. 2017, 9, 531. [Google Scholar] [CrossRef] [Green Version]
- Wallace, L.; Hillman, S.; Reinke, K.; Hally, B. Non-Destructive Estimation of above-Ground Surface and near-Surface Biomass Using 3D Terrestrial Remote Sensing Techniques. Methods Ecol. Evol. 2017, 8, 1607–1616. [Google Scholar] [CrossRef] [Green Version]
- Rouse, J.; Haas, R.; Schell, J.; Deering, D. Monitoring Vegetation Systems in the Great Plains with ERTS. In Third ERTS Symposium; NASA: College Station, TX, USA, 1973; pp. 309–317. [Google Scholar]
- Gitelson, A.A.; Kaufman, Y.J.; Merzlyak, M.N. Use of a Green Channel in Remote Sensing of Global Vegetation from EOS-MODIS. Remote Sens. Environ. 1996, 58, 289–298. [Google Scholar] [CrossRef]
- Gitelson, A.; Merzlyak, M.N. Spectral Reflectance Changes Associated with Autumn Senescence of Aesculus hippocastanum L. and Acer platanoides L. Leaves. Spectral Features and Relation to Chlorophyll Estimation. J. Plant Physiol. 1994, 143, 286–292. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Viña, A.; Ciganda, V.; Rundquist, D.C.; Arkebauer, T.J. Remote Estimation of Canopy Chlorophyll Content in Crops. Geophys. Res. Lett. 2005, 32. [Google Scholar] [CrossRef] [Green Version]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the Radiometric and Biophysical Performance of the MODIS Vegetation Indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Dash, J.; Curran, P.J. The MERIS Terrestrial Chlorophyll Index. Int. J. Remote Sens. 2004, 25, 5403–5413. [Google Scholar] [CrossRef]
- Chen, P.-F.; Tremblay, N.; Wang, J.-H.; Vigneault, P.; Huang, W.-J.; Li, B.-G. New Index for Crop Canopy Fresh Biomass Estimation. Spectrosc. Spectr. Anal. 2010, 30, 512–517. [Google Scholar] [CrossRef]
- Tucker, C.J. Red and Photographic Infrared Linear Combinations for Monitoring Vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef] [Green Version]
- Jago, R.A.; Cutler, M.E.J.; Curran, P.J. Estimating Canopy Chlorophyll Concentration from Field and Airborne Spectra. Remote Sens. Environ. 1999, 68, 217–224. [Google Scholar] [CrossRef]
- Sripada, R. Determining In-Season Nitrogen Requirements for Corn Using Aerial Color-Infrared Photography. Ph.D. Dissertation, North Carolina State University, Raleigh, NC, USA, 2005. [Google Scholar]
- Sripada, R.P.; Heiniger, R.W.; White, J.G.; Meijer, A.D. Aerial Color Infrared Photography for Determining Early In-Season Nitrogen Requirements in Corn. Agron. J. 2006, 98, 968–977. [Google Scholar] [CrossRef]
- Huete, A.R. A Soil-Adjusted Vegetation Index (SAVI). Remote Sens. Environ. 1988, 25, 295–309. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Merzlyak, M.N.; Chivkunova, O.B. Optical Properties and Nondestructive Estimation of Anthocyanin Content in Plant Leaves. Photochem. Photobiol. 2001, 74, 38–45. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Wright, M.N.; Ziegler, A. Ranger: A Fast Implementation of Random Forests for High Dimensional Data in C++ and R. arXiv 2015, arXiv:1508.04409. [Google Scholar] [CrossRef] [Green Version]
- Minasny, B.; McBratney, A.B. A Conditioned Latin Hypercube Method for Sampling in the Presence of Ancillary Information. Comput. Geosci. 2006, 32, 1378–1388. [Google Scholar] [CrossRef]
- Lawrence, I.; Lin, K. A Concordance Correlation Coefficient to Evaluate Reproducibility. Biometrics 1989, 45, 255–268. [Google Scholar] [CrossRef]
- Shi, Y.; Thomasson, J.A.; Murray, S.C.; Pugh, N.A.; Rooney, W.L.; Shafian, S.; Rajan, N.; Rouze, G.; Morgan, C.L.; Neely, H.L.; et al. Unmanned Aerial Vehicles for High-Throughput Phenotyping and Agronomic Research. PLoS ONE 2016, 11, e0159781. [Google Scholar] [CrossRef] [Green Version]
- Borra-Serrano, I.; De Swaef, T.; Muylle, H.; Nuyttens, D.; Vangeyte, J.; Mertens, K.; Saeys, W.; Somers, B.; Roldán-Ruiz, I.; Lootens, P. Canopy Height Measurements and Non-Destructive Biomass Estimation of Lolium Perenne Swards Using UAV Imagery. Grass Forage Sci. 2019, 74, 356–369. [Google Scholar] [CrossRef]
- Caicedo, J.P.R. Optimized and Automated Estimation of Vegetation Properties: Opportunities for Sentinel-2; Universitat De València: Valencia, Spain, 2014. [Google Scholar]
- Wijesingha, J.; Astor, T.; Schulze-Brüninghoff, D.; Wengert, M.; Wachendorf, M. Predicting Forage Quality of Grasslands Using UAV-Borne Imaging Spectroscopy. Remote Sens. 2020, 12, 126. [Google Scholar] [CrossRef] [Green Version]
- Mutanga, O.; Skidmore, A.K. Narrow Band Vegetation Indices Overcome the Saturation Problem in Biomass Estimation. Int. J. Remote Sens. 2004, 25, 3999–4014. [Google Scholar] [CrossRef]
- van Iersel, W.; Straatsma, M.; Addink, E.; Middelkoop, H. Monitoring Height and Greenness of Non-Woody Floodplain Vegetation with UAV Time Series. ISPRS J. Photogramm. Remote Sens. 2018, 141, 112–123. [Google Scholar] [CrossRef]
- Gregorutti, B.; Michel, B.; Saint-Pierre, P. Correlation and Variable Importance in Random Forests. Stat. Comput. 2017, 27, 659–678. [Google Scholar] [CrossRef] [Green Version]
- Kursa, M.B.; Rudnicki, W.R. Feature Selection with the Boruta Package. J. Stat. Softw. 2010, 1. [Google Scholar] [CrossRef] [Green Version]
Management Activity/Measurement | Date |
---|---|
Cut for silage | 1 October 2019 |
Fertiliser applied | 4 October 2019 |
Baseline week | 10 October 2019 |
Measurement week 1 | 14 October 2019 |
Measurement week 2 | 22 October 2019 |
Measurement week 3 | 28 October 2019 |
Measurement week 4 | 5 November 2019 |
Flight Altitude (m) | Forward Overlap (Speed) | Side Overlap | Ground Sampling Distance (GSD) |
---|---|---|---|
25 | 80% (3.2 m/s) | 80% | 1.74 cm/pixel |
50 | 80% (6.5 m/s) | 80% | 3.47 cm/pixel |
75 | 80% (10 m/s) | 80% | 5.21 cm/pixel |
100 | 80% (13 m/s) | 80% | 6.94 cm/pixel |
Band | Spectral Resolution (nm) | Resolution (px) |
---|---|---|
Blue | 465–485 | 1200 × 960 |
Green | 550–570 | 1200 × 960 |
Red | 663–673 | 1200 × 960 |
Red Edge | 712–722 | 1200 × 960 |
NIR | 820–860 | 1200 × 960 |
Name | Abbreviation | Equation | Reference |
---|---|---|---|
Blue reflectance band | Mean_X5band_T.1 | ||
Green reflectance band | Mean_X5band_T.2 | ||
Red reflectance band | Mean_X5band_T.3 | ||
Red Edge reflectance band | Mean_X5band_T.4 | ||
Near Infrared reflectance band | Mean_X5band_T.5 | ||
Normalised Difference Vegetation Index | Mean_NDVI_T | (NIR − R)/(NIR + R) | Rouse et al. (1973) [25] |
Green Normalised Difference Vegetation Index | Mean_GNDVI_T | (NIR − G)/(NIR + G) | Gitelson et al. (1996) [26] |
Red Edge Normalised Difference Vegetation Index | Mean_ReNDVI_T | (NIR − RE)/(NIR + RE) | Gitelson and Merzlyak (1994) [27] |
Red Edge Simple Ratio | Mean_ReSRI_T | NIR/RE | Gitelson et al. (2005) [28] |
Enhanced Vegetation Index 2 | Mean_EVI2_T | 2.5 × (NIR − R)/(NIR + (2.4 × R) + 1) | Huete et al. (2002) [29] |
Green Chlorophyll Index | Mean_GCI_T | (NIR/G) − 1 | Gitelson et al. (2005) [28] |
Red Edge Chlorophyll Index | Mean_ReCI_T | (NIR/RE) − 1 | Gitelson et al. (2005) [28] |
Medium Resolution Imaging Spectrometer (MERIS) Terrestrial Chlorophyll Index (MRCI) | Mean_MRCI_T | (NIR − RE)/(RE + R) | Dash and Curran (2004) [30] |
Core Red Edge Triangular Vegetation Index | Mean_CReTVI_T | 100(NIR − RE) − 10(NIR − G) | Chen et al. (2010) [31] |
Red Difference Index | Mean_RedDI_T | NIR − R | Tucket (1979) [32] |
Canopy Chlorophyll Concentration Index | Mean_CCCI_T | ((NIR − RE)/(NIR + RE))/NDVI | Jago et al. (1999) [33] |
Green Difference Index | Mean_GreenDI_T | NIR − G | Sripada (2005) [34] |
Green Ratio Simple Index | Mean_GRSI_T | NIR/G | Sripada et al. (2006) [35] |
Soil Adjusted Vegetation Index | Mean_SAVI_T | ((NIR − R)/(NIR − R + 0.5)) ∗ (1 + 0.5) | Huete (1988) [36] |
Anthocyanin Reflectance Index 1 | Mean_ARI1_T | (1/G) − (1/RE) | Gitelson et al. (2007) [37] |
SfM height − minimum | min | ||
SfM height − maximum | max | ||
SfM height − mean | mean | ||
SfM height − Quantile − 0.05 | p05 | ||
SfM height − Quantile − 0.10 | p10 | ||
SfM height − Quantile − 0.25 | p25 | ||
SfM height − Quantile − 0.50 | p50 | ||
SfM height − Quantile − 0.75 | p75 | ||
SfM height − Quantile − 0.90 | p90 | ||
SfM height − Quantile − 0.95 | p95 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karunaratne, S.; Thomson, A.; Morse-McNabb, E.; Wijesingha, J.; Stayches, D.; Copland, A.; Jacobs, J. The Fusion of Spectral and Structural Datasets Derived from an Airborne Multispectral Sensor for Estimation of Pasture Dry Matter Yield at Paddock Scale with Time. Remote Sens. 2020, 12, 2017. https://doi.org/10.3390/rs12122017
Karunaratne S, Thomson A, Morse-McNabb E, Wijesingha J, Stayches D, Copland A, Jacobs J. The Fusion of Spectral and Structural Datasets Derived from an Airborne Multispectral Sensor for Estimation of Pasture Dry Matter Yield at Paddock Scale with Time. Remote Sensing. 2020; 12(12):2017. https://doi.org/10.3390/rs12122017
Chicago/Turabian StyleKarunaratne, Senani, Anna Thomson, Elizabeth Morse-McNabb, Jayan Wijesingha, Dani Stayches, Amy Copland, and Joe Jacobs. 2020. "The Fusion of Spectral and Structural Datasets Derived from an Airborne Multispectral Sensor for Estimation of Pasture Dry Matter Yield at Paddock Scale with Time" Remote Sensing 12, no. 12: 2017. https://doi.org/10.3390/rs12122017