Deep Learning for Land Cover Classification Using Only a Few Bands
"> Figure 1
<p>Our customized conventional neural network (CNN) model.</p> "> Figure 2
<p>CNN-3D [<a href="#B50-remotesensing-12-02000" class="html-bibr">50</a>].</p> "> Figure 3
<p>Color image for the University of Houston area with ground truth land cover annotations of test data.</p> "> Figure 4
<p>Performance metrics for the investigated band combinations with our customized CNN model.</p> "> Figure 5
<p>Classification accuracy for each land cover type with our customized CNN model using the investigated band combinations.</p> "> Figure 6
<p>Estimated land cover maps by our customized CNN method for the whole image.</p> "> Figure 7
<p>Performance metrics for the investigated band combinations with the CNN-3D model.</p> "> Figure 8
<p>Classification accuracy for each land cover type with CNN-3D model using the investigated band combinations.</p> "> Figure 9
<p>CNN-3D method estimated land cover maps for the whole image.</p> "> Figure 9 Cont.
<p>CNN-3D method estimated land cover maps for the whole image.</p> ">
Abstract
:1. Introduction
- We provided a comprehensive performance evaluation of two CNN-based deep learning methods for land cover classification when a limited number of bands (RGB+NIR and RGB+NIR+LiDAR) were used for augmentation with EMAP. The evaluation also included detailed classification accuracy comparisons when limited bands were used only and when all hyperspectral bands were used without EMAP.
- We showed that, with deep learning methods using fewer number of bands and utilizing EMAP-based augmentation, it is quite possible to arrive at highly decent accuracies for land cover classification. This eliminates the need for hundreds of hyperspectral bands and reduces it to four bands.
- We demonstrated that, even though adding LiDAR band to RGB+NIR bands for EMAP augmentation made a significant impact with conventional classifiers, JSR and SVM, for land cover classification, no considerable impact was observed with the deep learning methods since their classification performances were already good when using the EMAP-augmented RGB+NIR bands.
2. Methods
2.1. Our Customized CNN Method
2.2. CNN-3D
2.3. EMAP
2.4. Dataset
2.5. Performance Metrics
3. Results
3.1. Our Customized CNN Results
3.2. CNN-3D (C3D) Results
3.3. Performance Comparison of Deep Learning Methods
3.4. Comparison with Conventional Methods
Reference | Dataset Adopted | Algorithm Adopted | Overall Accuracy |
---|---|---|---|
[52] | 44 EMAP (RGB+NIR) | JSR | 80.77 |
[52] | 44 EMAP (RGB+NIR) | SVM | 82.64 |
This paper | 44 EMAP (RGB+NIR) | Our CNN | 87.92 |
This paper | 44 EMAP (RGB+NIR) | CNN-3D | 87.64 |
[52] | 55 EMAP (RGB+NIR+LiDAR) | JSR | 86.86 |
[52] | 55 EMAP (RGB+NIR+LiDAR) | SVM | 86.00 |
This paper | 55 EMAP (RGB+NIR+LiDAR) | Our CNN | 86.02 |
This paper | 55 EMAP (RGB+NIR+LiDAR) | CNN-3D | 87.96 |
[44] | Hyperspectral data; EMAP augmentation applied hyperspectral data (Xh + EMAP(Xh)) | MLRsub | 84.40 |
Hyperspectral data; Additional bands from LiDAR data (Xh + AP(XL)) | MLRsub | 87.91 | |
Hyperspectral data; EMAP augmentation applied hyperspectral data; Additional bands from LiDAR data (Xh + AP(XL) + EMAP(Xh)) | MLRsub | 90.65 | |
[53] | Hyperspectral data | SVM | 80.72 |
Morphological Profile of hyperspectral and LiDAR data (MPSHSLi) | SVM | 86.39 |
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ayhan, B.; Kwan, C.; Jensen, J.O. Remote vapor detection and classification using hyperspectral images. In Proceedings of the SPIE 11010, Chemical, Biological, Radiological, Nuclear, and Explosives (CBRNE) Sensing XX, Baltimore, MD, USA, 14 May 2019; p. 110100U. [Google Scholar]
- Kwan, C.; Ayhan, B.; Chen, G.; Chang, C.; Wang, J.; Ji, B. A Novel Approach for Spectral Unmixing, Classification, and Concentration Estimation of Chemical and Biological Agents. IEEE Trans. Geosci. Remote Sens. 2006, 44, 409–419. [Google Scholar] [CrossRef]
- Harsanyi, J.C.; Chang, C.I. Hyperspectral image classification and dimensionality reduction: An orthogonal subspace projection approach. IEEE Trans. Geosci. Remote Sens. 1994, 32, 779–785. [Google Scholar] [CrossRef] [Green Version]
- Heinz, D.C.; Chang, C.I. Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery. IEEE Geosci. Remote Sens. Soc. 2001, 39, 529–545. [Google Scholar] [CrossRef] [Green Version]
- Dao, M.; Kwan, C.; Ayhan, B.; Tran, T. Burn Scar Detection Using Cloudy MODIS Images via Low-rank and Sparsity-based Models. In Proceedings of the IEEE Global Conference on Signal and Information Processing (GlobalSIP), Washington, DC, USA, 7–9 December 2016; pp. 177–181. [Google Scholar]
- Veraverbeke, S.; Dennison, P.; Gitas, I.; Hulley, G.; Kalashnikova, O.; Katagis, T.; Kuai, L.; Meng, R.; Roberts, D.; Stavros, N. Hyperspectral remote sensing of fire: State-of-the-art and future perspectives. Remote Sens. Environ. 2018, 216, 105–121. [Google Scholar] [CrossRef]
- Wang, W.; Li, S.; Qi, H.; Ayhan, B.; Kwan, C.; Vance, S. Identify Anomaly Component by Sparsity and Low Rank. In Proceedings of the 7th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), Tokyo, Japan, 2–5 June 2015. [Google Scholar]
- Chang, C.-I. Hyperspectral Imaging; Springer: New York, NY, USA, 2003. [Google Scholar]
- Li, S.; Wang, W.; Qi, H.; Ayhan, B.; Kwan, C.; Vance, S. Low-rank Tensor Decomposition based Anomaly Detection for Hyperspectral Imagery. In Proceedings of the IEEE International Conference on Image Processing (ICIP), Quebec City, QC, Canada, 27–30 September 2015; pp. 4525–4529. [Google Scholar]
- Yang, Y.; Zhang, J.; Song, S.; Liu, D. Hyperspectral Anomaly Detection via Dictionary Construction-Based Low-Rank Representation and Adaptive Weighting. Remote Sens. 2019, 11, 192. [Google Scholar] [CrossRef] [Green Version]
- Qu, Y.; Guo, R.; Wang, W.; Qi, H.; Ayhan, B.; Kwan, C.; Vance, S. Anomaly Detection in Hyperspectral Images through Spectral Unmixing and Low Rank Decomposition. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016; pp. 1855–1858. [Google Scholar]
- Li, F.; Zhang, L.; Zhang, X.; Chen, Y.; Jiang, D.; Zhao, G.; Zhang, Y. Structured Background Modeling for Hyperspectral Anomaly Detection. Sensors 2018, 18, 3137. [Google Scholar] [CrossRef] [Green Version]
- Qu, Y.; Qi, H.; Ayhan, B.; Kwan, C.; Kidd, R. Does Multispectral/Hyperspectral Pansharpening Improve the Performance of Anomaly Detection? In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Fort Worth, TX, USA, 23–28 July 2017; pp. 6130–6133. [Google Scholar]
- Dao, M.; Kwan, C.; Koperski, K.; Marchisio, G. A Joint Sparsity Approach to Tunnel Activity Monitoring Using High Resolution Satellite Images. In Proceedings of the IEEE Ubiquitous Computing, Electronics & Mobile Communication Conference, New York, NY, USA, 19–21 October 2017; pp. 322–328. [Google Scholar]
- Radke, R.J.; Andra, S.; Al-Kofani, O.; Roysam, B. Image change detection algorithms: A systematic survey. IEEE Trans. Image Proc. 2005, 14, 294–307. [Google Scholar] [CrossRef]
- İlsever, M.; Unsalan, C. Two-Dimensional Change Detection Methods; Springer: Berlin, Germany, 2012. [Google Scholar]
- Zhou, J.; Kwan, C.; Ayhan, B.; Eismann, M. A Novel Cluster Kernel RX Algorithm for Anomaly and Change Detection Using Hyperspectral Images. IEEE Trans. Geosci. Remote Sens. 2016, 54, 6497–6504. [Google Scholar] [CrossRef]
- Bovolo, F.; Bruzzone, L. The time variable in data fusion: A change detection perspective. IEEE Geosci. Remote Sens. Mag. 2015, 3, 8–26. [Google Scholar] [CrossRef]
- Kwan, C.; Haberle, C.; Echavarren, A.; Ayhan, B.; Chou, B.; Budavari, B.; Dickenshied, S. Mars Surface Mineral Abundance Estimation Using THEMIS and TES Images. In Proceedings of the IEEE Ubiquitous Computing, Electronics & Mobile Communication Conference, New York, NY, USA, 8–10 November 2018. [Google Scholar]
- CRISM. Available online: http://crism.jhuapl.edu/ (accessed on 18 December 2019).
- Lindgren, D. Land Use Planning and Remote Sensing; Taylor & Francis: Milton Park, UK, 1984; Volume 2. [Google Scholar]
- Gu, Y.; Jin, X.; Xiang, R.; Wang, Q.; Wang, C.; Yang, S. UAV-Based Integrated Multispectral-LiDAR Imaging System and Data Processing. Sci. China Technol. Sci. 2020, 1–9. [Google Scholar] [CrossRef]
- Jahan, F.; Zhou, J.; Awrangjeb, M.; Gao, Y. Inverse Coefficient of Variation Feature and Multilevel Fusion Technique for Hyperspectral and LiDAR Data Classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 367–381. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Zhang, X. Object-Based Tree Species Classification Using Airborne Hyperspectral Images and LiDAR Data. Forests 2020, 11, 32. [Google Scholar] [CrossRef] [Green Version]
- Hänsch, R.; Hellwich, O. Fusion of Multispectral LiDAR, Hyperspectral, and RGB Data for Urban Land Cover Classification. IEEE Geosci. Remote Sens. Lett. 2020. [Google Scholar] [CrossRef]
- Tusa, E.; Laybros, A.; Monnet, J.M.; Dalla Mura, M.; Barré, J.B.; Vincent, G.; Dalponte, M.; Feret, J.-P.; Chanussot, J. Fusion of hyperspectral imaging and LiDAR for forest monitoring. In Data Handling in Science and Technology; Elsevier: Amsterdam, The Netherlands, 2020; Volume 32, pp. 281–303. [Google Scholar]
- Du, Q.; Ball, J.E.; Ge, C. Hyperspectral and LiDAR data fusion using collaborative representation. Algorithms Technol. Appl. Multispectr. Hyperspectr. Imagery XXVI 2020, 11392, 1139208. [Google Scholar] [CrossRef]
- Zhang, M.; Li, W.; Du, Q.; Gao, L.; Zhang, B. Feature extraction for classification of hyperspectral and LiDAR data using patch-to-patch CNN. IEEE Trans. Cybern. 2018, 50, 100–111. [Google Scholar] [CrossRef]
- Mei, X.; Pan, E.; Ma, Y.; Dai, X.; Huang, J.; Fan, F.; Du, Q.; Zheng, H.; Ma, J. Spectral-spatial attention networks for hyperspectral image classification. Remote Sens. 2019, 11, 963. [Google Scholar] [CrossRef] [Green Version]
- Senecal, J.J.; Sheppard, J.W.; Shaw, J.A. Efficient Convolutional Neural Networks for Multi-Spectral Image Classification. In Proceedings of the International Joint Conference on Neural Networks (IJCNN), Budapest, Hungary, 14–19 July 2019; pp. 1–8. [Google Scholar]
- Zhang, X.; Han, L.; Han, L.; Zhu, L. How Well Do Deep Learning-Based Methods for Land Cover Classification and Object Detection Perform on High Resolution Remote Sensing Imagery? Remote Sens. 2020, 12, 417. [Google Scholar] [CrossRef] [Green Version]
- Audebert, N.; Saux, B.L.; Lefevre, S. Semantic Segmentation of Earth Observation Data Using Multimodal and Multi-scale Deep Networks. arXiv 2016, arXiv:1609.06846. [Google Scholar]
- Huang, B.; Zhao, B.; Song, Y. Urban land-use mapping using a deep convolutional neural network with high spatial resolution multispectral remote sensing imagery. Remote Sens. Environ. 2018, 214, 73–86. [Google Scholar] [CrossRef]
- Kemker, R.; Salvaggio, C.; Kanan, C. Algorithms for Semantic Segmentation of Multispectral Remote Sensing Imagery using Deep Learning. ISPRS J. Photogramm. Remote Sens. 2018, 145, 60–77. [Google Scholar] [CrossRef] [Green Version]
- Zheng, C.; Wang, L. Semantic Segmentation of Remote Sensing Imagery Using Object-Based Markov Random Field Model with Regional Penalties. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 1924–1935. [Google Scholar] [CrossRef]
- Mura, M.D.; Benediktsson, J.A.; Waske, B.; Bruzzone, L. Extended profiles with morphological attribute filters for the analysis of hyperspectral data. Int. J. Remote Sens. 2010, 31, 5975–5991. [Google Scholar] [CrossRef]
- Shu, W.; Liu, P.; He, G.; Wang, G. Hyperspectral Image Classification Using Spectral-Spatial Features with Informative Samples. IEEE Access 2019, 7, 20869–20878. [Google Scholar] [CrossRef]
- Zaatour, R.; Bouzidi, S.; Zagrouba, E. Impact of Feature Extraction and Feature Selection Techniques on Extended Attribute Profile-based Hyperspectral Image Classification. In Proceedings of the 12th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2017), Porto, Portugal, 27 February–1 March 2017; pp. 579–586. [Google Scholar]
- Bernabe, S.; Marpu, P.R.; Plaza, A.; Benediktsson, J.A. Spectral unmixing of multispectral satellite images with dimensionality expansion using morphological profiles. In Proceedings of the SPIE Satellite Data Compression, Communications, and Processing VIII, San Diego, CA, USA, 19 October 2012; Volume 8514, p. 85140Z. [Google Scholar]
- Mura, M.D.; Benediktsson, J.A.; Waske, B.; Bruzzone, L. Morphological attribute profiles for the analysis of very high resolution images. IEEE Trans. Geosci. Remote Sens. 2010, 48, 3747–3762. [Google Scholar] [CrossRef]
- Bernabe, S.; Marpu, P.R.; Plaza, A.; Mura, M.D.; Benediktsson, J.A. Spectral–spatial classification of multispectral images using kernel feature space representation. IEEE Geosci. Remote Sens. Lett. 2014, 11, 288–292. [Google Scholar] [CrossRef]
- Ghamisi, P.; Benediktsson, J.A.; Cavallaro, G.; Plaza, A. Automatic framework for spectral–spatial classification based on supervised feature extraction and morphological attribute profiles. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 2147–2160. [Google Scholar] [CrossRef]
- Dao, M.; Kwan, C.; Bernabe, S.; Plaza, A.; Koperski, K. A Joint Sparsity Approach to Soil Detection Using Expanded Bands of WV-2 Images. IEEE Geosci. Remote Sens. Lett. 2019, 1–5. [Google Scholar] [CrossRef]
- Khodadadzadeh, M.; Li, J.; Prasad, S.; Plaza, A. Fusion of Hyperspectral and LiDAR Remote Sensing Data Using Multiple Feature Learning. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 2971–2983. [Google Scholar] [CrossRef]
- Li, S.; Qiu, J.; Yang, X.; Liu, H.; Wan, D.; Zhu, Y. A novel approach to hyperspectral band selection based on spectral shape similarity analysis and fast branch and bound search. Eng. Appl. Artif. Intell. 2014, 27, 241–250. [Google Scholar] [CrossRef] [Green Version]
- Feng, F.; Li, W.; Du, Q.; Zhang, B. Dimensionality reduction of hyperspectral image with graph-based discriminant analysis considering spectral similarity. Remote Sens. 2017, 9, 323. [Google Scholar] [CrossRef] [Green Version]
- Burges, C. A Tutorial on Support Vector Machines for Pattern Recognition. Data Mining and Knowledge Discovery; Kluwer Academic Publishers: Boston, MA, USA, 1998; pp. 121–167. [Google Scholar]
- Perez, D.; Banerjee, C.; Kwan, M.; Dao, Y.; Shen, K.; Koperski, G.; Marchisio, G.; Li, J. Deep Learning for Effective Detection of Excavated Soil Related to Illegal Tunnel Activities. In Proceedings of the IEEE Ubiquitous Computing Electronics and Mobile Communication Conference, New York, NY, USA, 19–21 October 2017; pp. 626–632. [Google Scholar]
- Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958. [Google Scholar]
- Deep Learning for HSI Classification. Available online: https://github.com/luozm/Deep-Learning-for-HSI-classification (accessed on 21 April 2020).
- Cardillo, G. Cohen’s Kappa: Compute the Cohen’s Kappa Ratio on a 2 × 2 Matrix. Available online: https://www.github.com/dnafinder/Cohen (accessed on 22 April 2020).
- Kwan, C.; Gribben, D.; Ayhan, B.; Bernabe, S.; Plaza, A.; Selva, M. Improving Land Cover Classification Using Extended Multi-attribute Profiles (EMAP) Enhanced Color, Near Infrared, and LiDAR Data. Remote Sens. 2020, 26, 1392. [Google Scholar] [CrossRef]
- Liao, W.; Pižurica, A.; Bellens, R.; Gautama, S.; Philips, W. Generalized Graph-Based Fusion of Hyperspectral and LiDAR Data Using Morphological Features. IEEE Geosci. Remote Sens. Lett. 2015, 12, 552–556. [Google Scholar] [CrossRef]
- Safont, G.; Salazar, A.; Vergara, L. Multiclass alpha integration of scores from multiple classifiers. Neural Comput. 2019, 31, 806–825. [Google Scholar] [CrossRef] [PubMed]
- Kwan, C.; Chou, B.; Kwan, L.Y.M.; Larkin, J.; Ayhan, B.; Bell, J.F.; Kerner, H. Demosaicing enhancement using pixel-level fusion. SIViP 2018, 12, 749–756. [Google Scholar] [CrossRef]
Class | ||||
---|---|---|---|---|
Name | Number | Color Legend | Samples | |
Train | Test | |||
Healthy grass | 1 | 198 | 1053 | |
Stressed grass | 2 | 190 | 1064 | |
Synthetic grass | 3 | 192 | 505 | |
Tree | 4 | 188 | 1056 | |
Soil | 5 | 186 | 1056 | |
Water | 6 | 182 | 143 | |
Residential | 7 | 196 | 1072 | |
Commercial | 8 | 191 | 1053 | |
Road | 9 | 193 | 1059 | |
Highway | 10 | 191 | 1036 | |
Railway | 11 | 181 | 1054 | |
Parking lot 1 | 12 | 192 | 1041 | |
Parking lot 2 | 13 | 184 | 285 | |
Tennis court | 14 | 181 | 247 | |
Running track | 15 | 181 | 473 | |
1–15 | 2832 | 12,197 |
Bands | 4 Band | 4 Band+Lidar | 44 Band EMAP | 55 Band EMAP | 144 Band | 144 Band+Lidar | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Patch Size | 3 | 5 | 3 | 5 | 3 | 5 | 3 | 5 | 3 | 5 | 3 | 5 |
OA (%) | 0.7844 | 0.8108 | 0.7990 | 0.7990 | 0.8792 | 0.8602 | 0.8602 | 0.8429 | 0.8148 | 0.8050 | 0.7878 | 0.8097 |
AA (%) | 0.8103 | 0.8364 | 0.8224 | 0.8264 | 0.8982 | 0.8830 | 0.8840 | 0.8670 | 0.8436 | 0.8365 | 0.8202 | 0.8365 |
K | 0.7661 | 0.7947 | 0.7818 | 0.7825 | 0.8694 | 0.8487 | 0.8492 | 0.8304 | 0.8001 | 0.7898 | 0.7713 | 0.7949 |
(ID)-Class Type (%) | ||||||||||||
1-Healthy grass | 0.8224 | 0.8234 | 0.8205 | 0.8224 | 0.8310 | 0.8310 | 0.8234 | 0.8310 | 0.8158 | 0.8262 | 0.8167 | 0.8234 |
2-Stressed grass | 0.8449 | 0.8449 | 0.8421 | 0.8459 | 0.8393 | 0.8205 | 0.8487 | 0.7162 | 0.8449 | 0.8402 | 0.8355 | 0.8421 |
3-Synthetic grass | 0.9426 | 0.9109 | 0.9485 | 0.8792 | 1.0000 | 1.0000 | 0.9941 | 0.9980 | 0.9861 | 0.9287 | 0.9762 | 0.9822 |
4-Trees | 0.9252 | 0.9195 | 0.8958 | 0.9223 | 0.9896 | 0.9271 | 0.9574 | 0.9261 | 0.9157 | 0.9299 | 0.9271 | 0.9138 |
5-Soil | 0.9792 | 0.9934 | 0.9735 | 0.9915 | 0.9943 | 1.0000 | 1.0000 | 0.9991 | 0.9848 | 0.9991 | 0.9886 | 0.9943 |
6-Water | 0.8462 | 0.9301 | 0.8462 | 0.9231 | 0.9510 | 0.9580 | 0.9650 | 0.9021 | 0.9301 | 0.9441 | 0.9441 | 0.9021 |
7-Residential | 0.8647 | 0.8918 | 0.8909 | 0.8386 | 0.8647 | 0.9347 | 0.8750 | 0.8675 | 0.7687 | 0.8349 | 0.7724 | 0.7817 |
8-Commercial | 0.5404 | 0.6277 | 0.5850 | 0.6068 | 0.7873 | 0.6021 | 0.6135 | 0.5470 | 0.6638 | 0.6980 | 0.5252 | 0.7227 |
9-Road | 0.6959 | 0.7866 | 0.7592 | 0.7460 | 0.8659 | 0.8234 | 0.8527 | 0.8036 | 0.7224 | 0.7063 | 0.8083 | 0.7545 |
10-Highway | 0.5531 | 0.5010 | 0.6120 | 0.5154 | 0.6844 | 0.6400 | 0.6371 | 0.8070 | 0.6091 | 0.4952 | 0.4373 | 0.6004 |
11-Railway | 0.6803 | 0.7021 | 0.6774 | 0.6812 | 0.8634 | 0.8966 | 0.8681 | 0.8662 | 0.7676 | 0.7078 | 0.7277 | 0.7457 |
12-Parking lot 1 | 0.7166 | 0.8444 | 0.7301 | 0.8309 | 0.9193 | 0.9462 | 0.9452 | 0.8674 | 0.8357 | 0.7800 | 0.7954 | 0.7032 |
13-Parking lot 2 | 0.8035 | 0.8737 | 0.8316 | 0.8596 | 0.8842 | 0.8702 | 0.8877 | 0.8737 | 0.8596 | 0.9088 | 0.8035 | 0.8807 |
14-Tennis Court | 0.9798 | 0.9919 | 0.9676 | 0.9838 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.9879 | 0.9595 | 0.9960 | 0.9514 |
15-Running Track | 0.9598 | 0.9049 | 0.9556 | 0.9493 | 0.9979 | 0.9958 | 0.9915 | 1.0000 | 0.9619 | 0.9894 | 0.9493 | 0.9493 |
Bands | 4 Band | 4 Band+Lidar | 44 Band EMAP | 55 Band EMAP | 144 Band | 144 Band +Lidar | ||||
---|---|---|---|---|---|---|---|---|---|---|
Patch Size | 13 | 17 | 13 | 17 | 13 | 17 | 13 | 17 | 7 | 7 |
OA (%) | 0.7536 | 0.6179 | 0.7843 | 0.7066 | 0.8764 | 0.8634 | 0.8796 | 0.8755 | 0.8010 | 0.8000 |
AA (%) | 0.7503 | 0.6767 | 0.7825 | 0.6933 | 0.8816 | 0.8530 | 0.8918 | 0.8756 | 0.8245 | 0.8243 |
K | 0.7332 | 0.6634 | 0.7663 | 0.6824 | 0.8657 | 0.8515 | 0.8692 | 0.8648 | 0.7850 | 0.7840 |
(ID)-Class Type (%) | ||||||||||
1-Healthy grass | 0.8006 | 0.8224 | 0.8291 | 0.7930 | 0.8215 | 0.8405 | 0.8310 | 0.8357 | 0.8433 | 0.8471 |
2-Stressed grass | 0.8365 | 0.8026 | 0.8571 | 0.8449 | 0.7641 | 0.7575 | 0.7961 | 0.7735 | 0.8496 | 0.8600 |
3-Synthetic grass | 0.5782 | 0.4396 | 0.6277 | 0.4990 | 0.9901 | 0.9980 | 0.9921 | 0.9683 | 0.7881 | 0.7842 |
4-Trees | 0.9375 | 0.8627 | 0.9261 | 0.8930 | 0.9271 | 0.9252 | 0.9129 | 0.9290 | 0.8892 | 0.8902 |
5-Soil | 0.9299 | 0.9375 | 0.9574 | 0.9403 | 0.9867 | 0.9877 | 0.9934 | 0.9962 | 0.9858 | 0.9886 |
6-Water | 0.8252 | 0.7762 | 0.9021 | 0.7552 | 0.8601 | 0.7832 | 0.9441 | 0.8741 | 0.9790 | 0.9441 |
7-Residential | 0.8424 | 0.8312 | 0.8526 | 0.8256 | 0.9160 | 0.8937 | 0.9226 | 0.8909 | 0.8657 | 0.8554 |
8-Commercial | 0.5954 | 0.5090 | 0.7056 | 0.5024 | 0.7787 | 0.8053 | 0.7255 | 0.7578 | 0.5812 | 0.5793 |
9-Road | 0.7573 | 0.8083 | 0.8074 | 0.8215 | 0.9292 | 0.9424 | 0.9207 | 0.9396 | 0.7677 | 0.8017 |
10-Highway | 0.5792 | 0.3842 | 0.6274 | 0.4151 | 0.6892 | 0.6641 | 0.6844 | 0.7008 | 0.5956 | 0.4884 |
11-Railway | 0.6309 | 0.5066 | 0.5968 | 0.5313 | 0.9839 | 0.8975 | 0.9810 | 0.9592 | 0.6973 | 0.7116 |
12-Parking lot 1 | 0.7666 | 0.7003 | 0.8002 | 0.7493 | 0.9222 | 0.9577 | 0.9385 | 0.9712 | 0.8271 | 0.8204 |
13-Parking lot 2 | 0.8035 | 0.7579 | 0.8421 | 0.7404 | 0.8596 | 0.8421 | 0.8667 | 0.7860 | 0.9228 | 0.9088 |
14-Tennis Court | 0.8664 | 0.8421 | 0.8097 | 0.8502 | 0.9919 | 0.7976 | 0.9798 | 0.9757 | 0.9231 | 0.8907 |
15-Running Track | 0.5053 | 0.1691 | 0.5962 | 0.2389 | 0.8034 | 0.7019 | 0.8879 | 0.7759 | 0.8520 | 0.9937 |
CNN | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Bands | 4 Band | 4 Band+LiDAR | 44 Band EMAP | 55 Band EMAP | 144 Band | 144 Band+ LiDAR | ||||||
Patch Size | C3D-13 | CNN-5 | C3D-13 | CNN-5 | C3D-13 | CNN-3 | C3D-13 | CNN-3 | C3D-7 | CNN-3 | C3D-7 | CNN-5 |
OA (%) | 0.7536 | 0.8108 | 0.7843 | 0.7990 | 0.8764 | 0.8792 | 0.8796 | 0.8602 | 0.8010 | 0.8148 | 0.8000 | 0.8097 |
AA (%) | 0.7503 | 0.8364 | 0.7825 | 0.8264 | 0.8816 | 0.8982 | 0.8918 | 0.8840 | 0.8245 | 0.8436 | 0.8243 | 0.8365 |
K | 0.7332 | 0.7947 | 0.7663 | 0.7825 | 0.8657 | 0.8694 | 0.8692 | 0.8492 | 0.7850 | 0.8001 | 0.7840 | 0.7949 |
Computational Times (min) | 4 Band | 4 Band+LiDAR | 44 Band EMAP | 55 Band EMAP | 144 Band | 144 Band+LiDAR |
---|---|---|---|---|---|---|
CNN | <1 | <1 | ~1.5 | ~1.5 | ~3 | ~3 |
C3D | <1 | <1 | ~1 | ~1.5 | ~3 | ~3 |
JSR | 629.23 | 891.71 | 2248.17 | 2198.56 | 2210.15 | 2310.42 |
SVM | 5.32 | 3.76 | 0.69 | 0.47 | 1.30 | 1.41 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kwan, C.; Ayhan, B.; Budavari, B.; Lu, Y.; Perez, D.; Li, J.; Bernabe, S.; Plaza, A. Deep Learning for Land Cover Classification Using Only a Few Bands. Remote Sens. 2020, 12, 2000. https://doi.org/10.3390/rs12122000
Kwan C, Ayhan B, Budavari B, Lu Y, Perez D, Li J, Bernabe S, Plaza A. Deep Learning for Land Cover Classification Using Only a Few Bands. Remote Sensing. 2020; 12(12):2000. https://doi.org/10.3390/rs12122000
Chicago/Turabian StyleKwan, Chiman, Bulent Ayhan, Bence Budavari, Yan Lu, Daniel Perez, Jiang Li, Sergio Bernabe, and Antonio Plaza. 2020. "Deep Learning for Land Cover Classification Using Only a Few Bands" Remote Sensing 12, no. 12: 2000. https://doi.org/10.3390/rs12122000