A Modified KNN Method for Mapping the Leaf Area Index in Arid and Semi-Arid Areas of China
"> Figure 1
<p>(<b>a</b>) Locations of the study areas; (<b>b</b>) Landsat 8 color image covering Kangbao County with the spatial distribution of 30 m × 30 m sample plots; (<b>c</b>) Sentinel-2 color image covering Ganzhou District with the spatial distribution of 1000 m × 1000 m sample blocks; (<b>d</b>) the allocation of five 30 m × 30 m sample plots nested within each sample block in Ganzhou; and (<b>e</b>) the allocation of five 1 m × 1 m sub-plots nested within each of 30 m × 30 m sample plot in both Ganzhou and Kangbao.</p> "> Figure 2
<p>The importance rank of spectral variables for three set inputs of predictors and the root mean square error (RMSE) values of the random forest (RF) method with different numbers of spectral variables in Ganzhou: (<b>a</b>) Importance ranking for input 1 of original spectral reflectance bands and (<b>b</b>) RMSE for input 1; (<b>c</b>) importance ranking for input 2 of vegetation indices and (<b>d</b>) RMSE for input 2; and (<b>e</b>) importance ranking for input 3 of combining the original spectral bands and vegetation indices and (<b>f</b>) RMSE for input 3.</p> "> Figure 3
<p>(<b>a</b>) The importance rank of spectral variables and (<b>b</b>) the RMSE values of the RF method with different numbers of spectral variables in Kangbao.</p> "> Figure 4
<p>Spatial distributions of LAI predictions in Ganzhou District obtained using three models and three set inputs of the selected spectral variables: (<b>a</b>) Input 1 and traditional kNN; (<b>b</b>) input 1 and RF; (<b>c</b>) input 1 and the modified kNN; (<b>d</b>) input 2 and traditional kNN; (<b>e</b>) input 2 and RF; (<b>f</b>) input 2 and modified kNN; (<b>g</b>) input 3 and traditional kNN; (<b>h</b>) input 3 and RF; and (<b>i</b>) input 3 and modified kNN.</p> "> Figure 5
<p>Spatial distributions of LAI predictions in Kangbao County obtained by three models: (<b>a</b>) traditional kNN; (<b>b</b>) RF; and (<b>c</b>) modified kNN.</p> "> Figure 6
<p>Scatter plots of the predicted LAI against the observed LAI in Ganzhou using three models and three set inputs of the selected spectral variables: (<b>a</b>) Input 1 and traditional kNN; (<b>b</b>) input 1 and RF; (<b>c</b>) input 1 and modified kNN; (<b>d</b>) input 2 and traditional kNN; (<b>e</b>) input 2 and RF; (<b>f</b>) input 2 and modified kNN; (<b>g</b>) input 3 and traditional kNN; (<b>h</b>) input 3 and RF; and (<b>i</b>) input 3 and modified kNN.</p> "> Figure 6 Cont.
<p>Scatter plots of the predicted LAI against the observed LAI in Ganzhou using three models and three set inputs of the selected spectral variables: (<b>a</b>) Input 1 and traditional kNN; (<b>b</b>) input 1 and RF; (<b>c</b>) input 1 and modified kNN; (<b>d</b>) input 2 and traditional kNN; (<b>e</b>) input 2 and RF; (<b>f</b>) input 2 and modified kNN; (<b>g</b>) input 3 and traditional kNN; (<b>h</b>) input 3 and RF; and (<b>i</b>) input 3 and modified kNN.</p> "> Figure 7
<p>Scatter plots of the predicted LAI against the observed LAI in Kangbao using three models: (<b>a</b>) traditional kNN; (<b>b</b>) RF; and (<b>c</b>) modified kNN.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Areas
2.2. Sampling Design and Leaf Area Index Measurement
2.3. Remote Sensing Data and Preprocessing
2.4. Selection of Spectral Variables
2.5. LAI Estimation Methods
2.5.1. K-nearest Neighbors
2.5.2. Random Forest
2.5.3. The Modified kNN
2.6. Accuracy Assessment and Comparison of LAI Estimations
3. Results
3.1. Selected Spectral Variables for LAI Prediction
3.2. Prediction and Mapping
3.3. Uncertainty Analysis
4. Discussion
4.1. Spectral Variable Selection for LAI Mapping
4.2. Comparison of LAI Prediction Models
4.3. Limitations and Suggestions for Further Improvement
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
Study Area (Sensor) | Spectral Variables and Definitions | Reference |
---|---|---|
Ganzhou (Sentinel-2) | Band2: BLUE, Band3: GREEN, Band4: RED, Band5: Red Edge1, Band6: Red Edge2, Band7: Red Edge3, band8: NIR, Band8A: Red Edge4, Band11: SWIR1, and Band12: SWIR2 | |
NDVI = (NIR − RED)/(NIR + RED) | [27] | |
EVI = 2.5×(NIR − RED)/(NIR + 6RED − 7.5×BLUE + 1) | [27] | |
RGVI= (RED−GREEN)/(RED+GREEN) | [27] | |
ARVI = NIR−(2×RED−BLUE)/ NIR+(2×RED−BLUE) | [58] | |
RENDVI = (RedEdge2 − RedEdge1)/(RedEdge2 + RedEdge1) | [58] | |
RECI = (RedEdge3/RedEdge1) − 1 | [58] | |
RESR = NIR/RedEdge1 | [27] | |
Kangbao (Landsat 8) | Band 1: Coastal, Band 2: BLUE, Band 3: GREEN, Band 4: RED, Band 5: NIR, Band 6: SWIR1, and Band 7: SWIR2 | |
NDVI = (NIR − RED)/(NIR + RED) | [27] | |
RGVI = (RED−GREEN)/(RED+GREEN) | [27] | |
ARVI = NIR−(2×RED−BLUE)/ NIR+(2×RED−BLUE) | [27] |
Study Area | Data | Spectral Variable | Correlation Coefficient | p-Value |
---|---|---|---|---|
Ganzhou | Sentinel-2 | RESR | 0.703 | 0.00 |
NDVI | 0.768 | 0.00 | ||
RECI | 0.700 | 0.00 | ||
ARVI | 0.770 | 0.00 | ||
RENDVI | 0.772 | 0.00 | ||
B12 | −0.657 | 0.00 | ||
RGVI | −0.699 | 0.00 | ||
B3 | −0.588 | 0.00 | ||
B4 | −0.647 | 0.00 | ||
B2 | −0.618 | 0.00 | ||
B8 | 0.617 | 0.00 | ||
B11 | −0.593 | 0.00 | ||
B7 | 0.610 | 0.00 | ||
B6 | 0.425 | 0.00 | ||
B5 | −0.609 | 0.00 | ||
B8A | 0.632 | 0.00 | ||
Kangbao | Landsat 8 | B1 | −0.624 | 0.00 |
B2 | −0.636 | 0.00 | ||
B3 | −0.610 | 0.00 | ||
B4 | −0.642 | 0.00 | ||
B5 | 0.445 | 0.00 | ||
B6 | −0.701 | 0.00 | ||
B7 | −0.695 | 0.00 | ||
ARVI | −0.693 | 0.00 | ||
RGVI | 0.645 | 0.00 | ||
NDVI | 0.700 | 0.00 |
Inputs (Spectral Variables) | Model | Traditional kNN | RF | |
---|---|---|---|---|
Ganzhou | Input 1 (bands) | Traditional kNN | ||
RF | −0.819 (0.413) | |||
modified kNN | 23.625 (0) | 22.295 (0) | ||
Input 2 (VIs) | Traditional kNN | |||
RF | −1.759 (0.079) | |||
modified kNN | 21.448 (0) | 19.668 (0) | ||
Input 3 (bands and VIs) | Traditional kNN | |||
RF | −0.963 (0.336) | |||
modified kNN | 21.120 (0) | 19.106 (0) | ||
Kangbao | Eight selected spectral variables | Traditional kNN | ||
RF | 0.271 (0.787) | |||
modified kNN | 10.709 (0) | 9.911 (0) |
References
- Neinavaz, E.; Darvishzadeh, R.; Skidmore, A.K.; Abdullah, H. Integration of Landsat-8 Thermal and Visible-Short Wave Infrared Data for Improving Prediction Accuracy of Forest Leaf Area Index. Remote Sens. 2019, 11, 390. [Google Scholar] [CrossRef] [Green Version]
- Qiao, K.; Zhu, W.; Xie, Z.; Li, P. Estimating the Seasonal Dynamics of the Leaf Area Index Using Piecewise LAI-VI Relationships Based on Phenophases. Remote Sens. 2019, 11, 689. [Google Scholar] [CrossRef] [Green Version]
- Fan, W.; Liu, Y.; Xu, X.; Chen, G.; Zhang, B. A new FAPAR analytical model based on the law of energy conservation: A case study in China. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 3945–3955. [Google Scholar] [CrossRef]
- Tian, Y.; Zheng, Y.; Zheng, C.; Xiao, H.; Fan, W.; Zou, S.; Wu, B.; Yao, Y.; Zhang, A.; Liu, J. Exploring scale-dependent ecohydrological responses in a large endorheic river basin through integrated surface water-groundwater modeling. Water Resour. Res. 2015, 51, 4065–4085. [Google Scholar] [CrossRef]
- Potithep, S.; Nagai, S.; Nasahara, K.N.; Muraoka, H.; Suzuki, R. Two separate periods of the LAI–VIs relationships using in situ measurements in a deciduous broadleaf forest. Agric. For. Meteorol. 2013, 169, 148–155. [Google Scholar] [CrossRef]
- Simic, A.; Fernandes, R.; Wang, S. Assessing the impact of leaf area index on evapotranspiration and groundwater recharge across a shallow water region for diverse land cover and soil properties. J. Water Resour. Hydraul. Eng. 2014, 3, 60–73. [Google Scholar]
- Verrelst, J.; Rivera, J.P.; Veroustraete, F.; Muñoz-Marí, J.; Clevers, J.G.; Camps-Valls, G.; Moreno, J. Experimental Sentinel-2 LAI estimation using parametric, non-parametric and physical retrieval methods–A comparison. ISPRS J. Photogramm. Remote Sens. 2015, 108, 260–272. [Google Scholar]
- Upreti, D.; Huang, W.; Kong, W.; Pascucci, S.; Pignatti, S.; Zhou, X.; Ye, H.; Casa, R. A Comparison of Hybrid Machine Learning Algorithms for the Retrieval of Wheat Biophysical Variables from Sentinel-2. Remote Sens. 2019, 11, 481. [Google Scholar] [CrossRef] [Green Version]
- Wei, C.; Huang, J.; Mansaray, L.R.; Li, Z.; Liu, W.; Han, J. Estimation and Mapping of Winter Oilseed Rape LAI from High Spatial Resolution Satellite Data Based on a Hybrid Method. Remote Sens. 2017, 9, 488. [Google Scholar] [CrossRef] [Green Version]
- Su, W.; Huang, J.; Liu, D.; Zhang, M. Retrieving Corn Canopy Leaf Area Index from Multitemporal Landsat Imagery and Terrestrial LiDAR Data. Remote Sens. 2019, 11, 572. [Google Scholar] [CrossRef] [Green Version]
- Zhou, H.; Wang, J.; Liang, S.; Xiao, Z. Extended Data-Based Mechanistic Method for Improving Leaf Area Index Time Series Estimation with Satellite Data. Remote Sens. 2017, 9, 533. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Y.; Liu, K.; Liu, L.; Myint, S.W.; Wang, S.; Liu, H.; He, Z. Exploring the Potential of WorldView-2 Red-Edge Band-Based Vegetation Indices for Estimation of Mangrove Leaf Area Index with Machine Learning Algorithms. Remote Sens. 2017, 9, 1060. [Google Scholar] [CrossRef] [Green Version]
- Zhao, J.; Li, J.; Liu, Q.; Wang, H.; Chen, C.; Xu, B.; Wu, S. Comparative Analysis of Chinese HJ-1 CCD, GF-1 WFV and ZY-3 MUX Sensor Data for Leaf Area Index Estimations for Maize. Remote Sens. 2018, 10, 68. [Google Scholar] [CrossRef] [Green Version]
- Yin, G.; Li, J.; Liu, Q.; Fan, W.; Xu, B.; Zeng, Y.; Zhao, J. Regional Leaf Area Index Retrieval Based on Remote Sensing: The Role of Radiative Transfer Model Selection. Remote Sens. 2015, 7, 4604–4625. [Google Scholar] [CrossRef] [Green Version]
- Feret, J.-B.; François, C.; Asner, G.P.; Gitelson, A.A.; Martin, R.E.; Bidel, L.P.; Ustin, S.L.; Le Maire, G.; Jacquemoud, S. PROSPECT-4 and 5: Advances in the leaf optical properties model separating photosynthetic pigments. Remote Sens. Environ. 2008, 112, 3030–3043. [Google Scholar] [CrossRef]
- Jacquemoud, S.; Verhoef, W.; Baret, F.; Bacour, C.; Zarco-Tejada, P.J.; Asner, G.P.; François, C.; Ustin, S.L. PROSPECT+ SAIL models: A review of use for vegetation characterization. Remote Sens. Environ. 2009, 113, S56–S66. [Google Scholar] [CrossRef]
- Verhoef, W. Light scattering by leaf layers with application to canopy reflectance modeling: The SAIL model. Remote Sens. Environ. 1984, 16, 125–141. [Google Scholar] [CrossRef] [Green Version]
- Si, Y.; Schlerf, M.; Zurita-Milla, R.; Skidmore, A.; Wang, T. Mapping spatio-temporal variation of grassland quantity and quality using MERIS data and the PROSAIL model. Remote Sens. Environ. 2012, 121, 415–425. [Google Scholar] [CrossRef]
- Le Maire, G.; Marsden, C.; Verhoef, W.; Ponzoni, F.J.; Seen, D.L.; Bégué, A.; Stape, J.-L.; Nouvellon, Y. Leaf area index estimation with MODIS reflectance time series and model estimation during full rotations of Eucalyptus plantations. Remote Sens. Environ. 2011, 115, 586–599. [Google Scholar] [CrossRef]
- Liang, L.; Qin, Z.; Zhao, S.; Di, L.; Zhang, C.; Deng, M.; Lin, H.; Zhang, L.; Wang, L.; Liu, Z. Estimating crop chlorophyll content with hyperspectral vegetation indices and the hybrid estimation method. Int. J. Remote Sens. 2016, 37, 2923–2949. [Google Scholar] [CrossRef]
- Atzberger, C. Object-based retrieval of biophysical canopy variables using artificial neural nets and radiative transfer models. Remote Sens. Environ. 2004, 93, 53–67. [Google Scholar] [CrossRef]
- García-Gutiérrez, J.; Martínez-álvarez, F.; Troncoso, A.; Riquelme, J.C. A comparison of machine learning regression techniques for lidar-derived estimation of forest variables. Neurocomputing 2015, 167, 24–31. [Google Scholar] [CrossRef]
- Yuan, H.; Yang, G.; Li, C.; Wang, Y.; Liu, J.; Yu, H.; Feng, H.; Xu, B.; Zhao, X.; Yang, X. Retrieving Soybean Leaf Area Index from Unmanned Aerial Vehicle Hyperspectral Remote Sensing: Analysis of RF, ANN, and SVM Regression Models. Remote Sens. 2017, 9, 309. [Google Scholar] [CrossRef] [Green Version]
- Yun, T.; An, F.; Li, W.; Sun, Y.; Cao, L.; Xue, L. A Novel Approach for Retrieving Tree Leaf Area from Ground-Based LiDAR. Remote Sens. 2016, 8, 942. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Wang, J.; Tang, H.; Huang, C.; Yang, F.; Chen, B.; Wang, X.; Xin, X.; Ge, Y. Predicting Grassland Leaf Area Index in the Meadow Steppes of Northern China: A Comparative Study of Regression Approaches and Hybrid Geostatistical Methods. Remote Sens. 2016, 8, 632. [Google Scholar] [CrossRef] [Green Version]
- Cong, X.; Bruce, M.; Justin, M. Evaluation of modelling approaches in predicting forest volume and stand age for small-scale plantation forests in new zealand with rapideye and lidar. Int. J. Appl. Earth Obs. Geoinf. 2018, 73, 386–396. [Google Scholar]
- Sun, H.; Wang, Q.; Wang, G.; Lin, H.; Luo, P.; Li, J.; Zeng, S.; Xu, X.; Ren, L. Optimizing kNN for Mapping Vegetation Cover of Arid and Semi-Arid Areas Using Landsat Images. Remote Sens. 2018, 10, 1248. [Google Scholar] [CrossRef] [Green Version]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Ismail, R.; Mutanga, O.; Kumar, L. Modeling the potential distribution of pine forests susceptible to SirexNoctilio infestations in Mpumalanga, South Africa. Trans. GIS 2010, 14, 709–726. [Google Scholar] [CrossRef]
- Vincenzi, S.; Zucchetta, M.; Franzoi, P.; Pellizzato, M.; Pranovi, F.; De Leo, G.A.; Torricelli, P. Application of a Random Forest algorithm to predict spatial distribution of the potential yield of Ruditapes Philippinarum in the Venice lagoon, (Italy). Ecol. Model. 2011, 222, 1471–1478. [Google Scholar] [CrossRef]
- Chen, Y.; Li, L.; Lu, D.; Li, D. Exploring Bamboo Forest Aboveground Biomass Estimation Using Sentinel-2 Data. Remote Sens. 2019, 11, 7. [Google Scholar] [CrossRef] [Green Version]
- Katila, M.; Tomppo, E. Selecting Estimation Parameters for the Finnish Multisource National Forest Inventory. Remote Sens. Environ. 2001, 76, 16–32. [Google Scholar] [CrossRef]
- Tokola, T.; PitkaÈnen, J.; Partinen, S.; Muinonen, E. Point accuracy of a non-parametric method in estimation of forest characteristics with different satellite materials. Int. J. Remote Sens. 1996, 17, 2333–2351. [Google Scholar] [CrossRef]
- Tomppo, E.; Haakana, M.; Katila, M. Multi-Source National Forest Inventory–Methods and Applications. Efi Proc. 1996, 7, 16–32. [Google Scholar]
- Moeur, M.; Stage, A.R. Most similar neighbor: An improved sampling inference procedure for natural resource planning. For. Sci. 1995, 41, 337–359. [Google Scholar]
- McRoberts, R.E.; Nelson, M.D.; Wendt, D.G. Stratified estimation of forest area using satellite imagery, inventory data, and the k-Nearest Neighbors technique. Remote Sens. Environ. 2002, 82, 457–468. [Google Scholar] [CrossRef]
- Thessler, S.; Sesnie, S.; Bendaña, Z.S.R.; Ruokolainen, K.; Tomppo, E.; Finegan, B. Using k-nn and discriminant analyses to classify rain forest types in a Landsat TM image over northern (Costa Rica). Remote Sens. Environ. 2008, 112, 2485–2494. [Google Scholar] [CrossRef]
- Tan, K.; Hu, J.; Li, J.; Du, P. A novel semi-supervised hyperspectral image classification approach based on spatial neighborhood information and classifier combination. ISPRS J. Photogramm. Remote Sens. 2015, 105, 19–29. [Google Scholar] [CrossRef]
- Tomppo, E.O.; Gagliano, C.; De Natale, F.; Katila, M.; McRoberts, R.E. Predicting categorical forest variables using an improved k-Nearest Neighbour estimator and Landsat imagery. Remote Sens. Environ. 2009, 113, 500–517. [Google Scholar] [CrossRef]
- McRoberts, R.E.; Magnussen, S.; Tomppo, E.O.; Chirici, G. Parametric, bootstrap, and jackknife variance estimators for the k-Nearest Neighbors technique with illustrations using forest inventory and satellite image data. Remote Sens. Environ. 2011, 115, 3165–3174. [Google Scholar] [CrossRef]
- Tomppo, E.; Olsson, H.; Ståhl, G.; Nilsson, M.; Hagner, O.; Katila, M. Combining national forest inventory field plots and remote sensing data for forest databases. Remote Sens. Environ. 2008, 112, 1982–1999. [Google Scholar] [CrossRef]
- Franco–Lopez, H.; Ek, A.R.; Bauer, M.E. Estimation and mapping of forest stand density, volume, and cover type using the k-nearest neighbors method. Remote Sens. Environ. 2001, 77, 251–274. [Google Scholar] [CrossRef]
- Labrecque, S.; Fournier, R.A.; Luther, J.E.; Piercey, D. A comparison of four methods to map biomass from Landsat-TM and inventory data in western Newfoundland. For. Ecol. Manag. 2006, 226, 129–144. [Google Scholar] [CrossRef]
- Fuchs, H.; Magdon, P.; Kleinn, C.; Flessa, H. Estimating aboveground carbon in a catchment of the Siberian forest tundra: Combining satellite imagery and field inventory. Remote Sens. Environ. 2009, 113, 518–531. [Google Scholar] [CrossRef]
- Tomppo, E.; Halme, M. Using coarse scale forest variables as ancillary information and weighting of variables in k-NN estimation: A genetic algorithm approach. Remote Sens. Environ. 2004, 92, 1–20. [Google Scholar] [CrossRef]
- McRoberts, R.E.; Næsset, E.; Gobakken, T. Optimizing the k-Nearest Neighbors technique for estimating forest aboveground biomass using airborne laser scanning data. Remote Sens. Environ. 2015, 163, 13–22. [Google Scholar] [CrossRef]
- Zhu, J.; Huang, Z.; Sun, H.; Wang, G. Mapping Forest Ecosystem Biomass Density for Xiangjiang River Basin by Combining Plot and Remote Sensing Data and Comparing Spatial Extrapolation Methods. Remote Sens. 2017, 9, 241. [Google Scholar] [CrossRef] [Green Version]
- Mura, M.; McRoberts, R.E.; Chirici, G.; Marchetti, M. Statistical inference for forest structural diversity indices using airborne laser scanning data and the k-Nearest Neighbors technique. Remote Sens. Environ. 2016, 186, 678–686. [Google Scholar] [CrossRef]
- Hall, P.; Park, B.U.; Samworth, R.J. Choice of neighbor order in nearest-neighbor classification. Ann. Stat. 2008, 36, 2135–2152. [Google Scholar] [CrossRef]
- James, G.; Witten, D.; Hastie, T.; Tibshirani, R. Introduction to Statistical Learning: With Applications in R; Springer: New York, NY, USA, 2017. [Google Scholar]
- Lin, C.; Thomson, G.; Popescu, S. An IPCC-Compliant Technique for Forest Carbon Stock Assessment Using Airborne LiDAR-Derived Tree Metrics and Competition Index. Remote Sens. 2016, 8, 528. [Google Scholar] [CrossRef] [Green Version]
- Delegido, J.; Verrelst, J.; Alonso, L.; Moreno, J. Evaluation of Sentinel-2 Red-Edge Bands for Empirical Estimation of Green LAI and Chlorophyll Content. Sensors 2011, 11, 7063–7081. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vuolo, F.; Żółtak, M.; Pipitone, C.; Zappa, L.; Wenng, H.; Immitzer, M.; Weiss, M.; Baret, F.; Atzberger, C. Data Service Platform for Sentinel-2 Surface Reflectance and Value-Added Products: System Use and Examples. Remote Sens. 2016, 8, 938. [Google Scholar] [CrossRef] [Green Version]
- Tang, X.; Fehrmann, L.; Guan, F.; Forrester, D.I.; Guisasola, R.; Kleinn, C. Inventory-based estimation of forest biomass in Shitai County, China: A comparison of five methods. Ann. For. Res. 2016, 59, 269–280. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Li, C.; Li, M.; Liu, Z. Influence of Variable Selection and Forest Type on Forest Aboveground Biomass Estimation Using Machine Learning Algorithms. Forests 2019, 10, 1073. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.M.; Cihlar, J. Retrieving leaf area index of boreal conifer forests using landsat tm images. Remote Sens. Environ. 1996, 55, 153–162. [Google Scholar] [CrossRef]
- Piayda, A.; Dubbert, M.; Werner, C.; Vaz Correia, A.; Pereira, J.S.; Cuntz, M. Influence of woody tissue and leaf clumping on vertically resolved leaf area index and angular gap probability estimates. For. Ecol. Manag. 2015, 340, 103–113. [Google Scholar] [CrossRef]
- Dong, T.; Liu, J.; Shang, J.; Qian, B.; Ma, B.; Kovacs, J.M.; Shi, Y. Assessment of red-edge vegetation indices for crop leaf area index estimation. Remote Sens. Environ. 2019, 222, 133–143. [Google Scholar] [CrossRef]
- Lu, D.; Chen, Q.; Wang, G.; Liu, L.; Li, G.; Moran, E. A survey of remote sensing–based aboveground biomass estimation methods in forest ecosystems. Int. J. Earth. 2016, 9, 63–105. [Google Scholar] [CrossRef]
- Crookston, N.L.; Finley, A.O. yaImpute: An R Package for k NN Imputation. J. Stat. Soft. 2008, 23. [Google Scholar]
- Finley, A.O.; McRoberts, R.E. Efficient k-nearest neighbor searches for multi-source forest attribute mapping. Remote Sens. Environ. 2008, 112, 2203–2211. [Google Scholar] [CrossRef]
- Gjertsen, A.K. Accuracy of forest mapping based on Landsat TM data and a kNN-based method. Remote Sens. Environ. 2007, 110, 420–430. [Google Scholar] [CrossRef]
- Pal, M. Random forest classifier for remote sensing classification. Int. J. Remote Sens. 2005, 26, 217–222. [Google Scholar] [CrossRef]
- Willmott, C.J.; Ackleson, S.G.; Davis, R.E.; Feddema, J.J.; Klink, K.M.; Legates, D.R. Statistics for the evaluation and comparison of models. J. Geophys. Res. 1985, 90, 8995. [Google Scholar] [CrossRef] [Green Version]
- Sims, D.; Gamon, J. Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sens. Environ. 2002, 81, 337–354. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Viña, A.; Arkebauer, T.J.; Rundquist, D.C.; Keydan, G.; Leavitt, B. Remote estimation of leaf area index and green leaf biomass in maize canopies. Geophys. Res. Lett. 2003, 30, 1248. [Google Scholar] [CrossRef] [Green Version]
- Yang, W.; Huang, D.; Tan, B.; Stroeve, J.C.; Shabanov, N.V.; Knyazikhin, Y.; Nemani, R.R.; Myneni, R.B. Analysis of leaf area index and fraction of PAR absorbed by vegetation products from the terra MODIS sensor: 2000–2005. IEEE Trans. Geosci. Remote Sens. 2006, 44, 1829–1842. [Google Scholar] [CrossRef]
Study Area | Land Type | Plot Number | Value Range | Sample Mean | Standard Deviation | Coefficient of Variation (%) |
---|---|---|---|---|---|---|
Ganzhou | Forest | 40 | 0.630–3.160 | 1.500 | 0.682 | 45.5 |
Farmland | 111 | 0.210–3.470 | 2.009 | 0.719 | 35.8 | |
Grassland | 213 | 0.124–2.870 | 0.645 | 0.433 | 67.2 | |
Total | 364 | 0.124–2.870 | 1.555 | 0.839 | 72.7 | |
Kangbao | Forest | 5 | 2.120–4.340 | 2.850 | 1.010 | 35.4 |
Farmland | 36 | 0.430–2.927 | 1.589 | 0.528 | 33.2 | |
Grassland | 78 | 0.175–2.026 | 0.759 | 0.461 | 60.6 | |
Total | 119 | 0.175–4.340 | 1.099 | 0.732 | 66.6 |
Study Area | Spectral Variables | Number | Reference |
---|---|---|---|
Ganzhou | Spectral reflectance variables (Band i, i = 1, 2, …10) | 10 | |
Normalized different vegetation index (NDVI) | 1 | [27] | |
Red-green vegetation index (RGVI) | 1 | [27] | |
Atmospherically resistant vegetation index (ARVI) | 1 | [27] | |
Red-edge normalized difference vegetation index (RENDVI) | 1 | [58] | |
Red-edge chlorophyll index (RECI) | 1 | [58] | |
Red-edge simple ratio (RESR) | 1 | [58] | |
Kangbao | Spectral reflectance variables (Band i, i = 1, 2, …7) | 7 | |
NDVI | 1 | [27] | |
RGVI | 1 | [27] | |
ARVI | 1 | [27] |
Study Area | Inputs (Spectral Variables) | Result |
---|---|---|
Input 1 (spectral bands) | B12, B4, B3, B2 | |
Ganzhou | Input 2 (VIs) | RENDVI, ARVI, RGVI, RESR |
Input 3 (the combination of spectral bands and VIs) | ARVI, RENDVI, B12, RGVI, B4, B3, | |
Kangbao | B7, NDVI, B6, ARVI, B4, B3, B1, B2 |
Study Area | Spectral Variables | Model | R2 | RMSE | rRMSE (%) | MAE |
---|---|---|---|---|---|---|
Ganzhou | traditional kNN | 0.567 | 0.554 | 47.99 | 0.419 | |
Input 1 (SR) | RF | 0.548 | 0.566 | 48.96 | 0.426 | |
modified kNN | 0.774 | 0.401 | 34.65 | 0.247 | ||
traditional kNN | 0.589 | 0.539 | 46.63 | 0.399 | ||
Input 2 (VI) | RF | 0.569 | 0.552 | 47.79 | 0.414 | |
modified kNN | 0.789 | 0.387 | 33.51 | 0.233 | ||
traditional kNN | 0.607 | 0.526 | 45.54 | 0.391 | ||
Input 3 (SR and VI) | RF | 0.612 | 0.523 | 45.25 | 0.399 | |
modified kNN | 0.807 | 0.372 | 32.22 | 0.223 | ||
Kangbao | traditional kNN | 0.467 | 0.541 | 49.20 | 0.412 | |
Eight selected spectral variables | RF | 0.452 | 0.541 | 49.28 | 0.407 | |
modified kNN | 0.767 | 0.371 | 33.79 | 0.222 |
Study Area | Factors | Residual | Factors | Residual |
---|---|---|---|---|
Ganzhou | 30 m × 30 m spatial resolution | 1000 m × 1000 m spatial resolution | ||
Predicted LAI | −0.114* | Predicted LAI | −0.239* | |
ARVI | 0.038 | B2 | 0.063 | |
B2 | −0.074 | NDVI | −0.081 | |
B11 | −0.035 | |||
RECI | 0.078 | |||
Kangbao | Predicted LAI | −0.295** | ||
B7 | 0.163 | |||
NDVI | −0.135 | |||
B6 | 0.181* | |||
ARVI | 0.208* | |||
B4 | 0.114 | |||
B3 | 0.113 | |||
B1 | 0.122 | |||
B2 | 0.120 |
Study Area | Parameter | Value |
---|---|---|
30 m × 30 m spatial resolution | ||
Moran I | 0.237 | |
Variance | 0.001 | |
Z | 6.576 | |
Ganzhou | p | 0.000 |
1000 m × 1000 m spatial resolution | ||
Moran I | 0.079 | |
Variance | 0.005 | |
Z | 1.249 | |
p | 0.211 | |
Kangbao | 30 m × 30 m spatial resolution | |
Moran I | 0.018 | |
Variance | 0.004 | |
Z | 0.384 | |
p | 0.700 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, F.; Smith, A.R.; Kutia, M.; Wang, G.; Liu, H.; Sun, H. A Modified KNN Method for Mapping the Leaf Area Index in Arid and Semi-Arid Areas of China. Remote Sens. 2020, 12, 1884. https://doi.org/10.3390/rs12111884
Jiang F, Smith AR, Kutia M, Wang G, Liu H, Sun H. A Modified KNN Method for Mapping the Leaf Area Index in Arid and Semi-Arid Areas of China. Remote Sensing. 2020; 12(11):1884. https://doi.org/10.3390/rs12111884
Chicago/Turabian StyleJiang, Fugen, Andrew R. Smith, Mykola Kutia, Guangxing Wang, Hua Liu, and Hua Sun. 2020. "A Modified KNN Method for Mapping the Leaf Area Index in Arid and Semi-Arid Areas of China" Remote Sensing 12, no. 11: 1884. https://doi.org/10.3390/rs12111884