Hybrid Fusion-Based Background Segmentation in Multispectral Polarimetric Imagery
"> Figure 1
<p>Samples of MSPI dataset scenes composed of six spectral channels and four polarimetric orientations [<a href="#B60-remotesensing-12-01776" class="html-bibr">60</a>].</p> "> Figure 2
<p>Multiband mean spectral reflectance measurements of the three scenes.</p> "> Figure 3
<p>Multiband dissimilarity matrices for three scenes: (<b>a</b>–<b>c</b>) Pearson correlations; and (<b>d</b>–<b>f</b>) Euclidean distances.</p> "> Figure 4
<p>Analyses of multiband first- and second-order textural features of scenes: (<b>a</b>) liquid; (<b>b</b>) food; and (<b>c</b>) leaf.</p> "> Figure 5
<p>Proposed two-fold Background Segmentation (BS) framework.</p> "> Figure 6
<p>Proposed framework of hybrid fusion.</p> "> Figure 7
<p>Analysis of multiband fusion-based first- and second-order textural features of scenes: (<b>a</b>) liquid, (<b>b</b>) food and (<b>c</b>) leaf.</p> "> Figure 8
<p>Samples of results of fusion methods across multiple bands at 0° polarimetric orientation.</p> "> Figure 9
<p>Polarimetric components calculated using different fusion methods.</p> "> Figure 10
<p>Ground truths of the MSPI dataset for: (<b>a</b>) liquid scene, (<b>b</b>) food scene, (<b>c</b>) leaf scene.</p> "> Figure 11
<p>Direct vs. fusion-based segmentation errors of three scenes in the MSPI dataset.</p> "> Figure 12
<p>Average performances of individual methods for scenes in the MSPI dataset.</p> "> Figure 13
<p>Comparison of segmentation errors of three scenes in the MSPI dataset.</p> ">
Abstract
:1. Introduction
2. Related Works
2.1. Fusion
2.2. Segmentation
3. Analysis of the MSPI Dataset
3.1. Description of the Dataset
3.2. Analysis of Spectral Reflectance
3.3. Analysis of Multiband the Dissimilarity Matrix
3.3.1. Pearson Correlation
3.3.2. Euclidean Distance
3.4. Analysis of Multiband Textural Features
1. | Mean is a measure of the spreading of the distribution from the mean value. | (13) | |
2. | Standard deviation is used to sharpen edges as the intensity level changes by a large value at the edge of an image. | (14) | |
3. | Energy is a measure of the homogeneity of the histogram. | (15) | |
4. | Skewness is a measure of the degree of the histogram’s asymmetry around the mean. | (16) | |
5. | Kurtosis is a measure of the histogram’s sharpness, that is, whether the data are peaked or flat relative to a normal distribution. | (17) |
1. | Contrast is a measure of the local variations present in an image, that is, it reflects the depth and smoothness of the image’s textural structure. | (19) | |
2. | Correlation is a measure of the gray-level linear dependence between the pixels at specified positions relative to each other, that is, it reflects the similarity of an image’s texture in the horizontal or vertical direction. | (20) | |
, | |||
3. | Angular Second Moment or Energy is a measure of the global homogeneity of an image. | (21) | |
4. | Homogeneity is a measure of the local homogeneity of an image. | (22) | |
5. | Entropy is a measure of a histogram’s uniformity, that is, it reflects the complexity of the textural distribution. | (23) |
4. Proposed Two-Fold BS
4.1. Overall Framework and Algorithm
Algorithm 1. Multiband Fusion and BS | ||
Requires: | ||
Ensures: | ||
1: | Multiband Polarimetric Image Dataset Analysis | |
2: | Calculate Spectral Reflectance of the Mean Foreground (FG) and BG Area | |
3: | Calculate Correlation Among Bands and Polarimetric Orientation | |
4: | Calculate First Order and Second Order Texture Features | |
5: | ifInformation Differs Significantly among Bands, then | |
6: | Polarimetric Orientation-wise Multiband Fusion (Algorithm 2) | |
7: | Evaluate and Performance of the Fusion Method Statistically | |
8: | end if | |
9: | if, , , exist then | |
10: | Compute Stokes Vector: | |
11: | Compute Polarimetric Components:, and | |
12: | end if | |
13: | BS in Polarimetric Imagery (Algorithm 3) | |
14: | Evaluate and Compare Performance of the Proposed Method Statistically |
4.2. Hybrid Fusion Framework and Algorithm
Algorithm 2. Polarimetric Orientation-wise Multiband Fusion | |||
Requires: | |||
Ensures: | |||
1: | forall polarimetricdo | ||
2: | foralldo | ||
3: | Create a Gaussian Low Pass Filter () and Gaussian High Pass Filter () | ||
4: | Calculate a Discreate Fourier Transform | ||
5: | Multiplywithand | ||
6: | Convert the Result to the Spatial Domain by inverting Multiplication result Apply Inverse Fast Fourier Transformation to the multiplication results which produce band-wise final results asand | ||
7: | end for | ||
8: | Calculate the covariance and eigenvector ofand | ||
9: | Calculate the first Principal Component ofand | ||
10: | Calculate the fused imagery by adding both Principal Components | ||
11: | end for |
4.3. Calculation of Polarimetric Components
4.4. Proposed BS Algorithm
Algorithm 3. BS in Polarimetric Imagery | |||
Requires: | |||
Ensures: | |||
1: | if,,,exist then | ||
2: | Significant Foreground Mask Generation | ||
3: | Construct an intensity invariant mask through differentiating the median filtering version of unpolarized and polarized imagery | ||
4: | Calculate a strongly unpolarized foreground mask in two different ways utilizingand | ||
5: | Calculate a strongly polarized foreground mask | ||
6: | Calculate a strong light intensity mask based on azimuth angle and. | ||
7: | Combine steps 3-6 and apply a morphological operation to segment the total background area of a scene. | ||
8: | end if |
5. Experimental Results
5.1. Performance Evaluation of MSPI Fusion
5.1.1. Selection of Fusion Metric
5.1.2. Observation of Fusion Quality
5.1.3. Comparison of Performances of Fusion Methods
5.1.4. Visualization of Fusion Performance
5.2. Calculation of Polarimetric Component
5.3. Performance Evaluation of MSPI BS
5.3.1. Selection of BS Metric
5.3.2. Generation of Ground Truth
5.3.3. Comparison of BS Accuracy: Direct vs. Fusion
5.3.4. Visualization of Performance of BS
5.3.5. Comparison of BS Accuracy: Proposed Method vs. Those in Literature
5.4. Computational Time Analysis
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lapray, P.J.; Gendre, L.; Foulonneau, A.; Bigué, L. Database of polarimetric and multispectral images in the visible and NIR regions. In Unconventional Optical Imaging, Proceedings of the SPIE, Strasbourg, France, 24 May 2018; SPIE: Bellingham, WA, USA, 2018. [Google Scholar]
- Yan, Q.; Shen, X.; Xu, L.; Zhuo, S.; Zhang, X.; Shen, L.; Jia, J. Crossfield joint image restoration via scale map. In Proceedings of the IEEE International Conference on Computer Vision, Sydney, NSW, Australia, 1–8 December 2013. [Google Scholar]
- Schaul, L.; Fredembach, C.; Susstrunk, S. Color image dehazing using the near-infrared. In Proceedings of the 16th IEEE International Conference on Image Processing (ICIP), Chiang Mai, Thailand, 7 November 2009. [Google Scholar]
- Salamati, N.; Larlus, D.; Csurka, G.; Süsstrunk, S. Semantic image segmentation using visible and near-infrared channels. In Proceedings of the European Conference on Computer Vision, Florence, Italy, 7–13 October 2012. [Google Scholar]
- Berns, R.S.; Imai, F.H.; Burns, P.D.; Tzeng, D.Y. Multispectral-based color reproduction research at the Munsell Color Science Laboratory. In Electronic Imaging: Processing, Printing, and Publishing in Color, Proceedings of the SPIE, Zurich, Switzerland, 7 September 1998; SPIE: Bellingham, WA, USA, 1998. [Google Scholar]
- Thomas, J.B. Illuminant estimation from uncalibrated multispectral images. In Proceedings of the 2015 Colour and Visual Computing Symposium (CVCS), Gjovik, Norway, 25–26 August 2015. [Google Scholar]
- Motohka, T.; Nasahara, K.N.; Oguma, H.; Tsuchida, S. Applicability of green-red vegetation index for remote sensing of vegetation phenology. Remote Sens. 2010, 2, 2369–2387. [Google Scholar]
- Dandois, J.P.; Ellis, E.C. Remote sensing of vegetation structure using computer vision. Remote. Sens. 2010, 2, 1157–1176. [Google Scholar] [CrossRef] [Green Version]
- Rfenacht, D.; Fredembach, C.; Süsstrunk, S. Automatic and accurate shadow detection using near-infrared information. IEEE Trans. Pattern Anal. Mach. Intell. 2014, 36, 1672–1678. [Google Scholar] [CrossRef] [PubMed]
- Sobral, A.; Javed, S.; Ki Jung, S.; Bouwmans, T.; Zahzah, E.H. Online stochastic tensor decomposition for background subtraction in multispectral video sequences. In Proceedings of the 2015 IEEE International Conference on Computer Vision Workshop (ICCVW), Santiago, Chile, 7–13 December 2015. [Google Scholar]
- Tyo, J.S.; Goldstein, D.L.; Chenault, D.B.; Shaw, J.A. Review of passive imaging polarimetry for remote sensing applications. Appl. Opt. 2006, 45, 5453–5469. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nayar, S.K.; Fang, X.-S.; Boult, T. Separation of reflection components using color and polarization. Int. J. Comput. Vis. 1997, 21, 163–186. [Google Scholar] [CrossRef]
- Wolff, L.B. Polarization-based material classification from specular reflection. IEEE Trans. Pattern Anal. Mach. Intell. 1990, 12, 1059–1071. [Google Scholar] [CrossRef]
- Atkinson, G.A.; Hancock, E.R. Shape estimation using polarization and shading from two views. IEEE Trans. Pattern Anal. Mach. Intell. 2007, 29, 2001–2017. [Google Scholar]
- Tan, J.; Zhang, J.; Zhang, Y. Target detection for polarized hyperspectral images based on tensor decomposition. IEEE Geosci. Remote Sens. Lett. 2017, 14, 674–678. [Google Scholar] [CrossRef]
- Goudail, F.; Terrier, P.; Takakura, Y.; Bigue, L.; Galland, F.; DeVlaminck, V. Target detection with a liquid-crystal-based passive stokes polarimeter. Appl. Opt. 2004, 43, 274–282. [Google Scholar] [CrossRef] [Green Version]
- Denes, L.J.; Gottlieb, M.S.; Kaminsky, B.; Huber, D.F. Spectropolarimetric imaging for object recognition. In Proceedings of the 26th AIPR Workshop: Exploiting New Image Sources and Sensors, Washington, DC, USA, 1 March 1998. [Google Scholar]
- Romano, J.M.; Rosario, D.; McCarthy, J. Day/night polarimetric anomaly detection using SPICE imagery. IEEE Trans. Geosci. Remote Sens. 2012, 50, 5014–5023. [Google Scholar] [CrossRef]
- Islam, M.N.; Tahtali, M.; Pickering, M. Man-made object separation using polarimetric imagery. In Proceedings of the SPIE Future Sensing Technologies, Tokyo, Japan, 12–14 November 2019. [Google Scholar]
- Zhou, P.C.; Liu, C.C. Camouflaged target separation by spectral-polarimetric imagery fusion with shearlet transform and clustering segmentation. In Proceedings of the International Symposium on Photoelectronic Detection and Imaging 2013: Imaging Sensors and Applications, Beijing, China, 21 August 2013. [Google Scholar]
- Domadiya, P.; Shah, P.; Mitra, S.K. Fast and Accurate Foreground Background Separation for Video Surveillance. In Proceedings of the 6th International Conference on Pattern Recognition and Machine Intelligence (PReMI), Warsaw, Poland, 30 June–3 July 2015; Springer: Cham, Switzerland, 2015. [Google Scholar]
- Bouwmans, T. Traditional and recent approaches in background modeling for foreground detection: An overview. Comput. Sci. Rev. 2014, 11, 31–66. [Google Scholar] [CrossRef]
- Perazzi, F.; Pont-Tuset, J.; McWilliams, B.; Van Gool, L.; Gross, M.; Sorkine-Hornung, A. A benchmark dataset and evaluation methodology for video object segmentation. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016. [Google Scholar]
- Zitova, B.; Flusser, J. Image registration methods: A survey. Image Vis. Comput. 2003, 21, 977–1000. [Google Scholar] [CrossRef] [Green Version]
- Benezeth, Y.; Sidibé, D.; Thomas, J.B. Background subtraction with multispectral video sequences. In Proceedings of the IEEE International Conference on Robotics and Automation workshop on Nonclassical Cameras, Camera Networks and Omnidirectional Vision (OMNIVIS), Hong Kong, China, 11 June 2014. HAL-00986168f. [Google Scholar]
- Ma, J.; Ma, Y.; Li, C. Infrared and visible image fusion methods and applications: A survey. Inf. Fusion 2019, 45, 153–178. [Google Scholar] [CrossRef]
- Zhan, L.; Zhuang, Y.; Huang, L. Infrared and visible images fusion method based on discrete wavelet transform. J. Comput. 2017, 28, 57–71. [Google Scholar] [CrossRef]
- Li, H.; Liu, L.; Huang, W.; Yue, C. An improved fusion algorithm for infrared and visible images based on multi-scale transform. Infrared Phys. Technol. 2016, 74, 28–37. [Google Scholar] [CrossRef]
- Zhao, Y.Q.; Zhang, L.; Zhang, D.; Pan, Q. Object separation by polarimetric and spectral imagery fusion. Comput. Vis. Image Underst. 2009, 113, 855–866. [Google Scholar] [CrossRef]
- Weinberger, M.J.; Seroussi, G.; Sapiro, G. The LOCO-I lossless image compression algorithm: Principles and standardization into JPEG-LS. IEEE Trans. Image Process. 2000, 12, 1309–1324. [Google Scholar] [CrossRef] [Green Version]
- Rizzo, F.; Carpentieri, B.; Motta, G.; Storer, J.A. Low-Complexity Lossless Compression of Hyperspectral Imagery via Linear Prediction. IEEE Signal Process. Lett. 2005, 12, 138–141. [Google Scholar] [CrossRef]
- Seki, M.; Wada, T.; Fujiwara, H.; Sumi, K. Background subtraction based on cooccurrence of image variations. In Proceedings of the 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Madison, WI, USA, 18–20 June 2003. [Google Scholar]
- Naidu, V.P.S.; Raol, J.R. Pixel-level image fusion using wavelets and principal component analysis. Def. Sci. J. 2008, 58, 338. [Google Scholar] [CrossRef]
- Bavirisetti, D.P.; Xiao, G.; Liu, G. Multi-sensor image fusion based on fourth order partial differential equations. In Proceedings of the 2017 20th International Conference on Information Fusion (Fusion), Xi’an, China, 10–13 July 2017. [Google Scholar]
- Lapray, P.J.; Thomas, J.B.; Gouton, P.; Ruichek, Y. Energy balance in Spectral Filter Array camera design. J. Eur. Opt. Soc.-Rapid Publ 2017, 13, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Malviya, A.; Bhirud, S.G. Image fusion of digital images. Int. J. Recent Trends Eng. 2009, 2, 146. [Google Scholar]
- Jian, M.; Dong, J.; Zhang, Y. Image fusion based on wavelet transform. In Proceedings of the 8th ACIS International Conference on Software Engineering, Artificial Intelligence, Networking, and Parallel/Distributed Computing (SNPD), Qingdao, China, 30 July–1 August 2017. [Google Scholar]
- Raju, V.B.; Sankar, K.J.; Naidu, C.D.; Bachu, S. Multispectral image compression for various band images with high resolution improved DWT SPIHT. Int. J. Signal Process. Image Process. Pattern Recognit. 2016, 9, 271–286. [Google Scholar] [CrossRef]
- Desale, R.P.; Verma, S.V. Study and analysis of PCA, DCT & DWT based image fusion techniques. In Proceedings of the 2013 International Conference on Signal Processing, Image Processing & Pattern Recognition, Coimbatore, India, 7–8 February 2013. [Google Scholar]
- Naidu, V.P.S.; Elias, B. A novel image fusion technique using DCT based Laplacian pyramid. Int. J. Inventive Eng. Sci. (IJIES) 2013, 1, 1–9. [Google Scholar]
- Liu, R.; Ruichek, Y.; El Bagdouri, M. Extended Codebook with Multispectral Sequences for Background Subtraction. Sensors 2019, 19, 703. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, J.; Sen-ching, S.C. Human segmentation by geometrically fusing visible-light and thermal imageries. Multimed. Tools Appl. 2012, 73, 61–89. [Google Scholar] [CrossRef]
- Arbelaez, P.; Maire, M.; Fowlkes, C.; Malik, J. Contour detection and hierarchical image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2010, 33, 898–916. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rother, C.; Kolmogorov, V.; Blake, A. “GrabCut” interactive foreground extraction using iterated graph cuts. ACM Trans. Graph. (TOG) 2004, 23, 309–314. [Google Scholar] [CrossRef]
- Tron, R.; Vidal, R. A benchmark for the comparison of 3-d motion segmentation algorithms. In Proceedings of the 2007 IEEE Conference on Computer Vision and Pattern Recognition, Minneapolis, MN, USA, 17–22 June 2007. [Google Scholar]
- Cheng, J.; Tsai, Y.H.; Wang, S.; Yang, M.H. SegFlow: Joint learning for video object segmentation and optical flow. In Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017. [Google Scholar]
- Jain, S.D.; Xiong, B.; Grauman, K. Fusionseg: Learning to combine motion and appearance for fully automatic segmentation of generic objects in videos. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Hawaii, HI, USA, 21–26 July 2017. [Google Scholar]
- Rother, C.; Minka, T.; Blake, A.; Kolmogorov, V. Cosegmentation of image pairs by histogram matching—Incorporating a global constraint into MRFs. In Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), New York, NY, USA, 17–22 June 2006. [Google Scholar]
- Zhu, H.; Meng, F.; Cai, J.; Lu, S. Beyond pixels: A comprehensive survey from bottom-up to semantic image segmentation and cosegmentation. J. Vis. Commun. Image Represent. 2016, 34, 12–27. [Google Scholar] [CrossRef] [Green Version]
- St-Charles, P.L.; Bilodeau, G.A.; Bergevin, R. Online mutual foreground segmentation for multispectral stereo videos. Int. J. Comput. Vis. 2019, 127, 1044–1062. [Google Scholar] [CrossRef] [Green Version]
- Jeong, S.; Lee, J.; Kim, B.; Kim, Y.; Noh, J. Object segmentation ensuring consistency across multi-viewpoint images. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 40, 2455–2468. [Google Scholar] [CrossRef] [PubMed]
- Djelouah, A.; Franco, J.S.; Boyer, E.; Le Clerc, F.; Pérez, P. Sparse multi-view consistency for object segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2014, 37, 1890–1903. [Google Scholar] [CrossRef] [Green Version]
- Riklin-Raviv, T.; Sochen, N.; Kiryati, N. Shape-based mutual segmentation. Int. J. Comput. Vis. 2008, 79, 231–245. [Google Scholar] [CrossRef] [Green Version]
- Bleyer, M.; Rother, C.; Kohli, P.; Scharstein, D.; Sinha, S. Object stereo-joint stereo matching and object segmentation. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Providence, RI, USA, 20–25 June 2011. [Google Scholar]
- Del-Blanco, C.R.; Mantecón, T.; Camplani, M.; Jaureguizar, F.; Salgado, L.; García, N. Foreground segmentation in depth imagery using depth and spatial dynamic models for video surveillance applications. Sensors 2014, 14, 1961–1987. [Google Scholar] [CrossRef] [PubMed]
- Fernandez-Sanchez, E.J.; Diaz, J.; Ros, E. Background subtraction based on color and depth using active sensors. Sensors 2013, 13, 8895–8915. [Google Scholar] [CrossRef]
- Zhou, X.; Liu, X.; Jiang, A.; Yan, B.; Yang, C. Improving video segmentation by fusing depth cues and the visual background extractor (ViBe) algorithm. Sensors 2017, 17, 1177. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Li, Z.; Cai, R.; Chao, H.; Rui, Y. Joint Multiview segmentation and localization of RGB-D images using depth-induced silhouette consistency. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016. [Google Scholar]
- Lu, X.; Peng, F.; Li, G.; Xiao, Z.; Hu, T. Object Segmentation for Linearly Polarimetric Passive Millimeter Wave Images Based on Principle Component Analysis. Prog. Electromagn. Res. 2017, 61, 169–176. [Google Scholar] [CrossRef] [Green Version]
- Lapray, P.J.; Gendre, L.; Foulonneau, A.; Bigué, L. A Database of Polarimetric and Multispectral Images in the Visible and NIR Regions. In Proceedings of the SPIE Photonics Europe, Strasbourg, France, 22–26 April 2018. [Google Scholar]
- Richards John, A.; Xiuping, J. Remote Sensing Digital Image Analysis: An Introduction, 4th ed.; Springer: Berlin/Heidelberg, Germany, 1999. [Google Scholar]
- Haralick, R.M.; Shanmugam, K.; Dinstein, I.H. Textural features for image classification. IEEE Trans. Syst. Man Cybern 1973, SMC-3, 610–621. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Cui, J.; Wang, W.; Lin, C. A study for texture feature extraction of high-resolution satellite images based on a direction measure and gray level co-occurrence matrix fusion algorithm. Sensors 2017, 17, 1474. [Google Scholar] [CrossRef] [Green Version]
- Stokes, G.G. On the composition and resolution of streams of polarized light from different sources. Trans. Camb. Philos. Soc. 1851, 9, 399. [Google Scholar]
- Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef] [Green Version]
- Somvanshi, S.S.; Kunwar, P.; Tomar, S.; Singh, M. Comparative statistical analysis of the quality of image enhancement techniques. Int. J. Image Data Fusion 2017, 9, 131–151. [Google Scholar] [CrossRef]
- Haghighat, M.B.A.; Aghagolzadeh, A.; Seyedarabi, H. A non-reference image fusion metric based on mutual information of image features. Comput. Electr. Eng. 2011, 37, 744–756. [Google Scholar] [CrossRef]
- Rani, K.; Sharma, R. Study of different image fusion algorithm. Int. J. Emerg. Technol. Adv. Eng. 2013, 3, 288–291. [Google Scholar]
- Chiu, S.Y.; Chiu, C.C.; Xu, S.S.D. A Background Subtraction Algorithm in Complex Environments Based on Category Entropy Analysis. Appl. Sci. 2018, 8, 885. [Google Scholar] [CrossRef] [Green Version]
MAPE | PSNR | PCOR | MI | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0° | 45° | 90° | 135° | 0° | 45° | 90° | 135° | 0° | 45° | 90° | 135° | 0° | 45° | 90° | 135° | ||
Liquid Scene | DWT [37] | 26.28 | 33.42 | 41.25 | 31.74 | 31.94 | 32.96 | 31.73 | 32.28 | 0.99 | 0.99 | 0.99 | 0.98 | 2.32 | 2.42 | 2.32 | 2.18 |
PCA [33] | 19.23 | 26.47 | 34.69 | 22.54 | 29.05 | 28.88 | 28.86 | 28.86 | 0.99 | 0.99 | 0.99 | 0.99 | 2.62 | 2.72 | 2.64 | 2.49 | |
DCT–LP [40] | 146.25 | 167.14 | 189.36 | 150.89 | 23.19 | 24.57 | 24.12 | 22.99 | 0.81 | 0.83 | 0.84 | 0.82 | 0.93 | 1.09 | 1.01 | 0.92 | |
SHT [20] | 93.80 | 123.43 | 164.35 | 116.91 | 19.60 | 19.32 | 20.01 | 19.46 | 0.86 | 0.88 | 0.88 | 0.86 | 1.32 | 1.48 | 1.37 | 1.25 | |
FPDE [34] | 16.79 | 21.53 | 27.83 | 19.28 | 30.48 | 31.08 | 31.24 | 30.51 | 0.99 | 0.99 | 0.99 | 0.99 | 2.73 | 2.87 | 2.77 | 2.63 | |
Proposed | 30.86 | 39.55 | 52.80 | 35.23 | 18.90 | 19.37 | 19.49 | 19.10 | 0.99 | 0.99 | 0.99 | 0.99 | 2.89 | 2.97 | 2.84 | 2.75 | |
Food Scene | DWT [37] | 11.13 | 16.33 | 15.08 | 14.22 | 32.56 | 32.28 | 31.37 | 32.04 | 0.99 | 0.99 | 0.99 | 0.99 | 2.68 | 2.60 | 2.57 | 2.76 |
PCA [33] | 5.06 | 8.81 | 8.56 | 6.64 | 30.19 | 28.13 | 27.53 | 30.00 | 0.99 | 0.99 | 0.98 | 0.99 | 3.02 | 2.76 | 2.68 | 3.00 | |
DCT–LP [40] | 93.21 | 156.36 | 157.00 | 122.33 | 21.64 | 21.59 | 21.24 | 22.05 | 0.84 | 0.81 | 0.81 | 0.83 | 1.17 | 1.04 | 1.02 | 1.16 | |
SHT [20] | 20.39 | 30.40 | 30.56 | 22.83 | 20.47 | 19.21 | 18.38 | 20.01 | 0.95 | 0.92 | 0.92 | 0.94 | 1.87 | 1.70 | 1.62 | 1.85 | |
FPDE [34] | 19.79 | 31.96 | 30.23 | 25.02 | 20.11 | 18.76 | 19.16 | 19.93 | 0.90 | 0.80 | 0.81 | 0.89 | 2.21 | 1.77 | 1.77 | 2.20 | |
Proposed | 10.14 | 15.66 | 15.08 | 12.22 | 16.90 | 18.15 | 18.32 | 17.14 | 1.00 | 0.99 | 0.99 | 1.00 | 3.32 | 3.07 | 3.05 | 3.43 | |
Leaf Scene | DWT [37] | 15.00 | 14.45 | 14.52 | 14.95 | 26.14 | 26.63 | 26.60 | 26.29 | 0.98 | 0.97 | 0.97 | 0.98 | 2.20 | 2.07 | 2.07 | 2.22 |
PCA [33] | 5.32 | 8.64 | 9.51 | 5.37 | 26.95 | 22.53 | 21.97 | 26.60 | 0.99 | 0.94 | 0.93 | 0.99 | 2.78 | 2.35 | 2.30 | 2.75 | |
DCT–LP [40] | 55.15 | 63.95 | 62.89 | 54.54 | 14.87 | 14.53 | 14.61 | 14.82 | 0.84 | 0.76 | 0.75 | 0.84 | 1.17 | 1.10 | 1.12 | 1.18 | |
SHT [20] | 26.72 | 32.41 | 36.56 | 26.46 | 13.19 | 11.96 | 11.89 | 13.04 | 0.86 | 0.76 | 0.74 | 0.85 | 1.58 | 1.57 | 1.56 | 1.60 | |
FPDE [34] | 9.51 | 24.55 | 32.66 | 10.82 | 25.41 | 20.43 | 18.84 | 24.64 | 0.98 | 0.89 | 0.86 | 0.97 | 3.43 | 2.01 | 1.48 | 3.28 | |
Proposed | 10.41 | 14.39 | 15.58 | 10.30 | 10.54 | 12.14 | 12.22 | 10.75 | 0.99 | 0.96 | 0.95 | 0.99 | 2.89 | 2.52 | 2.47 | 2.88 | |
Average | DWT [37] | 17.47 | 21.40 | 23.62 | 20.30 | 30.21 | 30.63 | 29.90 | 30.20 | 0.99 | 0.98 | 0.98 | 0.99 | 2.40 | 2.36 | 2.32 | 2.39 |
PCA [33] | 9.87 | 14.64 | 17.59 | 11.52 | 28.73 | 26.51 | 26.12 | 28.49 | 0.99 | 0.97 | 0.97 | 0.99 | 2.81 | 2.61 | 2.54 | 2.74 | |
DCT–LP [40] | 98.20 | 129.15 | 136.42 | 109.25 | 19.90 | 20.23 | 19.99 | 19.95 | 0.83 | 0.80 | 0.80 | 0.83 | 1.09 | 1.08 | 1.05 | 1.09 | |
SHT [20] | 46.97 | 62.08 | 77.16 | 55.40 | 17.75 | 16.83 | 16.76 | 17.50 | 0.89 | 0.85 | 0.85 | 0.88 | 1.59 | 1.58 | 1.52 | 1.57 | |
FPDE [34] | 15.36 | 26.01 | 30.24 | 18.37 | 25.33 | 23.42 | 23.08 | 25.03 | 0.95 | 0.89 | 0.88 | 0.95 | 2.79 | 2.22 | 2.01 | 2.70 | |
Proposed | 17.14 | 23.20 | 27.82 | 19.25 | 15.44 | 16.55 | 16.68 | 15.66 | 0.99 | 0.98 | 0.98 | 0.99 | 3.03 | 2.86 | 2.79 | 3.02 |
Direct BG Separation | Fusion-based BG Segmentation | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
AC | SP | SN | GM | PR | RC | F1S | AC | SP | SN | GM | PR | RC | F1S | |||
Liquid Scene | B-1 | 0.91 | 0.68 | 0.96 | 0.80 | 0.93 | 0.96 | 0.94 | DWT [37] | 0.96 | 0.97 | 0.96 | 0.97 | 0.99 | 0.96 | 0.98 |
B-2 | 0.91 | 0.74 | 0.95 | 0.84 | 0.94 | 0.95 | 0.95 | PCA [33] | 0.96 | 0.95 | 0.96 | 0.95 | 0.99 | 0.96 | 0.97 | |
B-3 | 0.92 | 0.84 | 0.94 | 0.89 | 0.96 | 0.94 | 0.95 | AVG [36] | 0.96 | 0.98 | 0.95 | 0.97 | 1.00 | 0.95 | 0.97 | |
B-4 | 0.91 | 0.61 | 0.98 | 0.77 | 0.92 | 0.98 | 0.95 | DCT–LP [40] | 0.94 | 0.73 | 0.98 | 0.85 | 0.94 | 0.98 | 0.96 | |
B-5 | 0.91 | 0.78 | 0.94 | 0.86 | 0.95 | 0.94 | 0.94 | SHT [20] | 0.95 | 0.81 | 0.98 | 0.89 | 0.96 | 0.98 | 0.97 | |
B-6 | 0.95 | 0.81 | 0.98 | 0.89 | 0.96 | 0.98 | 0.97 | FPDE [34] | 0.92 | 0.98 | 0.91 | 0.94 | 1.00 | 0.91 | 0.95 | |
Proposed | 0.97 | 0.98 | 0.97 | 0.97 | 1.00 | 0.97 | 0.98 | |||||||||
Food Scene | B-1 | 0.62 | 0.69 | 0.59 | 0.64 | 0.81 | 0.59 | 0.68 | DWT [37] | 0.91 | 0.85 | 0.93 | 0.89 | 0.93 | 0.93 | 0.93 |
B-2 | 0.59 | 0.76 | 0.51 | 0.63 | 0.83 | 0.51 | 0.63 | PCA [33] | 0.95 | 0.85 | 0.99 | 0.92 | 0.94 | 0.99 | 0.96 | |
B-3 | 0.54 | 0.88 | 0.39 | 0.59 | 0.88 | 0.39 | 0.54 | AVG [36] | 0.92 | 0.87 | 0.94 | 0.90 | 0.94 | 0.94 | 0.94 | |
B-4 | 0.60 | 0.67 | 0.56 | 0.61 | 0.79 | 0.56 | 0.66 | DCT–LP [40] | 0.92 | 0.75 | 0.99 | 0.86 | 0.90 | 0.99 | 0.94 | |
B-5 | 0.53 | 0.87 | 0.37 | 0.57 | 0.86 | 0.37 | 0.52 | SHT [20] | 0.85 | 0.73 | 0.91 | 0.82 | 0.88 | 0.91 | 0.89 | |
B-6 | 0.93 | 0.80 | 0.99 | 0.89 | 0.92 | 0.99 | 0.95 | FPDE [34] | 0.84 | 0.79 | 0.86 | 0.82 | 0.90 | 0.86 | 0.88 | |
Proposed | 0.96 | 0.90 | 0.99 | 0.94 | 0.96 | 0.99 | 0.97 | |||||||||
Leaf Scene | B-1 | 0.65 | 0.25 | 0.77 | 0.44 | 0.77 | 0.77 | 0.77 | DWT [37] | 0.71 | 0.90 | 0.65 | 0.76 | 0.95 | 0.65 | 0.77 |
B-2 | 0.63 | 0.29 | 0.73 | 0.46 | 0.77 | 0.73 | 0.75 | PCA [33] | 0.80 | 0.82 | 0.79 | 0.80 | 0.93 | 0.79 | 0.86 | |
B-3 | 0.67 | 0.63 | 0.68 | 0.66 | 0.86 | 0.68 | 0.76 | AVG [36] | 0.81 | 0.80 | 0.82 | 0.81 | 0.93 | 0.82 | 0.87 | |
B-4 | 0.68 | 0.24 | 0.81 | 0.44 | 0.78 | 0.81 | 0.79 | DCT–LP [40] | 0.92 | 0.81 | 0.95 | 0.88 | 0.94 | 0.95 | 0.94 | |
B-5 | 0.55 | 0.52 | 0.57 | 0.54 | 0.79 | 0.57 | 0.66 | SHT [20] | 0.76 | 0.55 | 0.82 | 0.67 | 0.86 | 0.82 | 0.84 | |
B-6 | 0.82 | 0.26 | 1.00 | 0.50 | 0.81 | 1.00 | 0.89 | FPDE [34] | 0.58 | 0.83 | 0.50 | 0.65 | 0.91 | 0.50 | 0.65 | |
Proposed | 0.89 | 0.84 | 0.90 | 0.87 | 0.95 | 0.90 | 0.92 | |||||||||
Average | Direct | 0.74 | 0.63 | 0.76 | 0.67 | 0.86 | 0.76 | 0.80 | Fusion | 0.88 | 0.84 | 0.89 | 0.86 | 0.94 | 0.89 | 0.91 |
Liquid Scene | Food Scene | Leaf Scene | |||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
AC | SP | SN | GM | PR | RC | F1S | AC | SP | SN | GM | PR | RC | F1S | AC | SP | SN | GM | PR | RC | F1S | |
Wolf [13] | 0.69 | 0.00 | 0.84 | 0.06 | 0.79 | 0.84 | 0.82 | 0.57 | 0.99 | 0.38 | 0.61 | 0.99 | 0.38 | 0.55 | 0.65 | 0.40 | 0.73 | 0.54 | 0.80 | 0.73 | 0.76 |
Zhao [29] | 0.95 | 1.00 | 0.94 | 0.97 | 1.00 | 0.94 | 0.97 | 0.81 | 0.38 | 1.00 | 0.62 | 0.78 | 1.00 | 0.88 | 0.44 | 0.93 | 0.28 | 0.51 | 0.93 | 0.28 | 0.44 |
Zhou [20] | 0.67 | 1.00 | 0.60 | 0.78 | 1.00 | 0.60 | 0.75 | 0.70 | 0.85 | 0.62 | 0.73 | 0.90 | 0.62 | 0.74 | 0.58 | 0.40 | 0.64 | 0.51 | 0.78 | 0.64 | 0.70 |
Lu [59] | 0.75 | 1.00 | 0.69 | 0.83 | 1.00 | 0.69 | 0.82 | 0.89 | 0.72 | 0.96 | 0.83 | 0.88 | 0.96 | 0.92 | 0.51 | 0.62 | 0.48 | 0.54 | 0.80 | 0.48 | 0.60 |
Proposed | 0.97 | 0.98 | 0.97 | 0.97 | 1.00 | 0.97 | 0.98 | 0.96 | 0.90 | 0.99 | 0.94 | 0.96 | 0.99 | 0.97 | 0.89 | 0.84 | 0.90 | 0.87 | 0.95 | 0.90 | 0.92 |
Running Time (Seconds) – Multiband Fusion | Running Time (Seconds) – Polarimetric BS | ||||||||
---|---|---|---|---|---|---|---|---|---|
Liquid | Food | Leaf | Average | Liquid | Food | Leaf | Average | ||
DWT [37] | 55.76 | 57.01 | 57.51 | 56.76 | Wolf [13] | 10.74 | 10.14 | 11.35 | 10.74 |
PCA [33] | 38.70 | 38.19 | 37.26 | 38.05 | Zhao [29] | 8.66 | 8.93 | 7.40 | 8.33 |
AVG [36] | 63.05 | 63.47 | 62.94 | 63.15 | Zhou [20] | 12.38 | 8.95 | 12.57 | 11.30 |
DCT–LP [40] | 56.40 | 56.00 | 56.70 | 56.37 | Lu [59] | 10.81 | 10.61 | 11.60 | 11.01 |
SHT [20] | 162.06 | 163.48 | 160.23 | 161.92 | Proposed | 2.52 | 3.45 | 3.74 | 3.23 |
FPDE [34] | 113.20 | 113.91 | 113.90 | 113.67 | |||||
Proposed | 44.65 | 44.62 | 44.58 | 44.62 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Islam, M.N.; Tahtali, M.; Pickering, M. Hybrid Fusion-Based Background Segmentation in Multispectral Polarimetric Imagery. Remote Sens. 2020, 12, 1776. https://doi.org/10.3390/rs12111776
Islam MN, Tahtali M, Pickering M. Hybrid Fusion-Based Background Segmentation in Multispectral Polarimetric Imagery. Remote Sensing. 2020; 12(11):1776. https://doi.org/10.3390/rs12111776
Chicago/Turabian StyleIslam, Md Nazrul, Murat Tahtali, and Mark Pickering. 2020. "Hybrid Fusion-Based Background Segmentation in Multispectral Polarimetric Imagery" Remote Sensing 12, no. 11: 1776. https://doi.org/10.3390/rs12111776
APA StyleIslam, M. N., Tahtali, M., & Pickering, M. (2020). Hybrid Fusion-Based Background Segmentation in Multispectral Polarimetric Imagery. Remote Sensing, 12(11), 1776. https://doi.org/10.3390/rs12111776