Remote Sensing Image Semantic Segmentation Based on Edge Information Guidance
"> Figure 1
<p>Framework of proposed method Edge-FCN. The semantic segmentation result and edge detection result are both input into the Fusion Operation, and the edge-guided segmentation result can be obtained through the Re-segmentation Network.</p> "> Figure 2
<p>Architecture of Fully Convolution Network adapted from VGG-16. It can be seen that FCN8s incorporates more levels of feature maps by skip-connection. Therefore, its segmentation result is more refined and used as the segmentation backbone network in this paper.</p> "> Figure 3
<p>Deconvolution operation with upsampling factor <math display="inline"><semantics> <mrow> <mi>f</mi> <mo>=</mo> <mn>2</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>s</mi> <mi>t</mi> <mi>r</mi> <mi>i</mi> <mi>d</mi> <mi>e</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>. The shape of the input data in the figure is 3 × 3, and the shape of the output data through deconvolution becomes 6 × 6, which achieves 2× upsampling.</p> "> Figure 4
<p>Architecture of HED network. The side-output layer here is composed a convolution layer with kernel size of 1 × 1 and a deconvolution layer for upsampling. All loss functions are fused.</p> "> Figure 5
<p>Architecture of Cascade-Edge-FCN network. This network connects the original segmentation map with the edge map, and then restores the segmentation map with edge information through the Re-segmentation network.</p> "> Figure 6
<p>Architecture of Correct-Edge-FCN network. This network draws on the Domain Transform algorithm in one-dimensional signals and introduces edge information as a correction coefficient into the semantic segmentation network.</p> "> Figure 7
<p>Categories of Two Datasets.</p> "> Figure 8
<p>Evaluation results of four sub-experiments on ESAR dataset. It can be clearly seen from the height of the “bar” that our proposed algorithm performs better than FCN.</p> "> Figure 9
<p>ROC and P-R curves of three algorithms on ESAR dataset.</p> "> Figure 10
<p>Category ratio of ESAR dataset and confusion matrices of three algorithms on ESAR Dataset. It reflects the probability of class <span class="html-italic">i</span> predicted to belong to class <span class="html-italic">j</span>.</p> "> Figure 11
<p>Image segmentation results of ESAR Dataset.</p> "> Figure 12
<p>Evaluation results of each image in test set of GID. Here, we abandon the images with <math display="inline"><semantics> <mrow> <mi>a</mi> <mi>c</mi> <mi>c</mi> <mo><</mo> <mn>0.7</mn> </mrow> </semantics></math>.</p> "> Figure 13
<p>Boxplots of ESAR dataset and GID dataset.</p> "> Figure 14
<p>Category ratio of GID dataset and confusion matrices of three algorithms on GID Dataset.</p> "> Figure 15
<p>Some image samples and the segmentation results of GID Dataset.</p> ">
Abstract
:1. Introduction
1.1. Background
1.2. Problem and Motivation
1.3. Structure and Contribution
- (1)
- Edge information is used as the a priori knowledge to guide remote sensing image segmentation.
- (2)
- Two conceptually simple end-to-end networks are proposed in this paper by combining FCN and HED, which can be trained and inferenced easily without complicated procedures.
- (3)
- Learning from the point in HED, multiple loss fusion is applied to Edge-FCN. Therefore, deep supervision can be realized for each layer when training.
2. Preliminaries
2.1. FCN Framework
2.2. HED Framework
3. Our Work
3.1. Annotations
3.2. Cascade-Edge-FCN
3.3. Correct-Edge-FCN
4. Experiments and Analysis
4.1. Dataset
4.2. Experiment Setup
4.3. Evaluation Metrics
4.4. Results
4.4.1. ESAR Results
4.4.2. GID Results
4.5. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- He, C.; Li, S.; Liao, Z.; Liao, M. Texture Classification of PolSAR Data Based on Sparse Coding of Wavelet Polarization Textons. IEEE Trans. Geosci. Remote Sens. 2013, 51, 4576–4590. [Google Scholar] [CrossRef]
- Lecun, Y.; Boser, B.; Denker, J.S.; Henderson, D.; Howard, R.E.; Hubbard, W.; Jackel, L.D. Backpropagation Applied to Handwritten Zip Code Recognition. Neural Comput. 1989, 1, 541–551. [Google Scholar] [CrossRef]
- Liu, C.; Zeng, D.; Wu, H.; Wang, Y.; Jia, S.; Xin, L. Urban Land Cover Classification of High-Resolution Aerial Imagery Using a Relation-Enhanced Multiscale Convolutional Network. Remote Sens. 2020, 12, 311. [Google Scholar] [CrossRef] [Green Version]
- Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2014, 39, 640–651. [Google Scholar]
- Chen, L.C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. Semantic Image Segmentation with Deep Convolutional Nets and Fully Connected CRFs. arXiv 2014, arXiv:1412.7062. [Google Scholar]
- Chen, L.C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 2018, 40, 834–848. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.C.; Papandreou, G.; Schroff, F.; Adam, H. Rethinking Atrous Convolution for Semantic Image Segmentation. arXiv 2017, arXiv:1706.05587. [Google Scholar]
- Shuai, Z.; Jayasumana, S.; Romeraparedes, B.; Vineet, V.; Su, Z.; Du, D.; Chang, H.; Torr, P.H.S. Conditional Random Fields as Recurrent Neural Networks. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015. [Google Scholar]
- Zhang, L.; Liu, Z.; Ren, T.; Liu, D.; Ma, Z.; Tong, L.; Zhang, C.; Zhou, T.; Zhang, X.; Li, S. Identification of Seed Maize Fields With High Spatial Resolution and Multiple Spectral Remote Sensing Using Random Forest Classifier. Remote Sens. 2020, 12, 362. [Google Scholar] [CrossRef] [Green Version]
- Badrinarayanan, V.; Kendall, A.; Cipolla, R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Scene Segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 2481–2495. [Google Scholar] [CrossRef]
- Yang, Q.; Liu, M.; Zhang, Z.; Yang, S.; Ning, J.; Han, W. Mapping Plastic Mulched Farmland for High Resolution Images of Unmanned Aerial Vehicle Using Deep Semantic Segmentation. Remote Sens. 2019, 11, 2008. [Google Scholar] [CrossRef] [Green Version]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Proceedings of the International Conference on Medical Image Computing & Computer-Assisted Intervention, Munich, Germany, 5–9 October 2015. [Google Scholar]
- Pan, X.; Gao, L.; Marinoni, A.; Zhang, B.; Yang, F.; Gamba, P. Semantic Labeling of High Resolution Aerial Imagery and LiDAR Data with Fine Segmentation Network. Remote Sens. 2018, 10, 743. [Google Scholar] [CrossRef] [Green Version]
- Fu, G.; Liu, C.; Zhou, R.; Sun, T.; Zhang, Q. Classification for High Resolution Remote Sensing Imagery Using a Fully Convolutional Network. Remote Sens. 2017, 9, 498. [Google Scholar] [CrossRef] [Green Version]
- Xia, W.; Ma, C.; Liu, J.; Liu, S.; Chen, F.; Yang, Z.; Duan, J. High-Resolution Remote Sensing Imagery Classification of Imbalanced Data Using Multistage Sampling Method and Deep Neural Networks. Remote Sens. 2019, 11, 2523. [Google Scholar] [CrossRef] [Green Version]
- Lin, G.; Milan, A.; Shen, C.; Reid, I. RefineNet: Multi-path Refinement Networks for High-Resolution Semantic Segmentation. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017. [Google Scholar]
- Zhao, H.; Shi, J.; Qi, X.; Wang, X.; Jia, J. Pyramid Scene Parsing Network. arXiv 2016, arXiv:1612.01105. [Google Scholar]
- Chao, P.; Zhang, X.; Gang, Y.; Luo, G.; Jian, S. Large Kernel Matters—Improve Semantic Segmentation by Global Convolutional Network. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017. [Google Scholar]
- Chen, Y.; Zhang, C.; Wang, S.; Li, J.; Li, F.; Yang, X.; Wang, Y.; Yin, L. Extracting Crop Spatial Distribution from Gaofen 2 Imagery Using a Convolutional Neural Network. Appl. Sci. 2019, 9, 2917. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Zhu, X.; Bao, J. Hierarchical Multi-Scale Convolutional Neural Networks for Hyperspectral Image Classification. Sensors 2019, 19, 1714. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; He, C.; Liu, X.; Liao, M. A Hierarchical Fully Convolutional Network Integrated with Sparse and Low-Rank Subspace Representations for PolSAR Imagery Classification. Remote Sens. 2018, 10, 342. [Google Scholar] [CrossRef] [Green Version]
- He, C.; Fang, P.; Zhang, Z.; Xiong, D.; Liao, M. An End-to-End Conditional Random Fields and Skip-Connected Generative Adversarial Segmentation Network for Remote Sensing Images. Remote Sens. 2019, 11, 1604. [Google Scholar] [CrossRef] [Green Version]
- Adly, H.; Moustafa, M. A Hybrid Deep Learning Approach for Texture Analysis. In Proceedings of the 2017 2nd International Conference on Multimedia and Image Processing (ICMIP), Wuhan, China, 17–19 March 2017. [Google Scholar]
- Maggiori, E.; Tarabalka, Y.; Charpiat, G.; Alliez, P. Convolutional Neural Networks for Large-Scale Remote-Sensing Image Classification. IEEE Trans. Geosci. Remote Sens. 2016, 55, 645–657. [Google Scholar] [CrossRef] [Green Version]
- Lloyd, C.; Berberoglu, S.; Curran, P.; Atkinson, P. A comparison of texture measures for the per-field classification of Mediterranean land cover. Int. J. Remote Sens. 2004, 25, 3943–3965. [Google Scholar] [CrossRef]
- Pamula, T. Road Traffic Conditions Classification Based on Multilevel Filtering of Image Content Using Convolutional Neural Networks. IEEE Intell. Transp. Syst. Mag. 2018, 10, 11–21. [Google Scholar] [CrossRef]
- Liu, Y.; Cheng, M.M.; Hu, X.; Wang, K.; Bai, X. Richer Convolutional Features for Edge Detection. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017. [Google Scholar]
- Yang, J.; Price, B.; Cohen, S.; Lee, H.; Yang, M.H. Object Contour Detection with a Fully Convolutional Encoder-Decoder Network. In Proceedings of the IEEE Conference on Computer Vision & Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016. [Google Scholar]
- Yu, Z.; Feng, C.; Liu, M.Y.; Ramalingam, S. CASENet: Deep Category-Aware Semantic Edge Detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017. [Google Scholar]
- Yu, C.; Wang, J.; Chao, P.; Gao, C.; Nong, S. Learning a Discriminative Feature Network for Semantic Segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018. [Google Scholar]
- Chen, L.C.; Barron, J.T.; Papandreou, G.; Murphy, K.; Yuille, A.L. Semantic Image Segmentation with Task-Specific Edge Detection Using CNNs and a Discriminatively Trained Domain Transform. In Proceedings of the IEEE Conference on Computer Vision & Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016. [Google Scholar]
- He, C.; Shi, Z.; Fang, P.; Xiong, D.; He, B.; Liao, M. Edge Prior Multilayer Segmentation Network Based on Bayesian Framework. J. Sens. 2020, 2020. [Google Scholar] [CrossRef] [Green Version]
- He, C.; He, B.; Yin, X.; Wang, W.; Liao, M. Relationship Prior and Adaptive Knowledge Mimic Based Compressed Deep Network for Aerial Scene Classification. IEEE Access 2019, 7, 137080–137089. [Google Scholar] [CrossRef]
- Canny, J. A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 1986, 6, 679–698. [Google Scholar] [CrossRef]
- Xie, S.; Tu, Z. Holistically-Nested Edge Detection. Int. J. Comput. Vis. 2015, 125, 3–18. [Google Scholar] [CrossRef]
- Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- Mohammed, A.A.; Umaashankar, V. Effectiveness of Hierarchical Softmax in Large Scale Classification Tasks. In Proceedings of the 2018 International Conference on Advances in Computing, Communications and Informatics (ICACCI), Bangalore, India, 19–22 September 2018. [Google Scholar]
- Arribas, J.I.; Cid-Sueiro, J.; Adali, T.; Figueiras-Vidal, A.R. Neural architectures for parametric estimation of a posteriori probabilities by constrained conditional density functions. In Proceedings of the 1999 IEEE Signal Processing Society Workshop on Neural Networks for Signal Processing IX, Madison, WI, USA, 25 August 1999. [Google Scholar]
- Lin, T.Y.; Dollár, P.; Girshick, R.; He, K.; Belongie, S. Feature Pyramid Networks for Object Detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017. [Google Scholar]
- Fawcett, T. An introduction to ROC analysis. Pattern Recognit. Lett. 2006, 27, 861–874. [Google Scholar] [CrossRef]
- Buhmann, J.M. The Binormal Assumption on Precision-Recall Curves. Int. Conf. Pattern Recognit. 2010. [Google Scholar] [CrossRef]
- Landgrebe, T.C.W.; Duin, R.P.W. Efficient Multiclass ROC Approximation by Decomposition via Confusion Matrix Perturbation Analysis. IEEE Trans. Pattern Anal. Mach. Intell. 2008, 30, 810–822. [Google Scholar] [CrossRef] [Green Version]
Name | In-Channels | Out-Channels | Kernel | Stirde | Padding |
---|---|---|---|---|---|
seg_rec | c | 3 × 3 | 1 | 1 | |
seg_tune | c | c | 1 × 1 | 1 | 0 |
edge_rec | 1 | 3 × 3 | 1 | 1 | |
seg_rec | 1 | 1 | 1 × 1 | 1 | 0 |
Times | Traing Images | Test Images |
---|---|---|
1 | 101–400 | 1–100 |
2 | 1–100 & 201–400 | 101–200 |
3 | 1–200 & 301–400 | 201–300 |
4 | 1–300 | 301–400 |
Method | ||||
---|---|---|---|---|
FCN | 82.74 | 72.22 | 61.87 | 70.47 |
Cascade-Edge-FCN | 84.69 | 75.88 | 65.76 | 73.54 |
Correct-Edge-FCN | 84.98 | 76.50 | 66.39 | 73.95 |
Method | 0 | 1 | 2 | 3 | 4 | ||
---|---|---|---|---|---|---|---|
FCN | 91.44 | 33.80 | 86.01 | 62.27 | 87.56 | 72.22 | 21.77 |
Cascade-Edge-FCN | 90.67 | 40.37 | 87.94 | 69.69 | 90.71 | 75.88 | 19.41 |
Correct-Edge-FCN | 90.99 | 42.19 | 86.52 | 74.33 | 88.48 | 76.50 | 18.09 |
Method | ||||
---|---|---|---|---|
FCN | 48.02 | 43.02 | 27.91 | 31.10 |
Cascade-Edge-FCN | 49.38 | 45.45 | 29.88 | 32.51 |
Correct-Edge-FCN | 50.32 | 45.94 | 30.54 | 33.40 |
Method | ||||
---|---|---|---|---|
FCN | 79.09 | 68.39 | 56.49 | 65.63 |
Cascade-Edge-FCN | 80.82 | 71.58 | 59.92 | 68.27 |
Correct-Edge-FCN | 80.21 | 71.76 | 59.54 | 67.34 |
Method | ||||
---|---|---|---|---|
FCN | 92.73 | 89.30 | 79.57 | 86.88 |
Cascade-Edge-FCN | 93.90 | 89.99 | 81.06 | 89.06 |
Correct-Edge-FCN | 94.13 | 88.36 | 80.43 | 89.42 |
Method | 1 | 2 | 3 | 4 | 5 | ||
---|---|---|---|---|---|---|---|
FCN | 99.18 | 84.76 | 94.67 | 90.81 | 77.07 | 89.30 | 7.73 |
Cascade-Edge-FCN | 98.59 | 88.1 | 96.2 | 96.24 | 70.82 | 89.99 | 10.22 |
Correct-Edge-FCN | 98.48 | 87.05 | 97.54 | 91.29 | 67.43 | 88.36 | 11.27 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, C.; Li, S.; Xiong, D.; Fang, P.; Liao, M. Remote Sensing Image Semantic Segmentation Based on Edge Information Guidance. Remote Sens. 2020, 12, 1501. https://doi.org/10.3390/rs12091501
He C, Li S, Xiong D, Fang P, Liao M. Remote Sensing Image Semantic Segmentation Based on Edge Information Guidance. Remote Sensing. 2020; 12(9):1501. https://doi.org/10.3390/rs12091501
Chicago/Turabian StyleHe, Chu, Shenglin Li, Dehui Xiong, Peizhang Fang, and Mingsheng Liao. 2020. "Remote Sensing Image Semantic Segmentation Based on Edge Information Guidance" Remote Sensing 12, no. 9: 1501. https://doi.org/10.3390/rs12091501