An Automatic Method for Black Margin Elimination of Sentinel-1A Images over Antarctica
"> Figure 1
<p>Spatial coverage of Sentinel-1A images from extra wide (EW) and interferometric wide (IW) around Antarctica during May 2015. The total number of images is 899, with 211 of IW images and 688 of EW images. Red and blue rectangles show footprints of EW and IW image respectively. A polar stereographic projection with −71°S as standard latitude is used.</p> "> Figure 2
<p>Poor-quality data around black margins of a Sentinel-1A image (s1a-ew-grd-hh-20151203t152802-20151203t152906-008879-00cb1d-001.tiff). (<b>a</b>) Data cover open sea water, no black margin. (<b>b</b>) Signal backscattered from inland glacier, including black margin (not always zero, as indicated with yellow, green, and cyan, and blue colors) close to the image boundary. (<b>c</b>) Very typical black margins, including poor-quality data with lower signal magnitude increasing from image boundary to image center. (<b>d</b>) Boundary from different sub-swaths with data gap filled with zero. (<b>e</b>) Data over sea water and sea ice, with yellow color indicating poor-quality data. ‘1’ to ‘5’ indicate five sub-swath images used for EW ground range detected (GRD) image mosaic. A polar stereographic projection with −71°S as standard latitude is used.</p> "> Figure 3
<p>Signal magnitude histograms of an image patch from different marginal areas. “H = 0” means the data passes the test of normal distribution while “H = 1” means it does not. (<b>a</b>) An image patch with signal magnitude histogram (ocean water) from region A of <a href="#remotesensing-12-01175-f002" class="html-fig">Figure 2</a>. (<b>b</b>,<b>c</b>) Image patches with magnitude histogram from poor signal (black margin) and effective signal (glacier) respectively in region C of <a href="#remotesensing-12-01175-f002" class="html-fig">Figure 2</a>. (<b>d</b>–<b>f</b>) Magnitude histograms of image patches from noise, noise + effective signal, and effective signal, respectively, in region B of <a href="#remotesensing-12-01175-f002" class="html-fig">Figure 2</a>. (<b>g</b>–<b>i</b>) Magnitude histogram changes of signals from data gaps and land surface, non-normally distributed land surface, and normally distributed land surface respectively in region D of <a href="#remotesensing-12-01175-f002" class="html-fig">Figure 2</a>. (<b>j</b>–<b>l</b>) Magnitude histogram of noise, noise + effective signal, and effective signal, respectively, in region E (sea surface and sea ice region) of <a href="#remotesensing-12-01175-f002" class="html-fig">Figure 2</a>.</p> "> Figure 4
<p>Sketch plot for edge detection process. This figure shows the process of edge detection from the left boundary of an image. The black dashed rectangle indicates a searching image patch. The green rectangle indicates the first patch fulfilling a normal distribution. The blue line indicates the start location (<span class="html-italic">ET1</span> in context) where a searching unit firstly crosses a threshold. The block dashed square indicates searching tracks. The purple line indicates the starting location (<span class="html-italic">ET2</span> in context) for the maximum of gradient change along the column direction. In this figure, the black color shows regions of poor-quality data and the blue color shows effective backscattered signals. ‘1’, ‘2’, ‘m’, ‘n’, and ‘t’ stand for different searching units. A searching unit corresponds to all signals from 10 rows of a processing image. The black margin (BM) edge detection from searching units ‘2’, ‘m’, and ‘n’ is not accepted but is accepted from ‘1’. However, in searching unit ‘t’, no edge is detected.</p> "> Figure 5
<p>Sketch plot for edge detection process. In this figure, ‘BC’ indicates the direction from the image boundary to the image center, the same as what is defined in the context. ‘PBC’ indicates the direction perpendicular to the ‘BC’ direction.</p> "> Figure 6
<p>BM edge extraction and results comparison between automatic method and human interpretation. (<b>a</b>–<b>d</b>) correspond to BM edges from the left, right, top, and bottom of (<b>e</b>). Blue dashed squares in (<b>a</b>) indicate different edge steps. ‘S1’, ‘S2’, and ‘S3’ are respectively used for analysis in Figure 9a,c,e. ‘1’ to ‘5’ correspond to BM edges from five sub-swaths as indicated in <a href="#remotesensing-12-01175-f002" class="html-fig">Figure 2</a>. Vertical dashed blue lines indicate boundaries of data gaps as can be seen from <a href="#remotesensing-12-01175-f002" class="html-fig">Figure 2</a>. (<b>e</b>) Comparison of BM edge extracted with automatic method (green) and human interpretation (red). Comparison zooming in is marked with ‘A’ to ‘G’. Plotted with image coordinates, thus differing from <a href="#remotesensing-12-01175-f002" class="html-fig">Figure 2</a>. The image flipping is caused by SAR imaging characteristics.</p> "> Figure 7
<p>Spatial coverage of the sentinel-1A images over Antarctic inland, coast and ocean. ‘E0’ to ‘E9’ are indices for images from the EW observation model. ‘I-0’ to ‘I-9’ stands for images from IW observation mode. A polar stereographic projection with −71°S as standard latitude is used.</p> "> Figure 8
<p>Signal magnitude (digital number (DN) value) along the BM edge, effective signal region, and black margins in the left side of image shown in <a href="#remotesensing-12-01175-f006" class="html-fig">Figure 6</a>e. In the legend, ‘edge’ indicates the signal from column corresponding to BM edge. ‘edge+5’ indicates the signal from the fifth column to the right side (signal region) of edge. ‘edge-m’ indicated the signal from the m-th column to the left side (black margin) of edge. Location of the embedded figure (<b>a</b>,<b>b</b>) is marked with a red dashed rectangle using the same marking indices. Vertical dashed red lines indicate the column, which shows good correlation between strong backscattered signals and large noise signals in BM.</p> "> Figure 9
<p>BM edge location analysis in both time and frequency domains (DN valuse of BM edge and Fast Frequency Transformation resuts). (<b>a</b>,<b>c</b>,<b>e</b>) indicate the DN value of BM edge detected by our automatic method. (<b>b</b>,<b>d</b>,<b>f</b>) are the Fast Frequency Transformation results of data shown in (<b>a</b>,<b>c</b>,<b>e</b>) respectively. From (<b>a</b>,<b>c</b>,<b>e</b>), the cycle of signal start location can be seen clearly and the starting location is not the same as that appears in <a href="#remotesensing-12-01175-f008" class="html-fig">Figure 8</a>a because it is not smoothed and just a middle output during BM edge detection. In the frequency domains (<b>b</b>,<b>d</b>,<b>f</b>), signal frequencies of 8, 8, and 4 Hz are detected respectively, which indicate the signal cycles in PBC direction are 512, 512, and 525 columns for three different regions.</p> ">
Abstract
:1. Introduction
2. Sentinel-1A
3. Backscatter Characteristics of Antarctic Land Surfaces
4. Edge Detector
5. Method to Extract BM Edges
6. Results and Validation
7. Discussions
7.1. BM Edge Extractions
7.2. Backscattering Characteristics of BMs
7.3. Parameter Settings
8. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Vespe, M.; Greidanus, H. SAR image quality assessment and indicators for vessel and oil spill detection. IEEE Trans. Geosci. Remote Sens. 2012, 50, 4726–4734. [Google Scholar] [CrossRef]
- Chander, G.; Markham, B.L.; Helder, D.L. Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote Sens. Environ. 2009, 113, 893–903. [Google Scholar] [CrossRef]
- Wang, X.; Cheng, X.; Hui, F.; Cheng, C.; Fok, H.S.; Liu, Y. Xuelong navigation in fast ice near the zhongshan station, antarctica. Mar. Technol. Soc. J. 2014, 48, 84–91. [Google Scholar] [CrossRef]
- Chen, J.; Zhu, X.; Vogelmann, J.E.; Gao, F.; Jin, S. A simple and effective method for filling gaps in Landsat ETM+ SLC-off images. Remote Sens. Environ. 2011, 115, 1053–1064. [Google Scholar] [CrossRef]
- Zhu, X.; Liu, D.; Chen, J. A new geostatistical approach for filling gaps in Landsat ETM+ SLC-off images. Remote Sens. Environ. 2012, 124, 49–60. [Google Scholar] [CrossRef]
- Storey, J.C.; Scaramuzza, P.; Schmidt, G. Landsat 7 scan line corrector-off gap filled product development. In Proceedings of the PECORA 16 Conference Proceedings, Sioux Falls, SD, USA, 23–27 October 2005; pp. 23–27. [Google Scholar]
- Bindschadler, R.; Vornberger, P.; Fleming, A.; Fox, A.; Mullins, J.; Binnie, D.; Paulsen, S.J.; Granneman, D.; Gorodetzky, D. The Landsat image mosaic of Antarctica. Remote Sens. Environ. 2008, 112, 4214–4226. [Google Scholar] [CrossRef]
- Hui, F.; Cheng, X.; Liu, Y.; Zhang, Y.; Ye, Y.; Wang, X.W.; Li, Z.; Wang, K.; Zhan, Z.F.; Guo, J.H.; et al. An improved Landsat image mosaic of Antarctica. Sci. China Earth Sci. 2013, 56, 1–12. [Google Scholar] [CrossRef]
- Brusch, S.; Lehner, S.; Fritz, T.; Soccorsi, M.; Soloviev, A.; Van Schie, B. Ship surveillance with TerraSAR-X. IEEE Trans. Geosci. Remote Sens. 2011, 49, 1092–1103. [Google Scholar] [CrossRef]
- Schwerdt, M.; Schmidt, K.; Ramon, N.; Alfonzo, G.C.; Doring, B.; Zink, M.; Prats, P. Independent verification of the Sentinel-1A system calibration. In Proceedings of the Geoscience and Remote Sensing Symposium (IGARSS), Quebec City, QC, Canada, 3–18 July 2014; pp. 1097–1100. [Google Scholar]
- Schubert, A.; Small, D.; Miranda, N.; Geudtner, D.; Meier, E. Sentinel-1A product geolocation accuracy: Commissioning phase results. Remote Sens. 2015, 7, 9431–9449. [Google Scholar] [CrossRef] [Green Version]
- Schubert, A.; Miranda, N.; Geudtner, D.; Small, D. Sentinel-1A/B combined product geolocation accuracy. Remote Sens. 2017, 9, 607. [Google Scholar] [CrossRef] [Green Version]
- Greidanus, H.; Santamaria, C. First analysis of Sentinel-1 images for maritime surveillance. In Science and Policy Report by the Joint Research Centrel; Publications Office of the European Union: Luxembourg, 2014. [Google Scholar]
- Mouche, A.; Chapron, B. Global C-B and E nvisat, RADARSAT-2 and S entinel-1 SAR measurements in copolarization and cross-polarization. J. Geophys. Res. Ocean. 2015, 120, 7195–7207. [Google Scholar] [CrossRef] [Green Version]
- Available online: http://forum.step.esa.int/t/sar-mosaic/782 (accessed on 1 April 2020).
- Attema, E.; Snoeij, P.; Davidson, M.; Floury, N.; Levrini, G.; Rommen, B.; Rosich, B. The European GMES Sentinel-1 radar mission. In Proceedings of the Geoscience and Remote Sensing Symposium (IGARSS 2008), Boston, MA, USA, 8–11 July 2008; Volume 1, pp. 1–94. [Google Scholar]
- SENTINEL-1 SAR User Guide, ESA. Available online: https://sentinel.esa.int/web/sentinel/user-guides/sentinel-1-sar (accessed on 1 April 2020).
- Torres, R.; Snoeij, P.; Davidson, M.; Bibby, D.; Lokas, S. The Sentinel-1 mission and its application capabilities. In Proceedings of the Geoscience and Remote Sensing Symposium (IGARSS 2012), Munich, Germany, 22–27 July 2012; pp. 1703–1706. [Google Scholar]
- Torres, R.; Snoeij, P.; Geudtner, D.; Bibby, D.; Davidson, M.; Attema, E.; Potin, P.; Rommen, B.; Floury, N.; Brown, M.; et al. GMES Sentinel-1 mission. Remote Sens. Environ. 2012, 120, 9–24. [Google Scholar] [CrossRef]
- Snoeij, P.; Brown, M.; Davidson, M.; Rommen, B.; Floury, N.; Geudtner, D.; Torres, R. Sentinel-1A and Sentinel-1B CSAR status. In Proceedings of the SPIE Remote Sensing, International Society for Optics and Photonics, Prague, Czech Republic, 1 October 2011; p. 817902. [Google Scholar]
- De Zan, F.; Guarnieri, A.M. TOPSAR: Terrain observation by progressive scans. IEEE Trans. Geosci. Remote Sens. 2006, 44, 2352–2360. [Google Scholar] [CrossRef]
- Malenovský, Z.; Rott, H.; Cihlar, J.; Schaepman, M.E.; García-Santos, G.; Fernandes, R.; Berger, M. Sentinels for science: Potential of Sentinel-1,-2, and-3 missions for scientific observations of ocean, cryosphere, and land. Remote Sens. Environ. 2012, 120, 91–101. [Google Scholar] [CrossRef]
- Ardhuin, F.; Collard, F.; Chapron, B.; Girard-Ardhuin, F.; Guitton, G.; Mouche, A.; Stopa, J.E. Estimates of ocean wave heights and attenuation in sea ice using the SAR wave mode on Sentinel-1A. Geophys. Res. Lett. 2015, 42, 2317–2325. [Google Scholar] [CrossRef] [Green Version]
- Guangcai, F.; Zhiwei, L.; Xinjian, S.; Bing, X.; Yanan, D. Source parameters of the 2014 Mw 6.1 South Napa earthquake estimated from the Sentinel 1A, COSMO-SkyMed and GPS data. Tectonophysics 2015, 655, 139–146. [Google Scholar] [CrossRef]
- González, P.J.; Bagnardi, M.; Hooper, A.J.; Larsen, Y.; Marinkovic, P.; Samsonov, S.V.; Wright, T.J. The 2014–2015 eruption of Fogo volcano: Geodetic modeling of Sentinel-1 TOPS interferometry. Geophys. Res. Lett. 2015, 42, 9239–9246. [Google Scholar] [CrossRef] [Green Version]
- Le, T.T.; Atto, A.M.; Trouve, E. Change analysis using multitemporal SENTINEL-1 SAR images. In Proceedings of the Geoscience and Remote Sensing Symposium (IGARSS 2015), Milan, Italy, 26–31 July 2015; pp. 4145–4148. [Google Scholar]
- Lizhen, L.; Tao, Y.; Di, L. Object-based plastic-mulched landcover extraction using integrated Sentinel-1 and Sentinel-2 data. Remote Sens. 2018, 10, 1820. [Google Scholar]
- Muckenhuber, S.; Korosov, A.; Sandven, S. Sea ice drift from Sentinel-1 SAR imagery using open source feature tracking. Cryosphere Discuss. 2015, 9, 6937–6959. [Google Scholar] [CrossRef] [Green Version]
- Pelich, R.; Longepe, N.; Mercier, G.; Hajduch, G.; Garello, R. Performance evaluation of Sentinel-1 data in SAR ship detection. In Proceedings of the Geoscience and Remote Sensing Symposium (IGARSS 2015), Milan, Italy, 26–31 July 2015; pp. 2103–2106. [Google Scholar]
- Velotto, D.; Bentes, C.; Tings, B.; Lehner, S. Comparison of Sentinel-1 and TerraSAR-X for ship detection. In Proceedings of the Geoscience and Remote Sensing Symposium (IGARSS 2015), Milan, Italy, 26–31 July 2015; pp. 3282–3285. [Google Scholar]
- Nagler, T.; Rott, H.; Hetzenecker, M.; Wuite, J.; Potin, P. The Sentinel-1 mission: New opportunities for ice sheet observations. Remote Sens. 2015, 7, 9371–9389. [Google Scholar] [CrossRef] [Green Version]
- Hui, F.; Kang, J.; Liu, Y.; Cheng, X.; Gong, P.; Wang, F.; Li, Z.; Ye, Y.; Guo, Z. AntarcticaLC2000: The new antarctic land cover database for the year 2000. Sci. China Earth Sci. 2017, 60, 686–696. [Google Scholar] [CrossRef]
- Scambos, T.A.; Haran, T.M.; Fahnestock, M.A.; Painter, T.H.; Bohlander, J. MODIS-based mosaic of antarctica (MOA) data sets: Continent-wide surface morphology and snow grain size. Remote Sens. Environ. 2007, 111, 242–257. [Google Scholar] [CrossRef]
- Rignot, E.; Echelmeyer, K.; Krabill, W. Penetration depth of interferometric synthetic-aperture radar signals in snow and ice. Geophys. Res. Lett. 2001, 28, 3501–3504. [Google Scholar] [CrossRef] [Green Version]
- Munk, J.; Jezek, K.C.; Forster, R.R.; Gogineni, S.P. An accumulation map for the Greenland dry-snow facies derived from spaceborne radar. J. Geophys. Res. Atmos. 2003, 108, D9. [Google Scholar] [CrossRef]
- Kendra, J.R.; Sarabandi, K.; Ulaby, F.T. Radar measurements of snow: Experiment and analysis. IEEE Trans. Geosci. Remote Sens. 1998, 36, 864–879. [Google Scholar] [CrossRef] [Green Version]
- Canny, J. A computational approach to edge detection. Pattern Analysis and Machine Intelligence. IEEE Trans. 1986, 6, 679–698. [Google Scholar]
- Ding, L.; Goshtasby, A. On the canny edge detector. Pattern Recognit. 2001, 34, 721–725. [Google Scholar] [CrossRef]
- Roberts, L.G. Machine Perception of Three-Dimensional Soups. Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, 1963. [Google Scholar]
- Sobel, I.; Feldman, G. A 3 × 3 Isotropic Gradient Operator for Image Processing. Stanf. Artif. Intell. Proj. 1968, 271–272. [Google Scholar]
- Prewitt, J.M. Object enhancement and extraction. Pict. Process. Psychopictorics 1970, 10, 15–19. [Google Scholar]
- David, M.; Hildreth, E. Theory of edge detection. In Proceedings of the Royal Society of London (Series B), London, UK, 29 February 1980; pp. 187–217. [Google Scholar]
- Lilliefors, H.W. On the Kolmogorov-Smirnov test for normality with mean and variance unknown. J. Am. Stat. Assoc. 1967, 62, 399–402. [Google Scholar] [CrossRef]
- Satoshi, T. Completing yearly land cover maps for accurately describing annual changes of tropical landscapes. Glob. Ecol. Conserv. 2018, 13, e00384. [Google Scholar]
Observation Mode and Region | Index | File Name | Nr | Ec | El | Er | Et | Eb | ∆P | ∆A | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|
EW, coast | E0 | s1a-ew-grd-hh-20150509t011137-20150509t011241-005837-007835-001.tiff | 10,842 | 10,425 | 2 | 7 | 2 | 0 | −239.5 | −96.1 | −0.41 | −0.16 |
E1 | s1a-ew-grd-hh-20150512t194245-20150512t194350-005892-00796c-001.tiff | 10,844 | 10,524 | 1 | 2 | 5 | 0 | −294.1 | 2681.8 | −0.50 | 4.56 | |
E2 | s1a-ew-grd-hh-20150514t160932-20150514t161037-005919-007a05-001.tiff | 10,845 | 10,407 | 2 | 4 | 3 | 0 | −331.4 | 957.5 | −0.56 | 1.63 | |
E3 | s1a-ew-grd-hh-20150523t122738-20150523t122843-006048-007d0d-001.tiff | 10,844 | 10,352 | 2 | 7 | 3 | 0 | −284.4 | 1283.9 | −0.48 | 2.19 | |
E4 | s1a-ew-grd-hh-20150516t091702-20150516t091802-005944-007a8c-001.tiff | 10,140 | 10,634 | 3 | 3 | 0 | 0 | −214.5 | 59.8 | −0.38 | 0.11 | |
E5 | s1a-ew-grd-hh-20150507t062249-20150507t062353-005811-007791-001.tiff | 10,844 | 10,556 | 5 | 2 | 8 | 0 | −309.6 | 356.3 | −0.53 | 0.61 | |
EW, ocean | E6 | s1a-ew-grd-hh-20150508t034807-20150508t034907-005824-0077e4-001.tiff | 10,136 | 10,487 | 1 | 8 | 0 | 0 | −214.5 | 59.8 | −0.38 | 0.11 |
E7 | s1a-ew-grd-hh-20150505t000443-20150505t000543-005778-0076cb-001.tiff | 10,136 | 10,558 | 2 | 4 | 4 | 0 | −252.6 | −570.4 | −0.44 | −1.00 | |
E8 | s1a-ew-grd-hh-20150510t213839-20150510t213939-005864-0078c8-001.tiff | 10,136 | 10,630 | 1 | 4 | 0 | 0 | −194.8 | 52.5 | −0.34 | 0.09 | |
E9 | s1a-ew-grd-hh-20150522t132642-20150522t132742-006034-007ca9-001.tiff | 10,137 | 10,468 | 2 | 3 | 0 | 0 | −211.7 | −64.0 | −0.37 | −0.11 | |
IW, coast | I-0 | s1a-iw-grd-hh-20150921t144737-20150921t144811-007814-00ae0d-001.tiff | 22,518 | 25,185 | 4 | 22 | 0 | 1 | −405.8 | −3171.3 | −0.31 | −2.40 |
I-1 | s1a-iw-grd-hh-20150928t175640-20150928t175708-007918-00b0ed-001.tiff | 18,787 | 25,217 | 2 | 3 | 0 | 1 | −355.9 | −490.4 | −0.29 | −0.40 | |
I-2 | s1a-iw-grd-hh-20150525t034955-20150525t035020-006072-007dbb-001.tiff | 16,900 | 25,413 | 3 | 4 | 0 | 0 | −328.6 | −704.9 | −0.30 | −0.64 | |
I-3 | s1a-iw-grd-hh-20150531t093429-20150531t093454-006163-008043-001.tiff | 16,900 | 25,164 | 3 | 3 | 0 | 0 | −284.5 | −737.2 | −0.24 | −0.63 | |
I-4 | s1a-iw-grd-hh-20150523t104902-20150523t104927-006047-007d07-001.tiff | 16,905 | 25,508 | 3 | 3 | 0 | 0 | −320.2 | −248.4 | −0.27 | −0.21 | |
IW, inland | I-5 | s1a-iw-grd-hh-20150924t213659-20150924t213724-007862-00af6b-001.tiff | 16,907 | 25,504 | 7 | 6 | 0 | 0 | −258.4 | −25.0 | −0.22 | −0.02 |
I-6 | s1a-iw-grd-hh-20150929t002146-20150929t002211-007922-00b10b-001.tiff | 16,906 | 25,264 | 2 | 3 | 0 | 0 | −273.6 | −309.8 | −0.24 | −0.27 | |
I-7 | s1a-iw-grd-hh-20150525t021152-20150525t021217-006071-007db4-001.tiff | 16,902 | 25,370 | 4 | 1 | 0 | 0 | −243.6 | −90.7 | −0.21 | −0.08 | |
I-8 | s1a-iw-grd-hh-20150531t062033-20150531t062058-006161-008036-001.tiff | 16,905 | 25,151 | 3 | 2 | 0 | 0 | −244.4 | −405.4 | −0.21 | −0.35 | |
I-9 | s1a-iw-grd-hh-20150525t120849-20150525t120914-006077-007de0-001.tiff | 16,906 | 25,638 | 1 | 3 | 0 | 0 | −270.7 | −304.4 | −0.23 | −0.26 |
Correlation Coefficients | edge+5 | edge | edge-5 | edge-10 | edge-15 |
---|---|---|---|---|---|
edge+5 | 1.00 | 0.88 | 0.47 | 0.97 | 0.97 |
edge | 1.00 | 0.57 | 0.91 | 0.90 | |
edge-5 | 1.00 | 0.54 | 0.53 | ||
edge-10 | 1.00 | 0.99 | |||
edge-15 | 1.00 |
edge-10_edge-15 | edge-5_edge-10 | edge_edge-5 | edge+5_edge | |
---|---|---|---|---|
min | 2.1 | 3 | 86.5 | -432.3 |
max | 20.3 | 976.6 | 2783.7 | 2083.5 |
mean | 8.0 | 33.8 | 1136.6 | 323.6 |
standard deviation | 4.2 | 108.9 | 597.8 | 349.4 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Holland, D.M. An Automatic Method for Black Margin Elimination of Sentinel-1A Images over Antarctica. Remote Sens. 2020, 12, 1175. https://doi.org/10.3390/rs12071175
Wang X, Holland DM. An Automatic Method for Black Margin Elimination of Sentinel-1A Images over Antarctica. Remote Sensing. 2020; 12(7):1175. https://doi.org/10.3390/rs12071175
Chicago/Turabian StyleWang, Xianwei, and David M. Holland. 2020. "An Automatic Method for Black Margin Elimination of Sentinel-1A Images over Antarctica" Remote Sensing 12, no. 7: 1175. https://doi.org/10.3390/rs12071175
APA StyleWang, X., & Holland, D. M. (2020). An Automatic Method for Black Margin Elimination of Sentinel-1A Images over Antarctica. Remote Sensing, 12(7), 1175. https://doi.org/10.3390/rs12071175