Impacts of Assimilating ATMS Radiances on Heavy Rainfall Forecast in RMAPS-ST
"> Figure 1
<p>(<b>a</b>) Two nested domains in the rapid-refresh multi-scale analysis and prediction system—short-term (RMAPS-ST) with terrain elevation (m). The outside domain covered the China region and the nested domain, mainly located in North China (the inner black box). (<b>b</b>) Observations of 24-h accumulated rainfall on 19 July 2016, from ground stations.</p> "> Figure 2
<p>Conventional sounding observations in Domain 1 of the RMAPS-ST used for verification and evaluation in the data assimilation experiments.</p> "> Figure 3
<p>The schematic of data assimilation (DA) and forecast (FC) experiments in the RMAPS-ST.</p> "> Figure 4
<p>Distributions of brightness temperatures (K) calculated from ATMS radiances of channel 9 (<b>a</b>) before and (<b>b</b>) after quality control at 1800 UTC 18 July 2016, in the main domain of the RMAPS-ST.</p> "> Figure 5
<p>The observation numbers (<b>a</b>) used in data assimilation and the statistics of the relative departures for ATMS different channels. (<b>b</b>) Mean bias and (<b>c</b>) standard deviation of the relative background departures with (REL_OMB_wb) and without (REL_OMB_nb) bias correction, and the relative analysis departures (REL_OMA) against the observed brightness temperatures at 1800 UTC 18 July 2016.</p> "> Figure 6
<p>The scatter plots of brightness temperatures (K) simulated by CRTM against observations (O) from ATMS channels 9 and 20 at 1800 UTC 18 July 2016. (<b>a</b>,<b>d</b>) and (<b>b</b>,<b>e</b>): Background (BAK) versus observations before (no BC) and after (with BC) bias correction, respectively. (<b>c</b>,<b>f</b>): Analysis (ANA) versus observations.</p> "> Figure 7
<p>The error statistics in vertical levels for temperature, humidity, and wind at the time 0 h of forecasts against sounding observations, including the average bias and RMSE for (<b>a</b>) temperature (TMP), (<b>b</b>) specific humidity (SPFH), (<b>c</b>) zonal wind (UGRD), and (<b>d</b>) meridional wind (VGRD).</p> "> Figure 8
<p>The average errors (bias score (BIAS)) and RMSEs of forecasting (<b>a</b>) temperature (TMP) at 2 m, (<b>b</b>) humidity (QV: QVAPOR) at 2 m, and (<b>c</b>) wind at 10 m over the forecast range of 0–24 h for CTRL and DA_RAD.</p> "> Figure 9
<p>Statistical indices of the Heidke skill score (HSS) (<b>a</b>–<b>d</b>), bias score (BIAS) (<b>e</b>–<b>h</b>), and false alarm rate (FAR) (<b>i</b>–<b>l</b>) for 6-h accumulated rainfall from the forecasts before (CTRL) and after (DA_RAD) assimilating ATMS radiance data.</p> "> Figure 10
<p>Statistic metrics of mean error (ME), mean absolute error (MAE), and Nash–Sutcliffe (NS) efficiency coefficient for forecasts against observed hourly rainfall over Domain 2 with a resolution of 3 km.</p> "> Figure 11
<p>Spatial patterns of 6-h accumulated rainfall distribution from (<b>a</b>–<b>d</b>) observations based on ground stations, (<b>e</b>–<b>h</b>) forecasts of CTRL, and (<b>i</b>–<b>l</b>) forecasts of DA_RAD at 0000 UTC, 0600 UTC, 1200 UTC, and 1800 UTC during 19 July 2016, respectively.</p> "> Figure 12
<p>Cross sections of relative humidity (%) along 38.5 °N for the first guess and the analysis at 1800 UTC 18 July 2016.</p> "> Figure 13
<p>Cross sections of vertical velocity (m/s) along 38.5 °N from the 12-h forecasts of CTRL and DA_RAD experiments initialized at 1800 UTC 18 July 2016.</p> "> Figure 14
<p>Geopotential height (shaded; m) and wind fields from the forecasts of CTRL and DA_RAD, initialized at 1800 UTC 18 July 2016, for (<b>a</b>–<b>c</b>) 500 hPa and (<b>d</b>–<b>f</b>) 700 hPa. The corresponding fields from (<b>a</b>,<b>d</b>) EC are used for comparison.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. The RMAP-ST System
2.2. ATMS Radiance Observations
2.3. Verification Strategy
3. Assimilation Experiments
3.1. Experiment Setup
3.2. Quality Control
4. Results
4.1. Analysis of Departure Statistics
4.2. Verification and Evaluation
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Weng, F.Z.; Yan, B.H.; Grody, N.C. A microwave land emissivity model. J. Geophys. Res. 2001, 106, 20115–20123. [Google Scholar] [CrossRef]
- Collard, A.; Hilton, F.; Forsythe, M.; Candy, B. From Observations to Forecasts—Part 8: The use of satellite observations in numerical weather prediction. Weather 2011, 66, 31–36. [Google Scholar] [CrossRef] [Green Version]
- Rodgers, C.D. Inverse Methods for Atmospheric Sounding: Theory and Practice; World Scientific: Singapore, 2000. [Google Scholar]
- Kalnay, E. Atmospheric Modeling, Data Assimilation and Predictability; Cambridge University Press: Cambridge, UK, 2003; pp. 51–72. [Google Scholar]
- McMillin, L.; Fleming, H. Atmospheric transmittance of an absorbing gas: A computationally fast and accurate transmittance model for absorbing gases with constant mixing ratios in inhomogeneous atmospheres. Appl. Opt. 1976, 15, 358–362. [Google Scholar] [CrossRef] [PubMed]
- Zou, X.; Weng, F.; Zhang, B.; Lin, L.; Qin, Z.; Tallapragada, V. Impacts of assimilation of ATMS data in HWRF on track and intensity forecasts of 2012 four landfall hurricanes. J. Geophys. Res. Atmos. 2013, 118, 558–576. [Google Scholar] [CrossRef]
- Saunders, R.; Matricardi, M.; Brunel, P. A fast radiative transfer model for assimilation of satellite radiance observations-RTTOV-5. Technical Memorandum No. 282. Eur. Cent. Medium-Range Weather Forecast. 1999, 1–30. [Google Scholar]
- McNally, A.P.; Watts, P.D.; Smith, J.A.; Engelen, R.; Kelly, G.A.; Thépaut, J.N.; Matricardi, M. The assimilation of AIRS radiance data at ECMWF. Q. J. R. Meteorol. Soc. 2006, 132, 935–957. [Google Scholar] [CrossRef] [Green Version]
- Barker, D.; Huang, X.Y.; Liu, Z.; Auligné, T.; Zhang, X.; Rugg, S.; Ajjaji, R.; Bourgeois, A.; Bray, J.; Chen, Y.; et al. The weather research and forecasting model’s community variational/ensemble data assimilation system: WRFDA. Bull. Am. Meteorol. Soc. 2012, 93, 831–843. [Google Scholar] [CrossRef] [Green Version]
- Buehner, M.; Caya, A.; Carrieres, T.; Pogson, L. Assimilation of SSMIS and ASCAT data and the replacement of highly uncertain estimates in the Environment Canada Regional Ice Prediction System. Q. J. R. Meteorol. Soc. 2016, 142, 562–573. [Google Scholar] [CrossRef]
- Kazumori, M. Satellite radiance assimilation in the JMA operational mesoscale 4DVAR system. Mon. Weather Rev. 2014, 142, 1361–1381. [Google Scholar] [CrossRef]
- Eyre, J.R. A bias correction scheme for simulated TOVS brightness temperatures. Tech. Memo. ECMWF 1992, 186, 1–28. [Google Scholar]
- Derber, J.C.; Wu, W.S. The use of TOVS cloud-cleared radiances in the NCEP SSI analysis system. Mon. Weather Rev. 1998, 126, 2287–2299. [Google Scholar] [CrossRef]
- Bauer, P.; Geer, A.J.; Lopez, P.; Salmond, D. Direct 4D-Var assimilation of all-sky radiance. Part I: Implementation. Q. J. R. Meteorol. Soc. 2010, 136, 1868–1885. [Google Scholar] [CrossRef]
- Liu, Z.Q.; Schwartz, C.S.; Snyder, C.; Ha, S.Y. Impact of assimilating AMSU-A radiances on forecasts of 2008 Atlantic tropical cyclones initialized with a limited-area ensemble kalman filter. Mon. Weather Rev. 2012, 140, 4017–4034. [Google Scholar] [CrossRef] [Green Version]
- Kanamitsu, M.; Kistler, R.E.; Reynolds, R.W. NCEP/NCAR reanalysis and the use of satellite data. Adv. Space Res. 1997, 19, 481–489. [Google Scholar] [CrossRef]
- Ye, Q.; Chen, S. Evaluating the Cloud Cover Forecast of NCEP Global Forecast System with Satellite Observation. Long Range 2011, 428, 8. [Google Scholar]
- Mcnally, A.P. The direct assimilation of cloud-affected satellite infrared radiances in the ECMWF 4D-Var. Q. J. R. Meteorol. Soc. 2009, 135, 1214–1229. [Google Scholar] [CrossRef]
- Joo, S.; Eyre, J.; Marriott, R. The Impact of MetOp and Other Satellite Data within the Met Office Global NWP System Using an Adjoint-Based Sensitivity Method. Mon. Weather Rev. 2013, 141, 3331–3342. [Google Scholar] [CrossRef]
- Lin, H.; Weygandt, S.S.; Back, A.; Hu, M.; Brown, J.M.; Alexander, C.R. Assimilation of Polar Orbiter and Geostationary Satellite Data in the RAP and HRRR models: Recent upgrades and ongoing work with new observation sets. In 25th Conference on Numerical Weather Prediction; Colorado B (Grand Hyatt Denver): Denver, CO, USA, 2018. [Google Scholar]
- Xu, J.J.; Powell, A.M. Dynamical downscaling precipitation over Southwest Asia: Impacts of radiance data assimilation on the forecasts of the WRF-ARW model. Atmos. Res. 2012, 111, 90–103. [Google Scholar] [CrossRef]
- Zou, X.; Qin, Z.; Weng, F. Improved Quantitative Precipitation Forecasts by MHS Radiance Data Assimilation with a Newly Added Cloud Detection Algorithm. Mon. Weather Rev. 2013, 141, 3203–3221. [Google Scholar] [CrossRef]
- Sagita, N.; Hidayati, R.; Hidayat, R.; Gustari, I. Satellite radiance data assimilation for rainfall prediction in Java Region. IOP Conf. Ser. Earth Environ. Sci. 2017, 54. [Google Scholar] [CrossRef]
- Wang, P.; Li, J.; Lu, B.; Schmit, T.J.; Lu, J.; Lee, Y.-K.; Li, J.; Liu, Z. Impact of moisture information from advaned Himawari imger measurements on heavy precipitation forecasts in a regional NWP model. J. Geophys. Res. Atmos. 2018, 123, 6022–6038. [Google Scholar] [CrossRef]
- Goldberg, M.D.; Weng, F. Advanced Technology Microwave Sounder. Earth Science Satellite Remote Sensing, Vol. 1: Science and Instrument; Springer: Berlin/Heidelberg, Germany, 2006; pp. 243–253. [Google Scholar] [CrossRef]
- Radnoti, G.; Bauer, P.; McNally, A.; Cardinali, C.; Healy, S.; Rosnay, P.d. ECMWF study on the impact of future developments of the space-based observing system on Numerical Weather Prediction. Tech. Memo. 638 ECMWF 2010, 1–117. [Google Scholar] [CrossRef]
- Ma, Y.; Zou, X. Striping noise mitigation in ATMS brightness temperatures and its impact on cloud LWP retrievals. J. Geophys. Res. Atmos. 2015, 120, 6634–6653. [Google Scholar] [CrossRef]
- Bormann, N.; Fouilloux, A.; Bell, W. Evaluation and assimilation of ATMS data in the ECMWF system. J. Geophys. Res. Atmos. 2013, 118, 12970–12980. [Google Scholar] [CrossRef]
- Weston, P.; Bormann, N. Enhancements to the Assimilation of ATMS at ECMWF: Observation Error Update and Addition of NOAA-20; EUMETSAT/ECMWF Fellowship Programme Research Report No. 48; ECMWF: Reading, UK, 2018; pp. 1–30. [Google Scholar]
- Xue, T.; Xu, J.; Guan, Z.; Chen, H.-C.; Chiu, L.S.; Shao, M. An assessment of the impact of ATMS and CrIS data assimilation on precipitation prediction over the Tibetan Plateau. J. Geophys. Res. Atmos. 2017, 10, 2517–2531. [Google Scholar] [CrossRef] [Green Version]
- Skamarock, W.C.; Klemp, J.B.; Dudhia, J.; Gill, D.O.; Barker, D.M.; Duda, M.G.; Huang, X.Y.; Wang, W.; Powers, J.G. A Description of the Advanced Research WRF Version 3. NCAR Technical Note NCAR/TN/475+STR. 2008. Available online: http://dx.doi.org/10.5065/D68S4MVH (accessed on 6 May 2019).
- Xie, Y.; Fan, S.; Chen, M.; Shi, J.; Zhong, J.; Zhang, X. An assessment of satellite radiance data assimilation in RMAPS. Remote Sens. 2019, 11, 54. [Google Scholar] [CrossRef] [Green Version]
- Parrish, D.F.; Derber, J.C. The National Meteorological Center’s spectral statistical interpo- lation analysis system. Mon. Weather Rev. 1992, 120, 1747–1763. [Google Scholar] [CrossRef]
- Wang, H.; Yang, Z.; Yang, D.; Gong, X. The method and application of automatic quali ty control for real time data from Automatic Weather Stations. Meteorol. Mon. 2007, 33, 102–109. [Google Scholar]
- Ren, Z.; Zhang, Z.; Sun, C.; Liu, Y.; Li, J. Development of three-step quality control system of real-time observation data from AWS in China. Meteorol. Mon. 2015, 41, 1265–1277. [Google Scholar]
- Xie, P.; Arkin, P.A. Analyses of global monthly precipitation using gauge observations, satellite estimates, and numerical model predictions. J. Clim. 1996, 9, 840–858. [Google Scholar] [CrossRef] [2.0.CO;2" target='_blank'>Green Version]
- Schaffer, J.T. The critical success index as an indicator of warning skill. Weather Forecast. 1990, 5, 570–575. [Google Scholar] [CrossRef] [2.0.CO;2" target='_blank'>Green Version]
- Casati, B.; Wilson, L.J.; Stephenson, D.B.; Nurmi, P.; Ghelli, A.; Pocernich, M.; Damrath, U.; Ebert, E.E.; Brown, B.G.; Mason, S. Forecast verification: Current status and future directions. Meteorol. Appl. 2008, 15, 3–18. [Google Scholar] [CrossRef]
- Stanski, H.R.; Wilson, L.J.; Burrows, W.R. Survey of common verification methods in meteorology. In World Weather Watch Technical Report; No.8, WMO/TD No.358; WMO: Geneva, Switzerland, 1989; Volume 114. [Google Scholar]
- Nash, J.E.; Sutcliffe, J.V. River Flow Forecasting through Conceptual Models Part 1—A Discussion of Principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Han, Y.; Delst, P.V.; Liu, Q.; Weng, F.; Yan, B.; Treadon, R.; Derber, J. Community radiative transfer model (CRTM): Version 1. NOAA Tech. Rep. 2006, 122, 1–33. [Google Scholar]
- Mcnally, A.P.; Derber, J.C.; Wu, W.; Katz, B.B. The use of TOVS level-lb radiances in the NCEP SSI analysis system. Q. J. R. Meteorol. Soc. 2000, 126, 689–724. [Google Scholar] [CrossRef]
- Grody, N.; Zhao, J.; Ferraro, R.; Weng, F.; Boers, R. Determination of precipitable water and cloud liquid water over oceans from the NOAA-15 Advanced Microwave Sounding Unit. J. Geophys. Res. 2001, 106, 2943–2953. [Google Scholar] [CrossRef]
- Harris, B.A.; Kelly, G.A. A satellite radiance bias correction scheme for data assimilation. Q. J. R. Meteorol. Soc. 2001, 127, 1453–1468. [Google Scholar] [CrossRef]
Channel Number | Frequency (GHz) | WF Peak (hPa) | Channel Number | Frequency (GHz) | WF Peak (hPa) |
---|---|---|---|---|---|
1 | 23.8 | Surface | 12 | 57.2903 | 25 |
2 | 31.4 | Surface | 13 | 57.2903 ± 0.322 | 10 |
3 | 50.3 | Surface | 14 | 57.2903 ± 0.322 ± 0.010 | 5 |
4 | 51.76 | 950 | 15 | 57.2903 ± 0.322 ± 0.004 | 2 |
5 | 52.8 | 850 | 16 | 88.20 | Surface |
6 | 53.596 ± 0.115 | 700 | 17 | 165.5 | Surface |
7 | 54.4 | 400 | 18 | 183.31 ± 7 | 800 |
8 | 54.94 | 250 | 19 | 183.31 ± 4.5 | 700 |
9 | 55.5 | 200 | 20 | 183.31 ± 3 | 500 |
10 | 57.2903 | 100 | 21 | 183.31 ± 1.8 | 400 |
11 | 57.2903 ± 0.115 | 50 | 22 | 183.31 ± 1.0 | 300 |
Observed | |||
---|---|---|---|
yes | no | ||
Forecast | yes | hits (a) | false alarms (b) |
no | misses (c) | correct rejects (d) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, Y.; Chen, M.; Shi, J.; Fan, S.; He, J.; Dou, Y. Impacts of Assimilating ATMS Radiances on Heavy Rainfall Forecast in RMAPS-ST. Remote Sens. 2020, 12, 1147. https://doi.org/10.3390/rs12071147
Xie Y, Chen M, Shi J, Fan S, He J, Dou Y. Impacts of Assimilating ATMS Radiances on Heavy Rainfall Forecast in RMAPS-ST. Remote Sensing. 2020; 12(7):1147. https://doi.org/10.3390/rs12071147
Chicago/Turabian StyleXie, Yanhui, Min Chen, Jiancheng Shi, Shuiyong Fan, Jing He, and Youjun Dou. 2020. "Impacts of Assimilating ATMS Radiances on Heavy Rainfall Forecast in RMAPS-ST" Remote Sensing 12, no. 7: 1147. https://doi.org/10.3390/rs12071147