Assessment of an Automated Calibration of the SEBAL Algorithm to Estimate Dry-Season Surface-Energy Partitioning in a Forest–Savanna Transition in Brazil
"> Figure 1
<p>Flowchart of the methodology to estimate surface energy and water fluxes based on meteorological measurements, Modern-Era Reanalysis for Research and Applications version 2 (MERRA-2) reanalysis data, and Landsat 5 remote sensing images.</p> "> Figure 2
<p>Characterization of the transitional area between tropical forest and savanna vegetation in the Brazilian state of Tocantins (TO) and location of the eddy covariance measurements at the Bananal Javaés (JAV) site (flux tower), using the Landsat 5 image path-row 223–067 from July 2005 (<b>left</b>). MODIS tree cover fraction is used to illustrate the large-scale vegetation spatial pattern (<b>right</b>).</p> "> Figure 3
<p>Comparison of hourly (average between 10:00 and 11:00 am) wind speed (<math display="inline"><semantics> <mi>u</mi> </semantics></math>) (<b>a</b>), relative humidity (<math display="inline"><semantics> <mrow> <mi>R</mi> <mi>H</mi> </mrow> </semantics></math>) (<b>b</b>), air temperature (<math display="inline"><semantics> <mrow> <msub> <mi>T</mi> <mi>a</mi> </msub> </mrow> </semantics></math>) (<b>c</b>), and daily incident shortwave radiation (<math display="inline"><semantics> <mrow> <msub> <mi>R</mi> <mi>s</mi> </msub> </mrow> </semantics></math>) (<b>d</b>) between MERRA-2 and meteorological measurements at the JAV site. Shaded areas represent the climatological dry season.</p> "> Figure 4
<p>Comparisons of instantaneous surface energy fluxes (net radiation (<math display="inline"><semantics> <mrow> <msub> <mi>R</mi> <mi>n</mi> </msub> </mrow> </semantics></math>) (<b>a</b>), soil heat (<math display="inline"><semantics> <mi>G</mi> </semantics></math>) (<b>b</b>), sensible heat (<math display="inline"><semantics> <mi>H</mi> </semantics></math>) (<b>c</b>), and latent heat (<math display="inline"><semantics> <mrow> <mi>L</mi> <mi>E</mi> </mrow> </semantics></math>) (<b>d</b>)) between ground measurements (where in situ stands for measurements without energy balance closure and in situ EBC for measurements with energy balance closure) and SEBAL estimations driven by meteorological measurements (SEBAL-T) and MERRA-2 (SEBAL-M) for nine quantile groups of endmember selection at the JAV site.</p> "> Figure 5
<p>Comparison between ground measurements (where in situ inst and day stand for instantaneous and daily measurements without energy balance closure, respectively, and in situ EBC for daily measurements with energy balance closure) and SEBAL estimates of evaporative fraction (<math display="inline"><semantics> <mi>Λ</mi> </semantics></math>) (<b>a</b>), daily net radiation (<math display="inline"><semantics> <mrow> <msub> <mi>R</mi> <mrow> <msub> <mi>n</mi> <mrow> <mn>24</mn> <mi>h</mi> </mrow> </msub> </mrow> </msub> </mrow> </semantics></math>) (<b>b</b>), and daily evapotranspiration (<math display="inline"><semantics> <mrow> <mi>E</mi> <msub> <mi>T</mi> <mrow> <mn>24</mn> <mi>h</mi> </mrow> </msub> </mrow> </semantics></math>) (<b>c</b>) driven by in situ meteorological measurements (SEBAL-T) and MERRA-2 (SEBAL-M).</p> "> Figure 6
<p>Spatial patterns of land cover (<b>a</b>) and the dry season average of vegetation index (<math display="inline"><semantics> <mrow> <mi>N</mi> <mi>D</mi> <mi>V</mi> <mi>I</mi> </mrow> </semantics></math>) (<b>b</b>), surface temperature (<math display="inline"><semantics> <mrow> <msub> <mi>T</mi> <mi>s</mi> </msub> </mrow> </semantics></math>) (<b>c</b>), and daily evapotranspiration (<math display="inline"><semantics> <mrow> <mi>E</mi> <mi>T</mi> </mrow> </semantics></math>) (<b>d</b>) in the study area for the year 2004 DOY 200.</p> "> Figure 7
<p>Dry season temporal variability of daily evapotranspiration (<math display="inline"><semantics> <mrow> <mi>E</mi> <mi>T</mi> </mrow> </semantics></math>) (<b>a</b>) and Bowen ratio (<math display="inline"><semantics> <mrow> <mi>β</mi> <mo stretchy="false">)</mo> </mrow> </semantics></math> (<b>b</b>) for all analyzed images from SEBAL-T results using <math display="inline"><semantics> <mrow> <msub> <mi>g</mi> <mrow> <mi>T</mi> <mi>s</mi> </mrow> </msub> <msub> <mrow/> <mn>4</mn> </msub> </mrow> </semantics></math> quantile. Values were averaged for each MapBiomas land class during 2004–2006.</p> "> Figure 8
<p>Average surface-energy-fluxes partitioning between sensible (<math display="inline"><semantics> <mi>H</mi> </semantics></math>) and latent (<math display="inline"><semantics> <mrow> <mi>L</mi> <mi>E</mi> </mrow> </semantics></math>) heat according to changes in vegetation physiognomies using SEBAL-T results with <math display="inline"><semantics> <mrow> <msub> <mi>g</mi> <mrow> <mi>T</mi> <mi>s</mi> </mrow> </msub> <msub> <mrow/> <mn>4</mn> </msub> </mrow> </semantics></math> quantile for the year 2004 DOY 200.</p> "> Figure 9
<p>Example of endmember pixel selection for the year 2004 DOY 200 (<b>center</b>). <math display="inline"><semantics> <mrow> <msub> <mi>T</mi> <mi>s</mi> </msub> <mo> </mo> <mi>c</mi> <mi>o</mi> <mi>l</mi> <mi>d</mi> </mrow> </semantics></math> (<b>left</b>) and <math display="inline"><semantics> <mrow> <msub> <mi>T</mi> <mi>s</mi> </msub> <mo> </mo> <mi>h</mi> <mi>o</mi> <mi>t</mi> </mrow> </semantics></math> (<b>right</b>) represent the hot and cold endmember candidates for each quantile group, respectively, while the black line indicates the selected endmember <math display="inline"><semantics> <mrow> <msub> <mi>T</mi> <mi>s</mi> </msub> </mrow> </semantics></math>. For each column chart, the <span class="html-italic">y</span>-axis represents pixel frequency while the <span class="html-italic">x</span>-axis represents <math display="inline"><semantics> <mrow> <msub> <mi>T</mi> <mi>s</mi> </msub> </mrow> </semantics></math>.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Overview
2.2. Micrometeorological and Eddy Covariance Measurements
2.3. MERRA-2 Meteorological Reanalysis Data
2.4. Landsat Data
2.5. Surface Energy Balance Algorithm for Land (SEBAL)
2.6. MapBiomas Land Cover Dataset
2.7. MERRA-2 and SEBAL Assessment
3. Results
3.1. Validation of MERRA-2 Reanalysis Data
3.2. Validation of SEBAL Instantaneous Surface Flux Estimates
3.3. Assessment of SEBAL Daily Evapotranspiration Estimates
3.4. Spatial Assessment of Surface Energy and Water Fluxes
4. Discussions
4.1. Uncertainties in the SEBAL Model Structure
4.2. Uncertainties in the SEBAL Instantaneous and Daily ET Estimates
4.3. The SEBAL Sensitivity to Meteorological Inputs
4.4. The SEBAL Sensitivity to Endmember Selection
4.5. Spatial Assessment of Surface Energy and Water Fluxes
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Fisher, J.B.; Melton, F.; Middleton, E.; Hain, C.; Anderson, M.; Allen, R.; McCabe, M.F.; Hook, S.; Baldocchi, D.; Townsend, P.A.; et al. The future of evapotranspiration: Global requirements for ecosystem functioning, carbon and climate feedbacks, agricultural management, and water resources. Water Resour. Res. 2017, 53, 2618–2626. [Google Scholar] [CrossRef]
- Panday, P.K.; Coe, M.T.; Macedo, M.N.; Lefebvre, P.; de Almeida Castanho, A.D. Deforestation offsets water balance changes due to climate variability in the Xingu River in eastern Amazonia. J. Hydrol. 2015, 523, 822–829. [Google Scholar] [CrossRef]
- Pongratz, J.; Bounoua, L.; Defries, R.S.; Morton, D.C.; Anderson, L.O.; Mauser, W.; Klink, C.A. The impact of land cover change on surface energy and water balance in Mato Grosso, Brazil. Earth Interact. 2006, 10, 1–17. [Google Scholar] [CrossRef]
- Dias, L.C.P.; Macedo, M.N.; Costa, M.H.; Coe, M.T.; Neill, C. Effects of land cover change on evapotranspiration and streamflow of small catchments in the Upper Xingu River Basin, Central Brazil. J. Hydrol. Reg. Stud. 2015, 4, 108–122. [Google Scholar] [CrossRef] [Green Version]
- Li, G.; Zhang, F.; Jing, Y.; Liu, Y.; Sun, G. Response of evapotranspiration to changes in land use and land cover and climate in China during 2001–2013. Sci. Total Environ. 2017, 256–265, 596–597. [Google Scholar] [CrossRef]
- Aragão, L. Environmental science: The rainforest’s water pump. Nature 2012, 489, 217–218. [Google Scholar] [CrossRef]
- Spracklen, D.V.; Arnold, S.R.; Taylor, C.M. Observations of increased tropical rainfall preceded by air passage over forests. Nature 2012, 489, 282–285. [Google Scholar] [CrossRef]
- Zemp, D.C.; Schleussner, C.-F.; Barbosa, H.M.J.; Hirota, M.; Montade, V.; Sampaio, G.; Staal, A.; Wang-Erlandsson, L.; Rammig, A. Self-amplified Amazon forest loss due to vegetation-atmosphere feedbacks. Nat. Commun. 2017, 8, 14681. [Google Scholar] [CrossRef]
- Spera, S.A.; Galford, G.L.; Coe, M.T.; Macedo, M.N.; Mustard, J.F. Land-use change affects water recycling in Brazil’s last agricultural frontier. Glob. Chang. Biol. 2016, 22, 3405–3413. [Google Scholar] [CrossRef]
- Coe, M.; Latrubesse, E.; Ferreira, M.; Amsler, M. The effects of deforestation and climate variability on the streamflow of the Araguaia River, Brazil. Biogeochemistry 2011, 105, 119–131. [Google Scholar] [CrossRef]
- da Silva, H.J.F.; Gonçalves, W.A.; Bezerra, B.G. Comparative analyzes and use of evapotranspiration obtained through remote sensing to identify deforested areas in the Amazon. Int. J. Appl. Earth Obs. Geoinf. 2019, 78, 163–174. [Google Scholar] [CrossRef]
- Furlan, D.N. Land use and land cover effects on the water balance and surface energy balance on the Ji-pArana (RO) basin using multitemporal remote sensing data. Ph.D. Thesis, Universidade de São Paulo: Piracicaba, São Paulo, Brazil, 2013. (In Portuguese). [Google Scholar]
- Lathuillière, M.J.; Dalmagro, H.J.; Black, T.A.; de Arruda, P.H.Z.; Hawthorne, I.; Couto, E.G.; Johnson, M.S. Rain-fed and irrigated cropland-atmosphere water fluxes and their implications for agricultural production in Southern Amazonia. Agric. For. Meteorol. 2018, 256–257, 407–419. [Google Scholar] [CrossRef]
- Wright, J.S.; Fu, R.; Worden, J.R.; Chakraborty, S.; Clinton, N.E.; Risi, C.; Sun, Y.; Yin, L. Rainforest-initiated wet season onset over the southern Amazon. Proc. Natl. Acad. Sci. USA 2017, 114, 8481–8486. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Costa, M.H.; Pires, G.F. Effects of Amazon and Central Brazil deforestation scenarios on the duration of the dry season in the arc of deforestation. Int. J. Climatol. 2009, 30, 1970–1979. [Google Scholar] [CrossRef]
- McShane, R.R.; Driscoll, P.K.; Sando, R. A Review of Surface Energy Balance Models for Estimating Actual Evapotranspiration with Remote Sensing at High Spatiotemporal Resolution over Large Extents; Scientific Investigations Report 2017–5087; U.S. Geological Survey: Reston, VA, USA, 2017; 19p. [Google Scholar]
- Biggs, T.W.; Marshall, M.; Messina, A. Mapping daily and seasonal evapotranspiration from irrigated crops using global climate grids and satellite imagery: Automation and methods comparison. Water Resour. Res. 2016, 52, 7311–7326. [Google Scholar] [CrossRef]
- Kalma, J.D.; McVicar, T.R.; McCabe, M.F. Estimating land surface evaporation: A review of methods using remotely sensed surface temperature data. Surv. Geophys. 2008, 29, 421–469. [Google Scholar] [CrossRef]
- Aubinet, M.; Vesala, T.; Papale, D. Eddy Covariance: A Practical Guide to Measurement and Data Analysis; Springer: Berlin/Heidelberg, Germany, 2012; ISBN 9789400723504. [Google Scholar]
- Biggs, T.; Petropoulos, G.P.; Velpuri, N.M.; Marshall, M.; Glenn, E.P.; Nagler, P.L.; Messina, A. Remote Sensing of Actual Evapotranspiration from Cropland: Chapter 3. In Remote Ssensing Handbook, Vol. III: Remote Sensing of Water Resources, Disasters, and Urban Studies; Thenkabail, P.S., Ed.; CRC Press: Boca Raton, FL, USA, 2015. [Google Scholar]
- Martens, B.; Miralles, D.G.; Lievens, H.; van der Schalie, R.; de Jeu, R.A.M.; Fernández-Prieto, D.; Beck, H.E.; Dorigo, W.A.; Verhoest, N.E.C. GLEAM v3: Satellite-based land evaporation and root-zone soil moisture. Geosci. Model Dev. 2017, 10, 1903–1925. [Google Scholar] [CrossRef] [Green Version]
- Michel, D.; Jiménez, C.; Miralles, D.G.; Jung, M.; Hirschi, M.; Ershadi, A.; Martens, B.; McCabe, M.F.; Fisher, J.B.; Mu, Q.; et al. The WACMOS-ET project – Part 1: Tower-scale evaluation of four remote-sensing-based evapotranspiration algorithms. Hydrol. Earth Syst. Sci. 2016, 20, 803–822. [Google Scholar] [CrossRef] [Green Version]
- Miralles, D.G.; Jiménez, C.; Jung, M.; Michel, D.; Ershadi, A.; McCabe, M.F.; Hirschi, M.; Martens, B.; Dolman, A.J.; Fisher, J.B.; et al. The WACMOS-ET project – Part 2: Evaluation of global terrestrial evaporation data sets. Hydrol. Earth Syst. Sci. 2016, 20, 823–842. [Google Scholar] [CrossRef] [Green Version]
- Mu, Q.; Zhao, M.; Running, S.W. Improvements to a MODIS global terrestrial evapotranspiration algorithm. Remote Sens. Environ. 2011, 115, 1781–1800. [Google Scholar] [CrossRef]
- Fisher, J.B.; Tu, K.P.; Baldocchi, D.D. Global estimates of the land–atmosphere water flux based on monthly AVHRR and ISLSCP-II data, validated at 16 FLUXNET sites. Remote Sens. Environ. 2008, 112, 901–919. [Google Scholar] [CrossRef]
- Bastiaanssen, W.G.M.; Menenti, M.; Feddes, R.A.; Holtslag, A.A.M. A remote sensing surface energy balance algorithm for land (SEBAL): 1. Formulation. J. Hydrol. 1998, 212–213, 198–212. [Google Scholar] [CrossRef]
- Allen, R.; Tasumi, M.; Trezza, R. Satellite-Based Energy Balance for Mapping Evapotranspiration With Internalized Calibration (METRIC) – Model. J. Irrig. Drain. Eng. 2007, 133. [Google Scholar] [CrossRef]
- Anderson, M.; Kustas, W.P.; Norman, J.; Hain, C.; Mecikalski, J.R.; Schultz, L.; González-Dugo, M.; Cammalleri, C.; D’Urso, G.; Pimstein, A. Mapping daily evapotranspiration at field to continental scales using geostationary and polar orbiting satellite imagery. Hydrol. Earth Syst. Sci. 2011, 15, 223. [Google Scholar] [CrossRef] [Green Version]
- Senay, G.B.; Bohms, S.; Singh, R.K.; Gowda, P.H.; Velpuri, N.M.; Alemu, H.; Verdin, J.P. Operational Evapotranspiration Mapping Using Remote Sensing and Weather Datasets: A New Parameterization for the SSEB Approach. JAWRA J. Am. Water Resour. Assoc. 2013, 49, 577–591. [Google Scholar] [CrossRef] [Green Version]
- Su, B. The Surface Energy Balance System (SEBS) for Estimation of Turbulent Heat Fluxes. Hydrol. Earth Syst. Sci. 1988, 6. [Google Scholar] [CrossRef]
- Jaafar, H.H.; Ahmad, F.A. Time series trends of Landsat-based ET using automated calibration in METRIC and SEBAL: The Bekaa Valley, Lebanon. Remote Sens. Environ. 2019. [Google Scholar] [CrossRef]
- Senay, G.B.; Schauer, M.; Friedrichs, M.; Velpuri, N.M.; Singh, R.K. Satellite-based water use dynamics using historical Landsat data (1984–2014) in the southwestern United States. Remote Sens. Environ. 2017, 202, 98–112. [Google Scholar] [CrossRef]
- Senay, B.G.; Schauer, M.; Velpuri, M.N.; Singh, K.R.; Kagone, S.; Friedrichs, M.; Litvak, E.M.; Douglas-Mankin, R.K. Long-Term (1986–2015) Crop Water Use Characterization over the Upper Rio Grande Basin of United States and Mexico Using Landsat-Based Evapotranspiration. Remote Sens. 2019, 11, 1587. [Google Scholar] [CrossRef] [Green Version]
- Choragudi, V.N.R.K. Sensitivity analysis on mapping evapotranspiration at high resolution using internal calibration (METRIC). Civ. Eng. Theses Diss. Student Res. 2011, 78. [Google Scholar]
- Long, D.; Singh, V.P.; Li, Z.-L. How sensitive is SEBAL to changes in input variables, domain size and satellite sensor? J. Geophys. Res. Atmos. 2011, 116. [Google Scholar] [CrossRef]
- Morton, C.G.; Huntington, J.L.; Pohll, G.M.; Allen, R.G.; McGwire, K.C.; Bassett, S.D. Assessing Calibration Uncertainty and Automation for Estimating Evapotranspiration from Agricultural Areas Using METRIC. JAWRA J. Am. Water Resour. Assoc. 2013, 49, 549–562. [Google Scholar] [CrossRef]
- Grosso, C.; Manoli, G.; Martello, M.; Chemin, Y.H.; Pons, D.; Teatini, P.; Piccoli, I.; Morari, F. Mapping Maize Evapotranspiration at Field Scale Using SEBAL: A Comparison with the FAO Method and Soil-Plant Model Simulations. Remote Sens. 2018, 10, 1452. [Google Scholar] [CrossRef] [Green Version]
- Tang, R.; Li, Z.-L.; Chen, K.-S.; Jia, Y.; Li, C.; Sun, X. Spatial-scale effect on the SEBAL model for evapotranspiration estimation using remote sensing data. Agric. For. Meteorol. 2013, 174–175, 28–42. [Google Scholar] [CrossRef]
- Sun, Z.; Wei, B.; Su, W.; Shen, W.; Wang, C.; You, D.; Liu, Z. Evapotranspiration estimation based on the SEBAL model in the Nansi Lake Wetland of China. Math. Comput. Model. 2011, 54, 1086–1092. [Google Scholar] [CrossRef]
- de Teixeira, A.H.C.; Bastiaanssen, W.G.M.; Ahmad, M.D.; Bos, M.G. Reviewing SEBAL input parameters for assessing evapotranspiration and water productivity for the Low-Middle São Francisco River basin, Brazil. Agric. For. Meteorol. 2009, 149, 462–476. [Google Scholar] [CrossRef] [Green Version]
- Al Zayed, I.S.; Elagib, N.A.; Ribbe, L.; Heinrich, J. Satellite-based evapotranspiration over Gezira Irrigation Scheme, Sudan: A comparative study. Agric. Water Manag. 2016, 177, 66–76. [Google Scholar] [CrossRef]
- Yang, Y.; Shang, S.; Jiang, L. Remote sensing temporal and spatial patterns of evapotranspiration and the responses to water management in a large irrigation district of North China. Agric. For. Meteorol. 2012, 164, 112–122. [Google Scholar] [CrossRef]
- Allen, R.; Kilic, A.; Trezza, R.; Hendrickx, J.; Bastiaanssen, W.G.M.; Kjaersgaard, J. Satellite-based ET estimation in agriculture using SEBAL and METRIC. Hydrol. Process. 2011, 25, 4011–4027. [Google Scholar] [CrossRef]
- Sando, R.; Caldwell, R.R.; Blasch, K. Using Remote Sensing to Characterize and Compare Evapotranspiration from Different Irrigation Regimes in the Smith River Watershed of Central Montana. Irrig. Drain. Syst. Eng. 2017, 6, 1–10. [Google Scholar] [CrossRef]
- Li, S.; Zhao, W. Satellite-based actual evapotranspiration estimation in the middle reach of the Heihe River Basin using the SEBAL method. Hydrol. Process. 2010, 24, 3337–3344. [Google Scholar] [CrossRef]
- Bandara, K.M.P. Monitoring irrigation performance in Sri Lanka with high-frequency satellite measurements during the dry season. Agric. Water Manag. 2003, 58, 159–170. [Google Scholar] [CrossRef]
- Bastiaanssen, W.G.M.; Ali, S. A new crop yield forecasting model based on satellite measurements applied across the Indus Basin, Pakistan. Agric. Ecosyst. Environ. 2003, 94, 321–340. [Google Scholar] [CrossRef]
- da Silva, B.B.; Wilcox, B.P.; da Silva, V.D.P.R.; Montenegro, S.M.G.L.; de Oliveira, L.M.M. Changes to the energy budget and evapotranspiration following conversion of tropical savannas to agricultural lands in São Paulo State, Brazil. Ecohydrology 2014, 8, 1272–1283. [Google Scholar] [CrossRef]
- de Oliveira Costa, J.; Coelho, R.; Wolff, W.; José, J.; Folegatti, M.; Ferraz, S. Spatial variability of coffee plant water consumption based on the SEBAL algorithm. Sci. Agric. 2019, 76, 93–101. [Google Scholar] [CrossRef]
- Kiptala, J.K.; Mohamed, Y.; Mul, M.L.; der Zaag, P. Mapping evapotranspiration trends using MODIS and SEBAL model in a data scarce and heterogeneous landscape in Eastern Africa. Water Resour. Res. 2013, 49, 8495–8510. [Google Scholar] [CrossRef] [Green Version]
- Numata, I.; Khand, K.; Kjaersgaard, J.; Cochrane, M.A.; Silva, S.S. Evaluation of Landsat-Based METRIC Modeling to Provide High-Spatial Resolution Evapotranspiration Estimates for Amazonian Forests. Remote Sens. 2017, 9, 46. [Google Scholar] [CrossRef] [Green Version]
- Ruhoff, A.; Paz, A.; Collischonn, W.; Aragão, L.; Rocha, H.R.; Malhi, Y.S. A MODIS-Based Energy Balance to Estimate Evapotranspiration for Clear-Sky Days in Brazilian Tropical Savannas. Remote Sens. 2012, 4, 703–725. [Google Scholar] [CrossRef] [Green Version]
- Bastiaanssen, W.G.M. Regionalization of Surface Flux Densities and Moisture Indicators in Composite Terrain: A Remote Sensing Approach under Clear Skies in Mediterranean Climates. SC-DLO: Wageningen, Gelderland, The Netherlands, 1995. [Google Scholar]
- Allen, R.G.; Burnett, B.; Kramber, W.; Huntington, J.; Kjaersgaard, J.; Kilic, A.; Kelly, C.; Trezza, R. Automated Calibration of the METRIC-Landsat Evapotranspiration Process. JAWRA J. Am. Water Resour. Assoc. 2013, 49, 563–576. [Google Scholar] [CrossRef]
- Bhattarai, N.; Quackenbush, L.J.; Im, J.; Shaw, S.B. A new optimized algorithm for automating endmember pixel selection in the SEBAL and METRIC models. Remote Sens. Environ. 2017, 196, 178–192. [Google Scholar] [CrossRef]
- Silva, A.M.; da Silva, R.M.; Santos, C.A.G. Automated surface energy balance algorithm for land (ASEBAL) based on automating endmember pixel selection for evapotranspiration calculation in MODIS orbital images. Int. J. Appl. Earth Obs. Geoinf. 2019, 79, 1–11. [Google Scholar] [CrossRef]
- Feng, L. Sensitivity Analysis of Hot/Cold Pixel Selection in SEBAL Model for ET Estimation. Ph.D. Thesis, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA, 2015. [Google Scholar]
- Long, D.; Singh, V.P. Assessing the impact of end-member selection on the accuracy of satellite-based spatial variability models for actual evapotranspiration estimation. Water Resour. Res. 2013, 49, 2601–2618. [Google Scholar] [CrossRef]
- Long, D.; Singh, V.P. A modified surface energy balance algorithm for land (M-SEBAL) based on a trapezoidal framework. Water Resour. Res. 2012, 48. [Google Scholar] [CrossRef]
- Lee, Y.; Kim, S. The Modified SEBAL for Mapping Daily Spatial Evapotranspiration of South Korea Using Three Flux Towers and Terra MODIS Data. Remote Sens. 2016, 8, 983. [Google Scholar] [CrossRef] [Green Version]
- Bhattarai, N.; Mallick, K.; Stuart, J.; Vishwakarma, B.D.; Niraula, R.; Sen, S.; Jain, M. An automated multi-model evapotranspiration mapping framework using remotely sensed and reanalysis data. Remote Sens. Environ. 2019, 229, 69–92. [Google Scholar] [CrossRef]
- Baik, J.; Liaqat, U.; Choi, M. Assessment of satellite- and reanalysis-based evapotranspiration products with two blending approaches over the complex landscapes and climates of Australia. Agric. For. Meteorol. 2018, 263, 388–398. [Google Scholar] [CrossRef]
- Yuan, W.; Liu, S.; Yu, G.; Bonnefond, J.-M.; Chen, J.; Davis, K.; Desai, A.R.; Goldstein, A.H.; Gianelle, D.; Rossi, F.; et al. Global estimates of evapotranspiration and gross primary production based on MODIS and global meteorology data. Remote Sens. Environ. 2010, 114, 1416–1431. [Google Scholar] [CrossRef] [Green Version]
- Ishak, A.M.; Bray, M.; Remesan, R.; Han, D. Estimating reference evapotranspiration using numerical weather modelling. Hydrol. Process. 2010, 24, 3490–3509. [Google Scholar] [CrossRef]
- Costa, M.H.; Foley, J.A. Trends in the hydrologic cycle of the Amazon basin. J. Geophys. Res. Atmos. 1999, 104, 14189–14198. [Google Scholar] [CrossRef]
- Kalnay, E.; Kanamitsu, M.; Kistler, R.; Collins, W.; Deaven, D.; Gandin, L.; Iredell, M.; Saha, S.; White, G.; Woollen, J.; et al. The NCEP/NCAR 40-year reanalysis project. Bull. Am. Meteorol. Soc. 1996, 77, 437–471. [Google Scholar] [CrossRef] [2.0.CO;2" target='_blank'>Green Version]
- Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.; Balsamo, G.; Bauer, P.; et al. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 2011. [Google Scholar] [CrossRef]
- Gelaro, R.; McCarty, W.; Suárez, M.J.; Todling, R.; Molod, A.; Takacs, L.; Randles, C.A.; Darmenov, A.; Bosilovich, M.G.; Reichle, R.; et al. The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2). J. Clim. 2017, 30, 5419–5454. [Google Scholar] [CrossRef] [PubMed]
- Borma, L.S.; da Rocha, H.R.; Cabral, O.M.; von Randow, C.; Collicchio, E.; Kurzatkowski, D.; Brugger, P.J.; Freitas, H.; Tannus, R.; Oliveira, L.; et al. Atmosphere and hydrological controls of the evapotranspiration over a floodplain forest in the Bananal Island region, Amazonia. J. Geophys. Res. 2009, 114, G01003. [Google Scholar] [CrossRef] [Green Version]
- Rocha, H.; Manzi, A.; Cabral, O.D.; Miller, S.L.; Goulden, M.; Saleska, S.; Restrepo-Coupe, N.; Wofsy, S.; Borma, L.; Artaxo, P.; et al. Patterns of water and heat flux across a biome gradient from tropical forest to savanna in Brazil. J. Geophys. Res. 2009, 114. [Google Scholar] [CrossRef]
- Tollefson, J. Deforestation ticks up in Brazil’s savannah. Nature 2018, 12. [Google Scholar] [CrossRef]
- Alvares, C.A.; Stape, J.L.; Sentelhas, P.C.; de Moraes, G.; Leonardo, J.; Sparovek, G. Köppen’s climate classification map for Brazil. Meteorol. Zeitschrift 2013, 22, 711–728. [Google Scholar] [CrossRef]
- Oliveira, L.D.S. Surface and atmospheric fluxes over the Bananal Insland ecotone. Ph.D. Thesis, Universidade de São Paulo: São Paulo, São Paulo, Brazil, 2006. (In Portuguese). [Google Scholar]
- de Gonçalves, L.S.; Borak, J.; Costa, M.; Saleska, S.; Baker, I.; Restrepo-Coupe, N.; Muza, M.; Poulter, B.; Verbeeck, H.B.; Fisher, J.; et al. Overview of the Large-Scale Biosphere–Atmosphere Experiment in Amazonia Data Model Intercomparison Project (LBA-DMIP). Agric. For. Meteorol. 2013, 182–183, 111–127. [Google Scholar]
- Keller, M.; Dias, M.; Nepstad, D.; Andreae, M. The Large-Scale Biosphere-Atmosphere Experiment in Amazonia: Analyzing Regional Land Use Change Effects. Ecosyst. Land Use Chang. 2004, 153, 321–334. [Google Scholar]
- Christoffersen, B.O.; Restrepo-Coupe, N.; Arain, M.A.; Baker, I.T.; Cestaro, B.P.; Ciais, P.; Fisher, J.B.; Galbraith, D.; Guan, X.; Gulden, L.; et al. Mechanisms of water supply and vegetation demand govern the seasonality and magnitude of evapotranspiration in Amazonia and Cerrado. Agric. For. Meteorol. 2014, 191, 33–50. [Google Scholar] [CrossRef]
- Saleska, S.R.; Da Rocha, H.R.; Huete, A.R.; Nobre, A.D.; Artaxo, P.E.; Shimabukuro, Y.E. LBA-ECO CD-32 Flux Tower Network Data Compilation, Brazilian Amazon: 1999–2006. Available online: http://daac.ornl.gov/LBA/guides/CD32_Brazil_Flux_Network.html (accessed on 2 February 2020).
- Wilson, K.; Goldstein, A.; Falge, E.; Aubinet, M.; Baldocchi, D.; Berbigier, P.; Bernhofer, C.; Ceulemans, R.; Dolman, H.; Field, C.; et al. Energy balance closure at FLUXNET sites. Agric. For. Meteorol. 2002, 113, 223–243. [Google Scholar] [CrossRef] [Green Version]
- Twine, T.E.; Kustas, W.P.; Norman, J.M.; Cook, D.R.; Houser, P.R.; Meyers, T.P.; Prueger, J.H.; Starks, P.J.; Wesely, M.L. Correcting eddy-covariance flux underestimates over a grassland. Agric. For. Meteorol. 2000, 103, 279–300. [Google Scholar] [CrossRef] [Green Version]
- Jung, M.; Reichstein, M.; Ciais, P.; Seneviratne, S.I.; Sheffield, J.; Goulden, M.L.; Bonan, G.; Cescatti, A.; Chen, J.; de Jeu, R.; et al. Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature 2010, 467, 951–954. [Google Scholar] [CrossRef] [PubMed]
- Wohlfahrt, G.; Widmoser, P. Can an energy balance model provide additional constraints on how to close the energy imbalance? Agric. For. Meteorol. 2013, 169, 85–91. [Google Scholar] [CrossRef] [Green Version]
- Shuttleworth, W.J. Terrestrial Hydrometeorology, 1 st ed.; John Wiley & Sons, Ltd.: Chichester, UK, 2012; ISBN 9781119951933. [Google Scholar]
- Bastiaanssen, W.G.M. SEBAL-based sensible and latent heat fluxes in the irrigated Gediz Basin, Turkey. J. Hydrol. 2000, 229, 87–100. [Google Scholar] [CrossRef]
- Tasumi, M.; Allen, R.G.; Trezza, R. At-Surface Reflectance and Albedo from Satellite for Operational Calculation of Land Surface Energy Balance. J. Hydrol. Eng. 2008, 13, 51–63. [Google Scholar] [CrossRef]
- Dhungel, S.; Barber, M. Remote sensing Estimating Calibration Variability in Evapotranspiration Derived from a Satellite-Based Energy Balance Model. Remote Sens. 2018, 10, 1695. [Google Scholar] [CrossRef] [Green Version]
- de Bruin, H.A. From penman to makkink. Evaporation Weather 1987, 39, 5–31. [Google Scholar]
- Lasdon, L.L.; Fox, R.W.; Ratner, M. Nonlinear Optimization Using the Generalized Reduced Gradient Method. Rev. Française d’Automatique, Informatique, Rech. Opérationnelle. Série Verte 1973, 8, 63. [Google Scholar]
- MapBiomas Project MapBiomas – Collection 3.1 of Brazilian Land Cover & Use Map Series. Available online: http://mapbiomas.org/ (accessed on 1 March 2019).
- Fearnside, P. Deforestation of the Brazilian Amazon. In Oxford Research Encyclopedia of Environmental Science; Oxford University Press: Oxford, UK, 2017. [Google Scholar]
- Noojipady, P.; Morton, C.D.; Macedo, N.M.; Victoria, C.D.; Huang, C.; Gibbs, K.H.; Bolfe, L.E. Forest carbon emissions from cropland expansion in the Brazilian Cerrado biome. Environ. Res. Lett. 2017, 12, 25004. [Google Scholar] [CrossRef]
- de Oliveira, G.; Brunsell, N.; Moraes, E.; Bertani, G.; dos Santos, T.; Shimabukuro, Y.; Aragão, L. Use of MODIS Sensor Images Combined with Reanalysis Products to Retrieve Net Radiation in Amazonia. Sensors 2016, 16, 956. [Google Scholar] [CrossRef] [Green Version]
- Moore, C.J.; Fisch, G. Estimating heat storage in Amazonian tropical forest. Agric. For. Meteorol. 1986, 38, 147–168. [Google Scholar] [CrossRef]
- da Silva, V.D.P.R.; Almeida, R.S.R.; Dantas, V.D.A.; da Costa, A.C.L.; Singh, V.P. Sensible and Latent Heat Storage Fluxes within the Canopy Air-Space in the Amazon Rainforest. For. Res. 2012, 1, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Malhi, Y.; Pegoraro, E.; Nobre, A.D.; Pereira, M.G.P.; Grace, J.; Culf, A.D.; Clement, R. Energy and water dynamics of a central Amazonian rain forest. J. Geophys. Res. 2002, 107, 8061. [Google Scholar] [CrossRef] [Green Version]
- Bhattarai, N.; Shaw, S.B.; Quackenbush, L.J.; Im, J.; Niraula, R. Evaluating five remote sensing based single-source surface energy balance models for estimating daily evapotranspiration in a humid subtropical climate. Int. J. Appl. Earth Obs. Geoinf. 2016, 49, 75–86. [Google Scholar] [CrossRef]
- Khand, K.; Numata, I.; Kjaersgaard, J.; Vourlitis, G. Dry Season Evapotranspiration Dynamics over Human-Impacted Landscapes in the Southern Amazon Using the Landsat-Based METRIC Model. Remote Sens. 2017, 9, 706. [Google Scholar] [CrossRef] [Green Version]
- Wagle, P.; Bhattarai, N.; Gowda, P.H.; Kakani, V.G. Performance of five surface energy balance models for estimating daily evapotranspiration in high biomass sorghum. ISPRS J. Photogramm. Remote Sens. 2017, 128, 192–203. [Google Scholar] [CrossRef] [Green Version]
- dos Santos, C.A.C.; da Silva, B.B.; Rao, T.V.R. Analysis of the evaporative fraction using eddy covariance and remote sensing techniques. Rev. Bras. Meteorol. 2010, 25, 427–436. [Google Scholar] [CrossRef]
- Reichle, R.H.; Liu, Q.; Koster, R.D.; Draper, C.S.; Mahanama, S.P.P.; Partyka, G.S. Land Surface Precipitation in MERRA-2. J. Clim. 2017, 30, 1643–1664. [Google Scholar] [CrossRef]
- Jia, A.; Liang, S.; Jiang, B.; Zhang, X.; Wang, G. Comprehensive Assessment of Global Surface Net Radiation Products and Uncertainty Analysis. J. Geophys. Res. Atmos. 2018, 123, 1970–1989. [Google Scholar] [CrossRef]
- Reichle, R.H.; Draper, C.S.; Liu, Q.; Girotto, M.; Mahanama, S.P.P.; Koster, R.D.; De Lannoy, G.J.M. Assessment of MERRA-2 Land Surface Hydrology Estimates. J. Clim. 2017, 30, 2937–2960. [Google Scholar] [CrossRef] [Green Version]
- Draper, C.S.; Reichle, R.H.; Koster, R.D. Assessment of MERRA-2 Land Surface Energy Flux Estimates. J. Clim. 2018, 31, 671–691. [Google Scholar] [CrossRef]
- Schlosser, C.A.; Gao, X. Assessing Evapotranspiration Estimates from the Second Global Soil Wetness Project (GSWP-2) Simulations. J. Hydrometeorol. 2010, 11, 880–897. [Google Scholar] [CrossRef]
- Mueller, B.; Hirschi, M.; Jimenez, C.; Ciais, P.; Dirmeyer, P.A.; Dolman, A.J.; Fisher, J.B.; Jung, M.; Ludwig, F.; Maignan, F.; et al. Benchmark products for land evapotranspiration: LandFlux-EVAL multi-data set synthesis. Hydrol. Earth Syst. Sci. 2013, 17, 3707–3720. [Google Scholar] [CrossRef] [Green Version]
- Parker, W.S. Reanalyses and Observations: What’s the Difference? Bull. Am. Meteorol. Soc. 2016, 97, 1565–1572. [Google Scholar] [CrossRef] [Green Version]
- Rasp, S.; Pritchard, M.S.; Gentine, P. Deep learning to represent subgrid processes in climate models. Proc. Natl. Acad. Sci. USA 2018, 115, 9684–9689. [Google Scholar] [CrossRef] [Green Version]
- Lewis, C.S.; Geli, H.M.E.; Neale, C.M.U. Comparison of the NLDAS Weather Forcing Model to Agrometeorological Measurements in the western United States. J. Hydrol. 2014, 510, 385–392. [Google Scholar] [CrossRef]
- Choragudi, V. Sensitivity Analysis on Mapping EvapoTranspiration at High Resolution Using Internal Calibration (METRIC). 2011. Available online: https://digitalcommons.unl.edu/civilengdiss/35/ (accessed on 3 March 2020).
- Kich, E. Automated calibration of the Surface Energy Balance Algorithm for Land (SEBAL) to estimate evapotranspiration. Master Dissertation, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil, 2018. (In Portuguese). [Google Scholar]
- Wang, J.; Sammis, T.W.; Gutschick, V.P.; Gebremichael, M.; Miller, D.R. Miller Sensitivity Analysis of the Surface Energy Balance Algorithm for Land (SEBAL). Trans. ASABE 2009, 52, 801–811. [Google Scholar] [CrossRef]
- Timmermans, W.J.; Kustas, W.P.; Anderson, M.C.; French, A.N. An intercomparison of the Surface Energy Balance Algorithm for Land (SEBAL) and the Two-Source Energy Balance (TSEB) modeling schemes. Remote Sens. Environ. 2007, 108, 369–384. [Google Scholar] [CrossRef]
- Gomis-Cebolla, J.; Jimenez, J.C.; Sobrino, J.A.; Corbari, C.; Mancini, M. Intercomparison of remote-sensing based evapotranspiration algorithms over amazonian forests. Int. J. Appl. Earth Obs. Geoinf. 2019, 80, 280–294. [Google Scholar] [CrossRef]
- da Paca, V.H.M.; Espinoza-Dávalos, G.E.; Hessels, T.M.; Moreira, D.M.; Comair, G.F.; Bastiaanssen, W.G.M. The spatial variability of actual evapotranspiration across the Amazon River Basin based on remote sensing products validated with flux towers. Ecol. Process. 2019, 8, 6. [Google Scholar] [CrossRef] [Green Version]
- Mokhtari, M.H.; Ahmad, B.; Hoveidi, H.; Busu, I. Sensitivity analysis of METRIC-based evapotranspiration algorithm. Int. J. Environ. Res. 2013, 7, 407–422. [Google Scholar]
- Santos, C.A.G.; da Silva, R.M.; Silva, A.M.; Brasil Neto, R.M. Estimation of evapotranspiration for different land covers in a Brazilian semi-arid region: A case study of the Brígida River basin, Brazil. J. South Am. Earth Sci. 2017, 74, 54–66. [Google Scholar] [CrossRef]
- Chirouze, J.; Boulet, G.; Jarlan, L.; Fieuzal, R.; Rodriguez, J.C.; Ezzahar, J.; Er-Raki, S.; Bigeard, G.; Merlin, O.; Garatuza-Payan, J.; et al. Intercomparison of four remote-sensing-based energy balance methods to retrieve surface evapotranspiration and water stress of irrigated fields in semi-arid climate. Hydrol. Earth Syst. Sci. 2014, 18, 1165–1188. [Google Scholar] [CrossRef] [Green Version]
- Restrepo-Coupe, N.; Rocha, H.; Hutyra, L.; de Araújo, A.; Borma, L.; Christoffersen, B.; Cabral, O.; Camargo, P.L.; Cardoso, F.; da Costa, A.; et al. What drives the seasonality of photosynthesis across the Amazon basin? A cross-site analysis of eddy flux tower measurements from the Brasil flux network. Agric. For. Meteorol. 2013, 182–183, 128–144. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, G.; Brunsell, N.A.; Moraes, E.C.; Shimabukuro, Y.E.; Santos, T.V.; Randow, C.; Aguiar, R.G.; Aragao, L.E.O.C. Effects of land-cover changes on the partitioning of surface energy and water fluxes in Amazonia using high-resolution satellite imagery. Ecohydrology 2019, 12, e2126. [Google Scholar] [CrossRef]
- Davidson, E.A.; de Araújo, A.C.; Artaxo, P.; Balch, J.K.; Brown, I.F.; Bustamante, M.M.C.; Coe, M.T.; DeFries, R.S.; Keller, M.; Longo, M.; et al. Erratum: Corrigendum: The Amazon basin in transition. Nature 2012, 483, 232. [Google Scholar] [CrossRef]
Variable | Instrumentation |
---|---|
Air temperature | HMP45C Vaisalla (Campbell Scientific) |
Relative humidity | HMP45C Vaisalla (Campbell Scientific) |
Wind speed | Met One 014 (Campbell Scientific) |
Soil heat flux | REBS HFT 3.1 (Campbell Scientific) |
Net radiation | NR Lite Net radiometer (Campbell Scientific) |
Surface fluxes | Li-Cor 7500 (Li-Cor) |
Date | DOY ¹ | Landsat ID | Cloud Cover |
---|---|---|---|
16/Jun/2004 | 168 | LT05_L1TP_223067_20040616_20161130_01_T1 | 0% |
02/Jul/2004 | 184 | LT05_L1TP_223067_20040702_20161201_01_T1 | 0% |
18/Jul/2004 | 200 | LT05_L1TP_223067_20040718_20161130_01_T1 | 0% |
04/Sep/2004 | 248 | LT05_L1TP_223067_20040904_20161129_01_T1 | 0% |
18/May/2005 | 138 | LT05_L1TP_223067_20050518_20161126_01_T1 | 0% |
03/Jun/2005 | 154 | LT05_L1TP_223067_20050603_20161125_01_T1 | 0% |
05/Jul/2005 | 186 | LT05_L1TP_223067_20050705_20161126_01_T1 | 0% |
21/Jul/2005 | 202 | LT05_L1TP_223067_20050721_20161125_01_T1 | 0% |
06/Jun/2006 | 157 | LT05_L1TP_223067_20060606_20161121_01_T1 | 0% |
22/Jun/2006 | 173 | LT05_L1TP_223067_20060622_20161121_01_T1 | 1% |
08/Jul/2006 | 189 | LT05_L1TP_223067_20060708_20161120_01_T1 | 2% |
10/Sep/2006 | 253 | LT05_L1TP_223067_20060910_20161119_01_T1 | 3% |
Endmember Group | |||||
---|---|---|---|---|---|
1 | ( | 5% | 20% | 10% | 20% |
2 | ) | 5% | 10% | 10% | 10% |
3 | ) | 5% | 1% | 10% | 1% |
4 | ) | 5% | 0.1% | 10% | 0.1% |
5 | ) | 5% | 0.01% | 10% | 0.01% |
6 | ) | 3% | 20% | 7% | 20% |
7 | ) | 2% | 20% | 4% | 20% |
8 | ) | 1.5% | 20% | 3% | 20% |
9 | ) | 1% | 20% | 2% | 20% |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Laipelt, L.; Ruhoff, A.L.; Fleischmann, A.S.; Kayser, R.H.B.; Kich, E.d.M.; da Rocha, H.R.; Neale, C.M.U. Assessment of an Automated Calibration of the SEBAL Algorithm to Estimate Dry-Season Surface-Energy Partitioning in a Forest–Savanna Transition in Brazil. Remote Sens. 2020, 12, 1108. https://doi.org/10.3390/rs12071108
Laipelt L, Ruhoff AL, Fleischmann AS, Kayser RHB, Kich EdM, da Rocha HR, Neale CMU. Assessment of an Automated Calibration of the SEBAL Algorithm to Estimate Dry-Season Surface-Energy Partitioning in a Forest–Savanna Transition in Brazil. Remote Sensing. 2020; 12(7):1108. https://doi.org/10.3390/rs12071108
Chicago/Turabian StyleLaipelt, Leonardo, Anderson Luis Ruhoff, Ayan Santos Fleischmann, Rafael Henrique Bloedow Kayser, Elisa de Mello Kich, Humberto Ribeiro da Rocha, and Christopher Michael Usher Neale. 2020. "Assessment of an Automated Calibration of the SEBAL Algorithm to Estimate Dry-Season Surface-Energy Partitioning in a Forest–Savanna Transition in Brazil" Remote Sensing 12, no. 7: 1108. https://doi.org/10.3390/rs12071108