Multispectral Mapping on 3D Models and Multi-Temporal Monitoring for Individual Characterization of Olive Trees
<p>General overview of the surveyed area: (<b>a</b>) unmanned aerial vehicles (UAV)-based acquisition system, (<b>b</b>) a complex area where olive trees, buildings and other vegetation coexist; (<b>c</b>) the area of the study in the olive plantation, coordinates in ETRS89 (UTM Zone 30N).</p> "> Figure 2
<p>Overview of the proposed methodology for fusing multispectral images and RGB point clouds and multi-temporal monitoring of olive trees.</p> "> Figure 3
<p>Operations on 3D points: (<b>a</b>) the lighting interactions where the alpha angle is used as a reference for the weighting process; (<b>b</b>) the visibility test on the point cloud.</p> "> Figure 4
<p>Meaningful objects used as marks for an accurate georeferencing.</p> "> Figure 5
<p>Height and volume measurements of reference objects in the surveyed area.</p> "> Figure 6
<p>The 3D reconstruction of study area and detailed views of some tree models.</p> "> Figure 7
<p>Reflectance maps for a single capture: (<b>a</b>) green; (<b>b</b>) red; (<b>c</b>) red-edge; (<b>d</b>) near-infrared.</p> "> Figure 8
<p>3D alignment: (<b>a</b>) initial position of point clouds; (<b>b</b>) aligned point clouds.</p> "> Figure 9
<p>Individual tree classification: (<b>a</b>) detection of vegetation area; (<b>b</b>) segmentation of olive trees.</p> "> Figure 10
<p>The height and volume estimation of individual olive trees: (<b>a</b>) the generation of bounding boxes; (<b>b</b>) the voxel-based decomposition of the plant model.</p> "> Figure 11
<p>The height and volume of olive trees for the first (<b>a</b>) and second (<b>b</b>) flight campaigns.</p> "> Figure 12
<p>Plant reflectance and vegetation indices in the first (green color) and second campaigns (blue color).</p> "> Figure 13
<p>Variability of morphological and spectral features: (<b>a</b>) the height, (<b>b</b>) the volume, (<b>c</b>) the multispectral bands; (<b>d</b>) the vegetation indices.</p> "> Figure 14
<p>Multi-temporal analysis in two flight campaigns.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Data Acquisition
2.2. Data Processing
2.2.1. Point Cloud Reconstruction
2.2.2. Reflectance Map Computing
Algorithm 1: Reflectance Map Computing |
|
2.2.3. Multispectral Image Mapping on 3D Model
2.2.4. Individual Tree Segmentation
2.2.5. Morphological-Feature Extraction
2.3. Validation Procedure
3. Results
3.1. Characterization of Study Area
3.2. Accuracy Assessment
3.3. Heterogeneous Data Fusion
3.4. Morphological and Spectral Features
3.5. Multi-temporal Analysis
4. Discussion
4.1. Inventory of Individual Olive Trees
4.2. Vegetation Evolution
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Carlos Rodriguez-Cohard, J.; Parras, M. The olive growing agri-industrial district of Jaén and the international olive oils cluster. Open Geogr. J. 2011, 4. [Google Scholar] [CrossRef] [Green Version]
- Mulla, D.J. Twenty five years of remote sensing in precision agriculture: Key advances and remaining knowledge gaps. Biosyst. Eng. 2013, 114, 358–371. [Google Scholar] [CrossRef]
- Karantzalos, K.; Argialas, D. Towards automatic olive tree extraction from satellite imagery. In Proceedings of the Geo-Imagery Bridging Continents, XXth ISPRS Congress, Istanbul, Turkey, 12–23 July 2004; pp. 12–23. [Google Scholar]
- Ramos, M.; Gil, A.; Feito, F.; García-Ferrer, A. Using GPS and GIS tools to monitor olive tree movements. Comput. Electron. Agric. 2007, 57, 135–148. [Google Scholar] [CrossRef]
- Daliakopoulos, I.N.; Grillakis, E.G.; Koutroulis, A.G.; Tsanis, I.K. Tree crown detection on multispectral VHR satellite imagery. Photogramm. Eng. Remote Sens. 2009, 75, 1201–1211. [Google Scholar] [CrossRef] [Green Version]
- Sepulcre-Cantó, G.; Zarco-Tejada, P.J.; Jiménez-Muñoz, J.; Sobrino, J.; De Miguel, E.; Villalobos, F.J. Detection of water stress in an olive orchard with thermal remote sensing imagery. Agric. For. Meteorol. 2006, 136, 31–44. [Google Scholar] [CrossRef]
- Calderón, R.; Navas-Cortés, J.; Zarco-Tejada, P. Early detection and quantification of Verticillium wilt in olive using hyperspectral and thermal imagery over large areas. Remote Sens. 2015, 7, 5584–5610. [Google Scholar] [CrossRef] [Green Version]
- Zarco-Tejada, P.; Camino, C.; Beck, P.; Calderon, R.; Hornero, A.; Hernández-Clemente, R.; Kattenborn, T.; Montes-Borrego, M.; Susca, L.; Morelli, M.; et al. Previsual symptoms of Xylella fastidiosa infection revealed in spectral plant-trait alterations. Nat. Plants 2018, 4, 432. [Google Scholar] [CrossRef]
- Gago, J.; Douthe, C.; Coopman, R.; Gallego, P.; Ribas-Carbo, M.; Flexas, J.; Escalona, J.; Medrano, H. UAVs challenge to assess water stress for sustainable agriculture. Agric. Water Manag. 2015, 153, 9–19. [Google Scholar] [CrossRef]
- López-Escudero, F.; Del Río, C.; Caballero, J.; Blanco-López, M. Evaluation of olive cultivars for resistance to Verticillium dahliae. Eur. J. Plant Pathol. 2004, 110, 79–85. [Google Scholar] [CrossRef]
- Grenzdörffer, G.; Engel, A.; Teichert, B. The photogrammetric potential of low-cost UAVs in forestry and agriculture. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2008, 31, 1207–1214. [Google Scholar]
- Manfreda, S.; McCabe, M.F.; Miller, P.E.; Lucas, R.; Pajuelo Madrigal, V.; Mallinis, G.; Ben Dor, E.; Helman, D.; Estes, L.; Ciraolo, G.; et al. On the Use of Unmanned Aerial Systems for Environmental Monitoring. Remote Sens. 2018, 10, 641. [Google Scholar] [CrossRef] [Green Version]
- Tmušić, G.; Manfreda, S.; Aasen, H.; James, M.R.; Gonçalves, G.; Ben-Dor, E.; Brook, A.; Polinova, M.; Arranz, J.J.; Mészáros, J.; et al. Current Practices in UAS-based Environmental Monitoring. Remote Sens. 2020, 12, 1001. [Google Scholar] [CrossRef] [Green Version]
- Freeman, P.K.; Freeland, R.S. Agricultural UAVs in the US: Potential, policy, and hype. Remote Sens. Appl. Soc. Environ. 2015, 2, 35–43. [Google Scholar]
- Vanegas, F.; Bratanov, D.; Powell, K.; Weiss, J.; Gonzalez, F. A novel methodology for improving plant pest surveillance in vineyards and crops using UAV-based hyperspectral and spatial data. Sensors 2018, 18, 260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maschler, J.; Atzberger, C.; Immitzer, M. Individual tree crown segmentation and classification of 13 tree species using Airborne hyperspectral data. Remote Sens. 2018, 10, 1218. [Google Scholar] [CrossRef] [Green Version]
- Berni, J.A.J.; Zarco-Tejada, P.J.; Suarez, L.; Fereres, E. Thermal and Narrowband Multispectral Remote Sensing for Vegetation Monitoring From an Unmanned Aerial Vehicle. IEEE Trans. Geosci. Remote Sens. 2009, 47, 722–738. [Google Scholar] [CrossRef] [Green Version]
- Santesteban, L.; Di Gennaro, S.; Herrero-Langreo, A.; Miranda, C.; Royo, J.; Matese, A. High-resolution UAV-based thermal imaging to estimate the instantaneous and seasonal variability of plant water status within a vineyard. Agric. Water Manag. 2017, 183, 49–59. [Google Scholar] [CrossRef]
- Torres-Sánchez, J.; López-Granados, F.; Peña, J. Mapping olive-tree geometric features from 3D models generated with an unmanned aerial vehicle. In Precision Agriculture’15; Wageningen Academic Publishers: Wageningen, The Netherlans, 2015; pp. 89–99. [Google Scholar] [CrossRef]
- De Castro, A.I.; Rallo, P.; Suárez, M.; Torres Sánchez, J.; Casanova, L.; Jiménez-Brenes, F.M.; Morales-Sillero, A.; Jiménez, R.; López-Granados, F. High-throughput system for the early quantification of major architectural traits in olive breeding trials using UAV images and OBIA techniques. Front. Plant Sci. 2019, 10, 1472. [Google Scholar] [CrossRef] [Green Version]
- Dong, X.; Zhang, Z.; Yu, R.; Tian, Q.; Zhu, X. Extraction of Information about Individual Trees from High-Spatial-Resolution UAV-Acquired Images of an Orchard. Remote Sens. 2020, 12, 133. [Google Scholar] [CrossRef] [Green Version]
- Torres-Sánchez, J.; López-Granados, F.; Serrano, N.; Arquero, O.; Peña, J.M. High-throughput 3-D monitoring of agricultural-tree plantations with unmanned aerial vehicle (UAV) technology. PLoS ONE 2015, 10, e0130479. [Google Scholar] [CrossRef] [Green Version]
- Díaz-Varela, R.; de la Rosa, R.; León, L.; Zarco-Tejada, P. High-resolution airborne UAV imagery to assess olive tree crown parameters using 3D photo reconstruction: Application in breeding trials. Remote Sens. 2015, 7, 4213–4232. [Google Scholar] [CrossRef] [Green Version]
- Zarco-Tejada, P.; Diaz-Varela, R.; Angileri, V.; Loudjani, P. Tree height quantification using very high resolution imagery acquired from an unmanned aerial vehicle (UAV) and automatic 3D photo-reconstruction methods. Eur. J. Agron. 2014, 55, 89–99. [Google Scholar] [CrossRef]
- Moran, M.; Inoue, Y.; Barnes, E. Opportunities and limitations for image-based remote sensing in precision crop management. Remote Sens. Environ. 1997, 61, 319–346. [Google Scholar] [CrossRef]
- Candiago, S.; Remondino, F.; De Giglio, M.; Dubbini, M.; Gattelli, M. Evaluating multispectral images and vegetation indices for precision farming applications from UAV images. Remote Sens. 2015, 7, 4026–4047. [Google Scholar] [CrossRef] [Green Version]
- Peñuelas, J.; Filella, I. Visible and near-infrared reflectance techniques for diagnosing plant physiological status. Trends Plant Sci. 1998, 3, 151–156. [Google Scholar] [CrossRef]
- Neuwirthová, E.; Lhotáková, Z.; Albrechtová, J. The Effect of Leaf Stacking on Leaf Reflectance and Vegetation Indices Measured by Contact Probe during the Season. Sensors 2017, 17, 1202. [Google Scholar] [CrossRef] [Green Version]
- Pádua, L.; Vanko, J.; Hruška, J.; Adão, T.; Sousa, J.J.; Peres, E.; Morais, R. UAS, sensors, and data processing in agroforestry: A review towards practical applications. Int. J. Remote Sens. 2017, 38, 2349–2391. [Google Scholar] [CrossRef]
- Thomas, S.; Kuska, M.T.; Bohnenkamp, D.; Brugger, A.; Alisaac, E.; Wahabzada, M.; Behmann, J.; Mahlein, A.K. Benefits of hyperspectral imaging for plant disease detection and plant protection: A technical perspective. J. Plant Dis. Prot. 2018, 125, 5–20. [Google Scholar] [CrossRef]
- Suh, H.K.; Hofstee, J.W.; van Henten, E.J. Improved vegetation segmentation with ground shadow removal using an HDR camera. Precis. Agric. 2018, 19, 218–237. [Google Scholar] [CrossRef] [Green Version]
- Hakkenberg, C.; Peet, R.; Urban, D.; Song, C. Modeling plant composition as community continua in a forest landscape with LiDAR and hyperspectral remote sensing. Ecol. Appl. 2018, 28, 177–190. [Google Scholar] [CrossRef]
- Nevalainen, O.; Honkavaara, E.; Tuominen, S.; Viljanen, N.; Hakala, T.; Yu, X.; Hyyppä, J.; Saari, H.; Pölönen, I.; Imai, N.; et al. Individual tree detection and classification with UAV-based photogrammetric point clouds and hyperspectral imaging. Remote Sens. 2017, 9, 185. [Google Scholar] [CrossRef] [Green Version]
- Degerickx, J.; Roberts, D.; McFadden, J.; Hermy, M.; Somers, B. Urban tree health assessment using airborne hyperspectral and LiDAR imagery. Int. J. Appl. Earth Obs. Geoinf. 2018, 73, 26–38. [Google Scholar] [CrossRef] [Green Version]
- Tarantino, C.; Casella, F.; Adamo, M.; Lucas, R.; Beierkuhnlein, C.; Blonda, P. Ailanthus altissima mapping from multi-temporal very high resolution satellite images. ISPRS J. Photogramm. Remote Sens. 2019, 147, 90–103. [Google Scholar] [CrossRef]
- Malambo, L.; Popescu, S.; Horne, D.; Pugh, N.; Rooney, W. Automated detection and measurement of individual sorghum panicles using density-based clustering of terrestrial lidar data. ISPRS J. Photogramm. Remote Sens. 2019, 149, 1–13. [Google Scholar] [CrossRef]
- Tan, Y.; Wang, S.; Xu, B.; Zhang, J. An improved progressive morphological filter for UAV-based photogrammetric point clouds in river bank monitoring. ISPRS J. Photogramm. Remote Sens. 2018, 146, 421–429. [Google Scholar] [CrossRef]
- Dash, J.P.; Watt, M.S.; Pearse, G.D.; Heaphy, M.; Dungey, H.S. Assessing very high resolution UAV imagery for monitoring forest health during a simulated disease outbreak. ISPRS J. Photogramm. Remote Sens. 2017, 131, 1–14. [Google Scholar] [CrossRef]
- Mohan, M.; Silva, C.; Klauberg, C.; Jat, P.; Catts, G.; Cardil, A.; Hudak, A.; Dia, M. Individual tree detection from unmanned aerial vehicle (UAV) derived canopy height model in an open canopy mixed conifer forest. Forests 2017, 8, 340. [Google Scholar] [CrossRef] [Green Version]
- Lindberg, E.; Holmgren, J. Individual Tree Crown Methods for 3D Data from Remote Sensing. Curr. For. Rep. 2017, 3, 19–31. [Google Scholar] [CrossRef] [Green Version]
- Wallace, L.; Lucieer, A.; Watson, C.S. Evaluating Tree Detection and Segmentation Routines on Very High Resolution UAV LiDAR Data. IEEE Trans. Geosci. Remote Sens. 2014, 52, 7619–7628. [Google Scholar] [CrossRef]
- Marques, P.; Pádua, L.; Adão, T.; Hruška, J.; Peres, E.; Sousa, A.; Sousa, J.J. UAV-based automatic detection and monitoring of chestnut trees. Remote Sens. 2019, 11, 855. [Google Scholar] [CrossRef] [Green Version]
- Jain, A.K. Data clustering: 50 years beyond K-means. Pattern Recognit. Lett. 2010, 31, 651–666. [Google Scholar] [CrossRef]
- Ullman, S. The interpretation of structure from motion. Proc. R. Soc. Lond. Ser. B. Biol. Sci. 1979, 203, 405–426. [Google Scholar] [CrossRef]
- Pádua, L.; Marques, P.; Hruška, J.; Adão, T.; Peres, E.; Morais, R.; Sousa, J. Multi-Temporal Vineyard Monitoring through UAV-Based RGB Imagery. Remote Sens. 2018, 10, 1907. [Google Scholar] [CrossRef] [Green Version]
- Xue, J.; Su, B. Significant remote sensing vegetation indices: A review of developments and applications. J. Sens. 2017, 2017, 1353691. [Google Scholar] [CrossRef] [Green Version]
- Zarco-Tejada, P.J.; Miller, J.R.; Morales, A.; Berjón, A.; Agüera, J. Hyperspectral indices and model simulation for chlorophyll estimation in open-canopy tree crops. Remote Sens. Environ. 2004, 90, 463–476. [Google Scholar] [CrossRef]
- Gertsis, A.; Fountas, D.; Arpasanu, I.; Michaloudis, M. Precision agriculture applications in a high density olive grove adapted for mechanical harvesting in Greece. Procedia Technol. 2013, 8, 152–156. [Google Scholar] [CrossRef] [Green Version]
- Jackson, R.D.; Huete, A.R. Interpreting vegetation indices. Prev. Vet. Med. 1991, 11, 185–200. [Google Scholar] [CrossRef]
- Jorge, J.; Vallbé, M.; Soler, J.A. Detection of irrigation inhomogeneities in an olive grove using the NDRE vegetation index obtained from UAV images. Eur. J. Remote Sens. 2019, 52, 169–177. [Google Scholar] [CrossRef] [Green Version]
- Shroder, J.F. Biological and Environmental Hazards, Risks, and Disasters; Elsevier: Amsterdam, The Netherlands, 2015. [Google Scholar]
- Besl, P.J.; McKay, N.D. Method for registration of 3-D shapes. In Proceedings of the Sensor Fusion IV: Control Paradigms and Data Structures, Boston, MA, USA, 12–15 November 1991; International Society for Optics and Photonics: Bellingham,WA, USA, 1992; Volume 1611, pp. 586–607. [Google Scholar]
- Salamí, E.; Gallardo, A.; Skorobogatov, G.; Barrado, C. On-the-fly olive tree counting using a UAS and cloud services. Remote Sens. 2019, 11, 316. [Google Scholar] [CrossRef] [Green Version]
- Keller, J.M.; Gray, M.R.; Givens, J.A. A fuzzy k-nearest neighbor algorithm. IEEE Trans. Syst. Man Cybern. 1985, SMC-15, 580–585. [Google Scholar] [CrossRef]
- Zhou, K.; Hou, Q.; Wang, R.; Guo, B. Real-time kd-tree construction on graphics hardware. ACM Trans. Graph. (TOG) 2008, 27, 1–11. [Google Scholar]
- Vo, A.V.; Truong-Hong, L.; Laefer, D.F.; Bertolotto, M. Octree-based region growing for point cloud segmentation. ISPRS J. Photogramm. Remote. Sens. 2015, 104, 88–100. [Google Scholar] [CrossRef]
- Miranda-Fuentes, A.; Llorens, J.; Gamarra-Diezma, J.L.; Gil-Ribes, J.A.; Gil, E. Towards an optimized method of olive tree crown volume measurement. Sensors 2015, 15, 3671–3687. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yan, Z.; Liu, R.; Cheng, L.; Zhou, X.; Ruan, X.; Xiao, Y. A Concave Hull Methodology for Calculating the Crown Volume of Individual Trees Based on Vehicle-Borne LiDAR Data. Remote Sens. 2019, 11, 623. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; Tseng, Y.H. Lidar data segmentation and classification based on octree structure. Parameters 2004, 1, 5. [Google Scholar]
- Yang, G.; Shen, H.; Zhang, L.; He, Z.; Li, X. A Moving Weighted Harmonic Analysis Method for Reconstructing High-Quality SPOT VEGETATION NDVI Time-Series Data. IEEE Trans. Geosci. Remote Sens. 2015, 53, 6008–6021. [Google Scholar] [CrossRef]
Date | Drone | Sensor | Overlapping (%) | Images |
---|---|---|---|---|
15 August 2018 | 264 RGB | |||
DJI Matrice 210 | Multispectral: Parrot Sequoia (1280 × 960) | frontal: 90% | 179 (×4) Multi | |
25 August 2019 | RGB: Sony Alpha 7RIII (48 Mpx) | side: 80% | 280 RGB | |
210 (×4) Multi |
Campaign | Sensor | 3D Densified Points | Ground Sampling Distance(cm) |
---|---|---|---|
1 | RGB | 101.846.488 | 0.84 |
Multispectral | 3.513.641 | 3.53 | |
2 | RGB | 153.441.547 | 0.78 |
Multispectral | 3.776.247 | 3.37 |
Index | Formula |
---|---|
NDVI | |
Green Ratio Vegetation Index | |
Ratio Vegetaion Index | |
Normalized Difference Red-Edge |
Feature | Description |
---|---|
Multispectral bands | |
Green | The highest plant reflection is visible in this band. |
Near-infrared | It is the least sensitive band to chlorophyll. |
Red | It is mainly influenced by the humidity, biomass and soil minerals. |
Red-edge | This band is relevant for stress status assessment. |
Vegetation indices | |
NDVI | It is used for vegetation recognition and the assessment of the crop health. |
RVI | It can be used for biomass and leaf area index (LAI) assessments. |
GRVI | This index is used for the leaf density or vigor of vegetation. |
NDRE | It is sensitive to chlorophyll content in leaves and soil background effects. |
Morphological features | |
Plant height | The maximum distance from the soil to the highest branch |
Plant volume | The space occupied by the 3D structure of olive trees |
GCP Point (m) | Flight Campaign | Error Distance to GCP (m) | Theoretical Error (m) | ||||||
---|---|---|---|---|---|---|---|---|---|
X | Y | Z | X | Y | Z | X | Y | Z | |
398,765.87 | 4,212,946.76 | 235.08 | 1 | 0.49 | −1.00 | −6.66 | 0.047 | 0.020 | 0.216 |
2 | −1.00 | −2.36 | 11.53 | 0.004 | 0.004 | 0.015 | |||
398,727.11 | 4,212,954.01 | 231.29 | 1 | 0.45 | −0.96 | −6.53 | 0.002 | 0.002 | 0.028 |
2 | −0.98 | −2.43 | 11.42 | 0.006 | 0.005 | 0.021 | |||
398,741.43 | 4,212,919.09 | 232.66 | 1 | 1.39 | −1.77 | −6.35 | 0.021 | 0.037 | 0.328 |
2 | −0.28 | −1.99 | 11.59 | 0.001 | 0.001 | 0.002 | |||
398,772.76 | 4,212,932.51 | 235.38 | 1 | 0.52 | −1.107 | −6.41 | 0.049 | 0.048 | 0.115 |
2 | −1.01 | −2.28 | 11.62 | 0.002 | 0.002 | 0.009 | |||
398,768.31 | 4,212,916.33 | 235.71 | 1 | 0.814 | −0.657 | −6.52 | 0.036 | 0.063 | 0.103 |
2 | −0.65 | −1.91 | 11.68 | 0.008 | 0.011 | 0.029 | |||
398,755.93 | 4,212,954.08 | 238.060 | 1 | 0.591 | −0.965 | −6.71 | 0.017 | 0.008 | 0.098 |
2 | −0.93 | −2.35 | 11.49 | 0.003 | 0.004 | 0.020 |
Flight Campaign | RMSE/Global (m) | RMSE/Relative (m) | ||
---|---|---|---|---|
(X,Y) | (Z) | (X,Y) | (Z) | |
1 | 1.313 | 6.53 | 0.042 | 0.148 |
2 | 2.877 | 11.555 | 0.005 | 0.016 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jurado, J.M.; Ortega, L.; Cubillas, J.J.; Feito, F.R. Multispectral Mapping on 3D Models and Multi-Temporal Monitoring for Individual Characterization of Olive Trees. Remote Sens. 2020, 12, 1106. https://doi.org/10.3390/rs12071106
Jurado JM, Ortega L, Cubillas JJ, Feito FR. Multispectral Mapping on 3D Models and Multi-Temporal Monitoring for Individual Characterization of Olive Trees. Remote Sensing. 2020; 12(7):1106. https://doi.org/10.3390/rs12071106
Chicago/Turabian StyleJurado, J. M., L. Ortega, J. J. Cubillas, and F. R. Feito. 2020. "Multispectral Mapping on 3D Models and Multi-Temporal Monitoring for Individual Characterization of Olive Trees" Remote Sensing 12, no. 7: 1106. https://doi.org/10.3390/rs12071106
APA StyleJurado, J. M., Ortega, L., Cubillas, J. J., & Feito, F. R. (2020). Multispectral Mapping on 3D Models and Multi-Temporal Monitoring for Individual Characterization of Olive Trees. Remote Sensing, 12(7), 1106. https://doi.org/10.3390/rs12071106