Operational Large-Area Land-Cover Mapping: An Ethiopia Case Study
"> Figure 1
<p>Examples of the target land-cover classes showing the ranges of class distribution, ordered by land-cover proportion cover of a pixel, from maximum cover to minimum cover to still be assigned to the class, from left to right. Red squares show footprints of Landsat pixels.</p> "> Figure 2
<p>Visualization of multi-temporal image composites for Addis Ababa for: (<b>a</b>) high-resolution imagery from Google Earth Engine (GEE); (<b>b</b>) Landsat Normalized Difference Vegetation Index (NDVI) sinusoidal model coefficients, Red green blue (RGB): <math display="inline"><semantics> <mrow> <msub> <mi>a</mi> <mn>4</mn> </msub> <mo>,</mo> <msub> <mi>a</mi> <mn>3</mn> </msub> <mo>,</mo> <msub> <mi>a</mi> <mn>2</mn> </msub> </mrow> </semantics></math> (see Equation (2));(<b>c</b>) Landsat PDF composite, RGB: 95%, 75%, 50% of NDI<sub>4</sub>, i.e., NDVI; (<b>d</b>) Landsat sequential composite, RGB: median NDI<sub>4</sub>, i.e., NDVI, from periods 4,2,1 (see <a href="#sec2dot3dot2-remotesensing-12-00954" class="html-sec">Section 2.3.2</a>); (<b>e</b>) MODIS PDF composite, RGB: 95%, 75%, 50% of NDVI; and (<b>f</b>) MODIS sequential composite, RGB: median NDVI for June 2016, October 2016, and January 2017.</p> "> Figure 3
<p>Comparison of the three different land-cover products: (<b>A</b>) GlobeLand30 for 2010 at 30 m resolution (the straight lines are due to missing data), (<b>B</b>) Copernicus 2015 Land-Cover Product at 100 m resolution, and (<b>C</b>) LC_2017 product for 2017 at 30 m resolution.</p> "> Figure 4
<p>Land-cover map of Ethiopia for 2017 at 30 m spatial resolution.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area: Ethiopia
2.2. Classification Scheme and Reference Data Collection
2.3. Classification Data
2.3.1. Landsat-Based Single-Time Classification
2.3.2. Multi-Temporal Image Compositing
2.3.3. Ancillary Datasets
2.4. Land-Cover Classification
3. Results
3.1. Comparison of the Land-Cover Classification Processes
3.2. Comparison with the Existing Land-Cover Products
3.3. Final Classification Production
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Geist, H. Exploring the Entry Points for Political Ecology in the International Research Agenda on Global Environmental Change. Z. Wirtsch. Geogr. 1999, 43, 158–168. [Google Scholar] [CrossRef]
- Lambin, E.F.; Turner, B.L.; Geist, H.J.; Agbola, S.B.; Angelsen, A.; Bruce, J.W.; Coomes, O.T.; Dirzo, R.; Fischer, G.; Folke, C.; et al. The Causes of Land-use and Land-Cover Change: Moving Beyond the Myths. Glob. Environ. Chang. 2001, 11, 261–269. [Google Scholar] [CrossRef]
- Turner, B.L., II; Clark, W.C.; Kates, R.W.; Richards, J.F.; Mathews, J.T.; Meyer, W.B. The Earth as Transformed by Human Action: Global Change and Regional Changes in the Biosphere over the Past 300 Years. In The Earth as Transformed by Human Action: Global Change and Regional Changes in the Biosphere Over the Past 300 Years; Cambridge University Press, with Clark University: Cambridge, UK, 1990. [Google Scholar]
- Kinnaird, M.F.; Sanderson, E.W.; O’Brien, T.G.; Wibisono, H.T.; Woolmer, G. Deforestation Trends in a Tropical Landscape and Implications for Endangered Large Mammals. Conserv. Biol. 2003, 17, 245–257. [Google Scholar] [CrossRef]
- Pimm, S.L.; Russell, G.J.; Gittleman, J.L.; Brooks, T.M. The Future of Biodiversity. Science 1995, 269, 347–350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Geist, H.J.; Lambin, E.F. Proximate Causes and Underlying Driving Forces of Tropical Deforestation. Bioscience 2002, 52, 143–150. [Google Scholar] [CrossRef]
- NRC. Our Common Journey: A Transition Toward Sustainability; National Academy Press: Washington, DC, USA, 1999.
- Moran, E.F.; Brondizio, E.S.; Mausel, P.; You, W. Deforestation in Amazonia: Land use Change from Ground and Space Level Perspective. Bioscience 1994, 44, 329–339. [Google Scholar] [CrossRef]
- Hall, R. Land Grabbing in Southern Africa: The Many Faces of the Investor Rush. Rev. Afr. Polit. Econ. 2011, 38, 193–214. [Google Scholar] [CrossRef]
- Borras, S.M., Jr.; Hall, R.; Scoones, I.; White, B.; Wolford, W. Towards a Better Understanding of Global Land Grabbing: An Editorial Introduction. J. Peasant Stud. 2011, 38, 209–216. [Google Scholar] [CrossRef] [Green Version]
- De Schutter, O. How Not to Think of Land-Grabbing: Three Critiques of Large-Scale Investments in Farmland. J. Peasant Stud. 2011, 38, 249–279. [Google Scholar] [CrossRef]
- Deininger, K.; Byerlee, D.; Lindsay, J.; Norton, A.; Selod, H.; Stickler, M. Rising Global Interest in Farmland: Can it Yield Sustainable and Equitable Benefits? Agriculture and Rural Development; World Bank: Washington, DC, USA, 2011. [Google Scholar]
- Robertson, B.; Pinstrup-Andersen, P. Global Land Acquisition: Neo-Colonialism or Development Opportunity? Food Secur. 2010, 2, 271–283. [Google Scholar] [CrossRef]
- Adnan, S. Land Grabs and Primitive Accumulation in Deltaic Bangladesh: Interactions between Neoliberal Globalization, State Interventions, Power Relations and Peasant Resistance. J. Peasant Stud. 2013, 40, 87–128. [Google Scholar] [CrossRef]
- Feldman, S.; Geisler, C. Land Expropriation and Displacement in Bangladesh. J. Peasant Stud. 2012, 39, 971–993. [Google Scholar] [CrossRef]
- White, B.J. Gendered Experiences of Dispossession: Oil Palm Expansion in a Dayak Hibun Community in West Kalimantan. J. Peasant Stud. 2012, 39, 995–1016. [Google Scholar] [CrossRef]
- D’Odorico, P.; Rulli, M.C. The Fourth Food Revolution. Nat. Geosci. 2013, 6, 417–418. [Google Scholar] [CrossRef]
- Davis, K.F.; D’Odorico, P.; Rulli, M.C. Land Grabbing: A Preliminary Quantification of Economic Impacts on Rural Livelihoods. Popul. Environ. 2014, 36, 180–192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cristina Rulli, M.; D’Odorico, P. Food Appropriation through Large Scale Land Acquisitions. Environ. Res. Lett. 2014, 9. [Google Scholar] [CrossRef]
- Gingembre, M. Resistance or Participation? Fighting Against Corporate Land Access Amid Political Uncertainty in Madagascar. J. Peasant Stud. 2015, 42, 561–584. [Google Scholar] [CrossRef]
- Davis, K.F.; Yu, K.; Rulli, M.C.; Pichdara, L.; D’Odorico, P. Accelerated Deforestation Driven by Large-Scale Land Acquisitions in Cambodia. Nat. Geosci. 2015, 8, 772–775. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Chen, J.; Liao, A.; Cao, X.; Chen, L.; Chen, X.; He, C.; Han, G.; Peng, S.; Lu, M.; et al. Global Land Cover Mapping at 30 M Resolution: A POK-Based Operational Approach. ISPRS J. Photogramm. Remote Sens. 2014, 103, 7–27. [Google Scholar] [CrossRef] [Green Version]
- Defries, R.S.; Townshend, J.R.G. Global Land Cover Characterization from Satellite Data: From Research to Operational Implementation? Global Ecol. Biogeogr. 1999, 8, 367–379. [Google Scholar] [CrossRef]
- Hansen, M.C.; Loveland, T.R. A Review of Large Area Monitoring of Land Cover Change using Landsat Data. Remote Sens. Environ. 2012, 122, 66–74. [Google Scholar] [CrossRef]
- Xian, G.; Homer, C.; Fry, J. Updating the 2001 National Land Cover Database Land Cover Classification to 2006 by using Landsat Imagery Change Detection Methods. Remote Sens. Environ. 2009, 113, 1133–1147. [Google Scholar] [CrossRef] [Green Version]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-Scale Geospatial Analysis for Everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Hansen, M.C.; Potapov, P.V.; Moore, R.; Hancher, M.; Turubanova, S.A.; Tyukavina, A.; Thau, D.; Stehman, S.V.; Goetz, S.J.; Loveland, T.R.; et al. High-Resolution Global Maps of 21st-Century Forest Cover Change. Science 2013, 342, 850–853. [Google Scholar] [CrossRef] [Green Version]
- Dong, J.; Xiao, X.; Menarguez, M.A.; Zhang, G.; Qin, Y.; Thau, D.; Biradar, C.; Moore, B., III. Mapping Paddy Rice Planting Area in Northeastern Asia with Landsat 8 Images, Phenology-Based Algorithm and Google Earth Engine. Remote Sens. Environ. 2016, 185, 142–154. [Google Scholar] [CrossRef] [Green Version]
- Lobell, D.B.; Thau, D.; Seifert, C.; Engle, E.; Little, B. A Scalable Satellite-Based Crop Yield Mapper. Remote Sens. Environ. 2015, 164, 324–333. [Google Scholar] [CrossRef]
- Xiong, J.; Thenkabail, P.S.; Gumma, M.K.; Teluguntla, P.; Poehnelt, J.; Congalton, R.G.; Yadav, K.; Thau, D. Automated Cropland Mapping of Continental Africa using Google Earth Engine Cloud Computing. ISPRS J. Photogramm. Remote Sens. 2017, 126, 225–244. [Google Scholar] [CrossRef] [Green Version]
- Kennedy, R.E.; Yang, Z.; Gorelick, N.; Braaten, J.; Cavalcante, L.; Cohen, W.B.; Healey, S. Implementation of the LandTrendr Algorithm on Google Earth Engine. Remote Sens. 2018, 10, 691. [Google Scholar] [CrossRef] [Green Version]
- Huntington, J.; McGwire, K.; Morton, C.; Snyder, K.; Peterson, S.; Erickson, T.; Niswonger, R.; Carroll, R.; Smith, G.; Allen, R. Assessing the Role of Climate and Resource Management on Groundwater Dependent Ecosystem Changes in Arid Environments with the Landsat Archive. Remote Sens. Environ. 2016, 185, 186–197. [Google Scholar] [CrossRef] [Green Version]
- Sazib, N.; Mladenova, I.; Bolten, J. Leveraging the Google Earth Engine for Drought Assessment using Global Soil Moisture Data. Remote Sens. 2018, 10, 1265. [Google Scholar] [CrossRef] [Green Version]
- Goldblatt, R.; Stuhlmacher, M.F.; Tellman, B.; Clinton, N.; Hanson, G.; Georgescu, M.; Wang, C.; Serrano-Candela, F.; Khandelwal, A.K.; Cheng, W.-H.; et al. Using Landsat and Nighttime Lights for Supervised Pixel-Based Image Classification of Urban Land Cover. Remote Sens. Environ. 2018, 205, 253–275. [Google Scholar] [CrossRef]
- Liu, X.; Hu, G.; Chen, Y.; Li, X.; Xu, X.; Li, S.; Pei, F.; Wang, S. High-Resolution Multi-Temporal Mapping of Global Urban Land using Landsat Images Based on the Google Earth Engine Platform. Remote Sens. Environ. 2018, 209, 227–239. [Google Scholar] [CrossRef]
- Patela, N.N.; Angiuli, E.; Gamba, P.; Gaughan, A.; Lisini, G.; Stevens, F.R.; Tatem, A.J.; Trianni, G. Multitemporal Settlement and Population Mapping from Landsatusing Google Earth Engine. Int. J. Appl. Earth Obs. Geoinf. 2015, 35, 199–208. [Google Scholar] [CrossRef] [Green Version]
- Trianni, G.; Lisini, G.; Angiuli, E.; Moreno, E.A.; Dondi, P.; Gaggia, A.; Gamba, P. Scaling Up to National/Regional Urban Extent Mapping using Landsat Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 3710–3719. [Google Scholar] [CrossRef]
- Huang, H.; Chen, Y.; Clinton, N.; Wang, J.; Wang, X.; Liu, C.; Gong, P.; Yang, J.; Bai, Y.; Zheng, Y.; et al. Mapping Major Land Cover Dynamics in Beijing using all Landsat Images in Google Earth Engine. Remote Sens. Environ. 2017, 202, 166–176. [Google Scholar] [CrossRef]
- Simonetti, D.; Simonetti, E.; Szantoi, Z.; Lupi, A.; Eva, H.D. First Results from the Phenology-Based Synthesis Classifier using Landsat 8 Imagery. IEEE Geosci. Remote Sens. Lett. 2015, 12, 1496–1500. [Google Scholar] [CrossRef]
- Wang, J.; Xiao, X.; Qin, Y.; Doughty, R.B.; Dong, J.; Zou, Z. Characterizing the Encroachment of Juniper Forests into Sub-Humid and Semi-Arid Prairies from 1984 to 2010 using PALSAR and Landsat Data. Remote Sens. Environ. 2018, 205, 166–179. [Google Scholar] [CrossRef]
- Shrestha, D.P.; Saepuloh, A.; van der Meer, F. Land Cover Classification in the Tropics, Solving the Problem of Cloud Covered Areas using Topographic Parameters. Int. J. Appl. Earth Obs. Geoinf. 2019, 77, 84–93. [Google Scholar] [CrossRef]
- Canty, M.J.; Nielsen, A.A.; Schmidt, M. Automatic Radiometric Normalization of Multitemporal Satellite Imagery. Remote Sens. Environ. 2004, 91, 441–451. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Lo, C.P. Relative Radiometric Normalization Performance for Change Detection from Multi-Date Satellite Images. Photogramm. Eng. Remote Sens. 2000, 66, 967–980. [Google Scholar]
- Zhou, H.; Liu, S.; He, J.; Wen, Q.; Song, L.; Ma, Y. A New Model for the Automatic Relative Radiometric Normalization of Multiple Images with Pseudo-Invariant Features. Int. J. Remote Sens. 2016, 37, 4554–4573. [Google Scholar] [CrossRef]
- Harper, G.J.; Steininger, M.K.; Tucker, C.J.; Juhn, D.; Hawkins, F. Fifty Years of Deforestation and Forest Fragmentation in Madagascar. Environ. Conserv. 2007, 34, 325–333. [Google Scholar] [CrossRef]
- Killeen, T.J.; Calderon, V.; Soria, L.; Quezada, B.; Steininger, M.K.; Harper, G.; Solórzano, L.A.; Tucker, C.J. Thirty Years of Land-Cover Change in Bolivia. Ambio 2007, 36, 600–606. [Google Scholar] [CrossRef] [Green Version]
- Leimgruber, P.; Kelly, D.S.; Steininger, M.K.; Brunner, J.; Müller, T.; Songer, M. Forest Cover Change Patterns in Myanmar (Burma) 1990–2000. Environ. Conserv. 2005, 32, 356–364. [Google Scholar] [CrossRef] [Green Version]
- Xian, G.; Homer, C. Updating the 2001 National Land Cover Database Impervious Surface Products to 2006 using Landsat Imagery Change Detection Methods. Remote Sens. Environ. 2010, 114, 1676–1686. [Google Scholar] [CrossRef]
- Arévalo, P.; Olofsson, P.; Woodcock, C.E. Continuous Monitoring of Land Change Activities and Post-Disturbance Dynamics from Landsat Time Series: A Test Methodology for REDD+ Reporting. Remote Sens. Environ. 2019, 238, 111051. [Google Scholar] [CrossRef]
- Khatami, R.; Mountrakis, G.; Stehman, S.V. A Meta-Analysis of Remote Sensing Research on Supervised Pixel-Based Land-Cover Image Classification Processes: General Guidelines for Practitioners and Future Research. Remote Sens. Environ. 2016, 177, 89–100. [Google Scholar] [CrossRef] [Green Version]
- Novo-Fernández, A.; Franks, S.; Wehenkel, C.; López-Serrano, P.M.; Molinier, M.; López-Sánchez, C.A. Landsat Time Series Analysis for Temperate Forest Cover Change Detection in the Sierra Madre Occidental, Durango, Mexico. Int. J. Appl. Earth Obs. Geoinf. 2018, 73, 230–244. [Google Scholar] [CrossRef]
- Tang, X.; Bullock, E.L.; Olofsson, P.; Estel, S.; Woodcock, C.E. Near Real-Time Monitoring of Tropical Forest Disturbance: New Algorithms and Assessment Framework. Remote Sens. Environ. 2019, 224, 202–218. [Google Scholar] [CrossRef]
- Zhu, Z. Change Detection using Landsat Time Series: A Review of Frequencies, Preprocessing, Algorithms, and Applications. ISPRS J. Photogramm. Remote Sens. 2017, 130, 370–384. [Google Scholar] [CrossRef]
- Baumann, M.; Ozdogan, M.; Richardson, A.D.; Radeloff, V.C. Phenology from Landsat when Data is Scarce: Using MODIS and Dynamic Time-Warping to Combine Multi-Year Landsat Imagery to Derive Annual Phenology Curves. Int. J. Appl. Earth Obs. Geoinf. 2017, 54, 72–83. [Google Scholar] [CrossRef]
- Goldblatt, R.; You, W.; Hanson, G.; Khandelwal, A.K. Detecting the Boundaries of Urban Areas in India: A Dataset for Pixel-Based Image Classification in Google Earth Engine. Remote Sens. 2016, 8, 634. [Google Scholar] [CrossRef] [Green Version]
- Gómez-Chova, L.; Amorós-López, J.; Mateo-García, G.; Muñoz-Marí, J.; Camps-Valls, G. Cloud Masking and Removal in Remote Sensing Image Time Series. J. Appl. Remote Sens. 2017, 11. [Google Scholar] [CrossRef]
- Shelestov, A.; Lavreniuk, M.; Kussul, N.; Novikov, A.; Skakun, S. Exploring Google Earth Engine Platform for Big Data Processing: Classification of Multi-Temporal Satellite Imagery for Crop Mapping. Front. Earth Sci. 2017, 5, 17. [Google Scholar] [CrossRef] [Green Version]
- Testa, S.; Soudani, K.; Boschetti, L.; Borgogno Mondino, E. MODIS-Derived EVI, NDVI and WDRVI Time Series to Estimate Phenological Metrics in French Deciduous Forests. Int. J. Appl. Earth Obs. Geoinf. 2018, 64, 132–144. [Google Scholar] [CrossRef]
- Azzari, G.; Lobell, D.B. Landsat-Based Classification in the Cloud: An Opportunity for a Paradigm Shift in Land Cover Monitoring. Remote Sens. Environ. 2017, 202, 64–74. [Google Scholar] [CrossRef]
- Broich, M.; Hansen, M.C.; Potapov, P.; Adusei, B.; Lindquist, E.; Stehman, S.V. Time-Series Analysis of Multi-Resolution Optical Imagery for Quantifying Forest Cover Loss in Sumatra and Kalimantan, Indonesia. Int. J. Appl. Earth Obs. Geoinf. 2011, 13, 277–291. [Google Scholar] [CrossRef]
- Hansen, M.C.; Egorov, A.; Potapov, P.V.; Stehman, S.V.; Tyukavina, A.; Turubanova, S.A.; Roy, D.P.; Goetz, S.J.; Loveland, T.R.; Ju, J.; et al. Monitoring Conterminous United States (CONUS) Land Cover Change with Web-Enabled Landsat Data (WELD). Remote Sens. Environ. 2014, 140, 466–484. [Google Scholar] [CrossRef] [Green Version]
- Yan, L.; Roy, D.P. Automated Crop Field Extraction from Multi-Temporal Web Enabled Landsat Data. Remote Sens. Environ. 2014, 144, 42–64. [Google Scholar] [CrossRef] [Green Version]
- Zald, H.S.J.; Wulder, M.A.; White, J.C.; Hilker, T.; Hermosilla, T.; Hobart, G.W.; Coops, N.C. Integrating Landsat Pixel Composites and Change Metrics with Lidar Plots to Predictively Map Forest Structure and Aboveground Biomass in Saskatchewan, Canada. Remote Sens. Environ. 2016, 176, 188–201. [Google Scholar] [CrossRef] [Green Version]
- The World Bank. Agribusiness Indicators: Ethiopia; (No. 68237-ET); The World Bank: Washington, DC, USA, 2012; Available online: http://http://documents.worldbank.org/curated/en/631391468008109813/pdf/682370ESW0P1260ators0Ethiopia0final.pdf (accessed on 3 February 2020).
- Teklemariam, D.; Azadi, H.; Nyssen, J.; Haile, M.; Witlox, F. How Sustainable is Transnational Farmland Acquisition in Ethiopia? Lessons Learned from the Benishangul-Gumuz Region. Sustainability 2016, 8, 213. [Google Scholar] [CrossRef] [Green Version]
- The World Factbook 2013–2014; Central Intelligence Agency: Washington, DC, USA, 2013.
- Central Statistical Agency. Agricultural Sample Survey 2015/2016 (No. 1); Ethiopia Central Statistical Agency: Addis Ababa, Ethiopia, 2016.
- Taffessem, A.; Dorosh, P.; Asrat, S. Crop Production in Ethiopia: Regional Patterns and Trends; International Food Policy Research Institute: Washington, DC, USA, 2012. [Google Scholar]
- Horne, F. Understanding Land Investment Deals in Africa; Country Report; Oakland Institute: Oakland, CA, USA, 2011; Available online: https://www.oaklandinstitute.org/sites/oaklandinstitute.org/files/OI_Ethiopa_Land_Investment_report.pdf (accessed on 3 February 2020).
- Hurni, H. Agroecological Belts of Ethiopia. Explanatory Notes on Three Maps at a Scale of 1:1,000 000. Soil Conservation Research Programme (SCRP) and Centre for Development and Environment (CDE). University of Bern, Addis Ababa and Bern. 1998. Available online: https://edepot.wur.nl/484855 (accessed on 3 February 2020).
- Fazzini, M.; Bisci, C.; Billi, P. The Climate of Ethiopia. In Landscapes and Landforms of Ethiopia; World Geomorphological Landscapes; Billi, P., Ed.; Springer: Dordrecht, The Netherlands, 2015. [Google Scholar]
- Alemayehu, A.; Bewket, W. Local Climate Variability and Crop Production in the Central Highlands of Ethiopia. Environ. Dev. 2016, 19, 36–48. [Google Scholar] [CrossRef]
- Biazin, B.; Sterk, G. Drought Vulnerability Drives Land-use and Land Cover Changes in the Rift Valley Dry Lands of Ethiopia. Agric. Ecosyst. Environ. 2013, 164, 100–113. [Google Scholar] [CrossRef]
- Gebru, T. Deforestation in Ethiopia: Causes, Impacts, and Remedy. Int. J. Eng. Dev. Res. 2016, 4, 204. [Google Scholar]
- Minta, M.; Kibret, K.; Thorne, P.; Nigussie, T.; Nigatu, L. Land use and Land Cover Dynamics in Dendi-Jeldu Hilly-Mountainous Areas in the Central Ethiopian Highlands. Geoderma 2018, 314, 27–36. [Google Scholar] [CrossRef]
- Ali, D.A.; Deininger, K.; Harris, A. Using National Statistics to Increase Transparency of Large Land Acquisition: Evidence from Ethiopia. World Dev. 2017, 93, 62–74. [Google Scholar] [CrossRef] [Green Version]
- Tolessa, T.; Senbeta, F.; Kidane, M. The Impact of Land use/Land Cover Change on Ecosystem Services in the Central Highlands of Ethiopia. Ecosyst. Serv. 2017, 23, 47–54. [Google Scholar] [CrossRef]
- Loveland, T.R.; Irons, J.R. Landsat 8: The Plans, the Reality, and the Legacy. Remote Sens. Environ. 2016, 185, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Roy, D.P.; Ju, J.; Mbow, C.; Frost, P.; Loveland, T. Accessing Free Landsat Data Via the Internet: Africa’s Challenge. Remote Sens. Lett. 2010, 1, 111–117. [Google Scholar] [CrossRef]
- Roy, D.P.; Wulder, M.A.; Loveland, T.R.; Woodcock, C.E.; Allen, R.G.; Anderson, M.C.; Helder, D.; Irons, J.R.; Johnson, D.M.; Kennedy, R.; et al. Landsat-8: Science and Product Vision for Terrestrial Global Change Research. Remote Sens. Environ. 2014, 145, 154–172. [Google Scholar] [CrossRef] [Green Version]
- Wulder, M.A.; White, J.C.; Loveland, T.R.; Woodcock, C.E.; Belward, A.S.; Cohen, W.B.; Fosnight, E.A.; Shaw, J.; Masek, J.G.; Roy, D.P. The Global Landsat Archive: Status, Consolidation, and Direction. Remote Sens. Environ. 2016, 185, 271–283. [Google Scholar] [CrossRef] [Green Version]
- Gómez, C.; White, J.C.; Wulder, M.A. Optical Remotely Sensed Time Series Data for Land Cover Classification: A Review. ISPRS J. Photogramm. Remote Sens. 2016, 116, 55–72. [Google Scholar] [CrossRef] [Green Version]
- Woodcock, C.E.; Allen, R.; Anderson, M.; Belward, A.; Bindschadler, R.; Cohen, W.; Gao, F.; Goward, S.N.; Helder, D.; Helmer, E.; et al. Free Access to Landsat Imagery. Science 2008, 320, 1011. [Google Scholar] [CrossRef] [PubMed]
- Wulder, M.A.; Masek, J.G.; Cohen, W.B.; Loveland, T.R.; Woodcock, C.E. Opening the Archive: How Free Data has Enabled the Science and Monitoring Promise of Landsat. Remote Sens. Environ. 2012, 122, 2–10. [Google Scholar] [CrossRef]
- Zhu, Z.; Wulder, M.A.; Roy, D.P.; Woodcock, C.E.; Hansen, M.C.; Radeloff, V.C.; Healey, S.P.; Schaaf, C.; Hostert, P.; Strobl, P.; et al. Benefits of the Free and Open Landsat Data Policy. Remote Sens. Environ. 2019, 224, 382–385. [Google Scholar] [CrossRef]
- Vermote, E.; Justice, C.; Claverie, M.; Franch, B. Preliminary Analysis of the Performance of the Landsat 8/OLI Land Surface Reflectance Product. Remote Sens. Environ. 2016, 185, 46–56. [Google Scholar] [CrossRef] [PubMed]
- Masek, J.G.; Vermote, E.F.; Saleous, N.E.; Wolfe, R.; Hall, F.G.; Huemmrich, K.F.; Gao, F.; Kutler, J.; Lim, T.-K. A Landsat Surface Reflectance Dataset for North America, 1990–2000. IEEE Geosci. Remote Sens. Lett. 2006, 3, 68–72. [Google Scholar] [CrossRef]
- Zhu, Z.; Woodcock, C.E. Object-Based Cloud and Cloud Shadow Detection in Landsat Imagery. Remote Sens. Environ. 2012, 118, 83–94. [Google Scholar] [CrossRef]
- Zhu, Z.; Wang, S.; Woodcock, C.E. Improvement and Expansion of the Fmask Algorithm: Cloud, Cloud Shadow, and Snow Detection for Landsats 4-7, 8, and Sentinel 2 Images. Remote Sens. Environ. 2015, 159, 269–277. [Google Scholar] [CrossRef]
- Wang, L.; Shi, C.; Diao, C.; Ji, W.; Yin, D. A Survey of Methods Incorporating Spatial Information in Image Classification and Spectral Unmixing. Int. J. Remote Sens. 2016, 37, 3870–3910. [Google Scholar] [CrossRef]
- Gong, P.; Wang, J.; Yu, L.; Zhao, Y.; Zhao, Y.; Liang, L.; Niu, Z.; Huang, X.; Fu, H.; Liu, S.; et al. Finer Resolution Observation and Monitoring of Global Land Cover: First Mapping Results with Landsat TM and ETM+ Data. Int. J. Remote Sens. 2013, 34, 2607–2654. [Google Scholar] [CrossRef] [Green Version]
- Khatami, R.; Mountrakis, G. The Interacting Effects of Image Acquisition Date, Number of Images, Classifier, and Number of Training Samples on Accuracy of Binary Classification of Impervious Cover. Remote Sens. Lett. 2018, 9, 189–198. [Google Scholar] [CrossRef]
- Schultz, M.; Clevers, J.G.P.W.; Carter, S.; Verbesselt, J.; Avitabile, V.; Quang, H.V.; Herold, M. Performance of Vegetation Indices from Landsat Time Series in Deforestation Monitoring. Int. J. Appl. Earth Obs. Geoinf. 2016, 52, 318–327. [Google Scholar] [CrossRef]
- Schwieder, M.; Leitão, P.J.; da Cunha Bustamante, M.M.; Ferreira, L.G.; Rabe, A.; Hostert, P. Mapping Brazilian Savanna Vegetation Gradients with Landsat Time Series. Int. J. Appl. Earth Obs. Geoinf. 2016, 52, 361–370. [Google Scholar] [CrossRef]
- Griffiths, P.; Van Der Linden, S.; Kuemmerle, T.; Hostert, P. Erratum: A Pixel-Based Landsat Compositing Algorithm for Large Area Land Cover Mapping (IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing). IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 6, 2088–2101. [Google Scholar] [CrossRef]
- Peterson, B.; Nelson, K.J. Mapping Forest Height in Alaska using GLAS, Landsat Composites, and Airborne LiDAR. Remote Sens. 2014, 6, 12409–12426. [Google Scholar] [CrossRef] [Green Version]
- Potapov, P.; Turubanova, S.; Hansen, M.C. Regional-Scale Boreal Forest Cover and Change Mapping using Landsat Data Composites for European Russia. Remote Sens. Environ. 2011, 115, 548–561. [Google Scholar] [CrossRef]
- Sexton, J.O.; Urban, D.L.; Donohue, M.J.; Song, C. Long-Term Land Cover Dynamics by Multi-Temporal Classification Across the Landsat-5 Record. Remote Sens. Environ. 2013, 128, 246–258. [Google Scholar] [CrossRef]
- Sexton, J.O.; Song, X.-P.; Huang, C.; Channan, S.; Baker, M.E.; Townshend, J.R. Urban Growth of the Washington, D.C.-Baltimore, MD Metropolitan Region from 1984 to 2010 by Annual, Landsat-Based Estimates of Impervious Cover. Remote Sens. Environ. 2013, 129, 42–53. [Google Scholar] [CrossRef]
- Workie, T.G.; Debella, H.J. Climate Change and its Effects on Vegetation Phenology Across Ecoregions of Ethiopia. Glob. Ecol. Conserv. 2018, 13, e00366. [Google Scholar] [CrossRef]
- Shumway, R.H.; Stoffe, D.S. Time Series Analysis and its Applications with R Examples, 4th ed.; Springer International Publishing: Cham, Switzerland, 2017; p. 562. [Google Scholar]
- Zhu, Z.; Woodcock, C.E. Continuous Change Detection and Classification of Land Cover using all Available Landsat Data. Remote Sens. Environ. 2014, 144, 152–171. [Google Scholar] [CrossRef] [Green Version]
- Reuter, H.I.; Nelson, A.; Jarvis, A. An Evaluation of Void-Filling Interpolation Methods for SRTM Data. Int. J. Geogr. Inf. Sci. 2007, 21, 983–1008. [Google Scholar] [CrossRef]
- Cai, J.; Huang, B.; Song, Y. Using Multi-Source Geospatial Big Data to Identify the Structure of Polycentric Cities. Remote Sens. Environ. 2017, 202, 210–221. [Google Scholar] [CrossRef]
- Schneider, A.; Friedl, M.A.; McIver, D.K.; Woodcock, C.E. Mapping Urban Areas by Fusing Multiple Sources of Coarse Resolution Remotely Sensed Data. Photogramm. Eng. Remote Sens. 2003, 69, 1377–1386. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Melville, B.; Lucieer, A.; Aryal, J. Object-Based Random Forest Classification of Landsat ETM+ and WorldView-2 Satellite Imagery for Mapping Lowland Native Grassland Communities in Tasmania, Australia. Int. J. Appl. Earth Obs. Geoinf. 2018, 66, 46–55. [Google Scholar] [CrossRef]
- Pelletier, C.; Valero, S.; Inglada, J.; Champion, N.; Dedieu, G. Assessing the Robustness of Random Forests to Map Land Cover with High Resolution Satellite Image Time Series Over Large Areas. Remote Sens. Environ. 2016, 187, 156–168. [Google Scholar] [CrossRef]
- Yang, Y.; Xiao, P.; Feng, X.; Li, H. Accuracy Assessment of Seven Global Land Cover Datasets over China. ISPRS J. Photogramm. Remote Sens. 2017, 125, 156–173. [Google Scholar] [CrossRef]
- Grekousis, G.; Mountrakis, G.; Kavouras, M. An Overview of 21 Global and 43 Regional Land-Cover Mapping Products. Int. J. Remote Sens. 2015, 36, 5309–5335. [Google Scholar] [CrossRef]
- Khatami, R.; Mountrakis, G.; Stehman, S.V. Mapping Per-Pixel Predicted Accuracy of Classified Remote Sensing Images. Remote Sens. Environ. 2017, 191, 156–167. [Google Scholar] [CrossRef] [Green Version]
- Khatami, R.; Mountrakis, G.; Stehman, S.V. Predicting Individual Pixel Error in Remote Sensing Soft Classification. Remote Sens. Environ. 2017, 199, 401–414. [Google Scholar] [CrossRef]
- Tsutsumida, N.; Rodríguez-Veiga, P.; Harris, P.; Balzter, H.; Comber, A. Investigating Spatial Error Structures in Continuous Raster Data. Int. J. Appl. Earth Obs. Geoinf. 2019, 74, 259–268. [Google Scholar] [CrossRef]
- Wickham, J.; Stehman, S.V.; Homer, C.G. Spatial Patterns of the United States National Land Cover Dataset (NLCD) Land-Cover Change Thematic Accuracy (2001–2011). Int. J. Remote Sens. 2018, 39, 1729–1743. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J.; Zhang, W.; Mei, Y.; Yang, W. Geostatistical Characterization of Local Accuracies in Remotely Sensed Land Cover Change Categorization with Complexly Configured Reference Samples. Remote Sens. Environ. 2019, 223, 63–81. [Google Scholar] [CrossRef]
Land-Cover Class | Class Definition Used in this Work | Corresponding Class in Copernicus | Corresponding Class in GlobLand30 |
---|---|---|---|
Dense Forest | Vegetation dominated by tree cover of 70% or greater. | Forest, closed forest (deciduous, evergreen) | Forest |
Savanna | Grasses, shrubs, herbaceous plants, and tree cover less than 70%. | Shrubs, herbaceous vegetation | Shrubland, grassland |
Cultivated | Land used for agriculture, small-holder and intensive cultivation, including plantations. | Cultivated and managed vegetation/agriculture | Cultivated land |
Bare Soil | Bare soil and rock with <5% vegetation cover. | Bare/sparse vegetation | Bareland |
Urban/Built | Land predominantly covered by man-made structures; roads, buildings. | Urban/built up | Artificial surfaces |
Water/Wetland | Permanent water bodies (rivers, lakes) or wetlands. | Temporary water bodies, Permanent water bodies | Wetland, water bodies |
No. | Classification Explanatory Variables | Number of Explanatory Variables | Cultivated | Dense Forest | Savanna | Bare Soil | Urban/Built | Water/Wetland | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
OA | UA | PA | UA | PA | UA | PA | UA | PA | UA | PA | UA | PA | |||
1 | TOA | 7 | 66.1 | 58.6 | 70.8 | 79.7 | 67.1 | 63.5 | 56.0 | 55.6 | 70.3 | 55.4 | 55.4 | 98.2 | 96.4 |
2 | SR | 7 | 67.2 | 50.5 | 63.9 | 80.0 | 62.9 | 63.7 | 64.5 | 63.0 | 79.7 | 66.7 | 42.1 | 100.0 | 96.4 |
3 | SR_NDIs | 6 | 68.2 | 45.1 | 63.9 | 77.6 | 64.3 | 66.2 | 55.4 | 64.6 | 79.7 | 81.1 | 75.4 | 100.0 | 96.4 |
4 | SR_NDIs + TXT | 24 | 70.1 | 50.5 | 63.9 | 80.7 | 65.7 | 66.2 | 59.8 | 63.3 | 79.4 | 83.6 | 80.7 | 100.0 | 92.9 |
5 | SR_NDIs + TXT + SIN_MDL | 28 | 72.2 | 52.6 | 69.4 | 85.2 | 65.7 | 70.4 | 68.3 | 69.6 | 76.2 | 75.5 | 70.2 | 100.0 | 92.9 |
6 | SR_NDIs + TXT + LND_PDF | 54 | 72.8 | 55.8 | 73.6 | 80.7 | 65.7 | 69.4 | 67.7 | 71.6 | 76.2 | 80.0 | 70.2 | 100.0 | 94.6 |
7 | SR_NDIs + TXT + LND_SEQ | 48 | 73.2 | 54.8 | 69.7 | 75.5 | 62.5 | 70.3 | 68.5 | 71.0 | 77.8 | 86.0 | 78.2 | 100.0 | 92.9 |
8 | SR_NDIs + TXT + MDS_PDF | 34 | 71.8 | 52.1 | 68.1 | 79.3 | 65.7 | 70.0 | 68.3 | 73.4 | 74.6 | 75.5 | 70.2 | 98.1 | 92.9 |
9 | SR_NDIs + TXT + MDS_SEQ | 36 | 72.0 | 51.0 | 77.6 | 82.2 | 58.7 | 69.2 | 67.9 | 75.0 | 76.2 | 84.4 | 69.1 | 100.0 | 90.7 |
10 | SR_NDIs + TXT + ALL_CPT | 104 | 75.2 | 57.0 | 72.6 | 78.3 | 59.0 | 70.3 | 73.4 | 79.7 | 81.0 | 87.0 | 75.5 | 100.0 | 94.4 |
11 | SR_NDIs + TXT + ALL_CPT + DNB | 105 | 73.8 | 55.3 | 75.8 | 84.1 | 60.7 | 70.6 | 68.4 | 76.6 | 77.8 | 77.4 | 77.4 | 98.1 | 94.4 |
12 | SR_NDIs + TXT + ALL_CPT + DNB + ELV | 108 | 76.9 | 59.8 | 79.0 | 86.0 | 60.7 | 73.1 | 74.1 | 78.1 | 79.4 | 84.3 | 81.1 | 100.0 | 94.4 |
13 | TXT + ALL_CPT + DNB + ELV | 102 | 74.3 | 56.3 | 79.0 | 82.2 | 60.7 | 70.4 | 70.4 | 76.2 | 76.2 | 81.1 | 71.7 | 100.0 | 96.3 |
Classification | Cultivated | Dense Forest | Savanna | Bare Soil | Urban/Built | Water/Wetland | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
OA | UA | PA | UA | PA | UA | PA | UA | PA | UA | PA | UA | PA | |
GlobeLand30 (2010) | 65.9 | 58.4 | 57.8 | 89.2 | 72.2 | 77.4 | 50.8 | 67.7 | 66.7 | 91.4 | 60.0 | 55.0 | 94.6 |
Copernicus (2015) | 76.2 | 75.3 | 74.5 | 83.1 | 80.6 | 62.5 | 98.5 | 68.1 | 68.5 | 90.2 | 64.3 | 78.1 | 98.2 |
LC_2017 (2017) | 76.9 | 59.8 | 79.0 | 86.0 | 60.7 | 73.1 | 74.1 | 78.1 | 79.4 | 84.3 | 81.1 | 100.0 | 94.4 |
Classification | Cultivated (km2) | Dense Forest (km2) | Savanna (km2) | Bare Soil (km2) | Urban/Built (km2) | Water/Wetland (km2) |
---|---|---|---|---|---|---|
GlobeLand30 (2010) | 221,303 | 139,657 | 736,251 | 32,900 | 1580 | 10,757 |
Copernicus (2015) | 264,511 | 64,505 | 729,809 | 83,452 | 1526 | 8785 |
LC_2017 (2017) | 298,831 | 101,467 | 654,104 | 85,607 | 4387 | 8092 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khatami, R.; Southworth, J.; Muir, C.; Caughlin, T.; Ayana, A.N.; Brown, D.G.; Liao, C.; Agrawal, A. Operational Large-Area Land-Cover Mapping: An Ethiopia Case Study. Remote Sens. 2020, 12, 954. https://doi.org/10.3390/rs12060954
Khatami R, Southworth J, Muir C, Caughlin T, Ayana AN, Brown DG, Liao C, Agrawal A. Operational Large-Area Land-Cover Mapping: An Ethiopia Case Study. Remote Sensing. 2020; 12(6):954. https://doi.org/10.3390/rs12060954
Chicago/Turabian StyleKhatami, Reza, Jane Southworth, Carly Muir, Trevor Caughlin, Alemayehu N. Ayana, Daniel G. Brown, Chuan Liao, and Arun Agrawal. 2020. "Operational Large-Area Land-Cover Mapping: An Ethiopia Case Study" Remote Sensing 12, no. 6: 954. https://doi.org/10.3390/rs12060954
APA StyleKhatami, R., Southworth, J., Muir, C., Caughlin, T., Ayana, A. N., Brown, D. G., Liao, C., & Agrawal, A. (2020). Operational Large-Area Land-Cover Mapping: An Ethiopia Case Study. Remote Sensing, 12(6), 954. https://doi.org/10.3390/rs12060954