Taking the Motion out of Floating Lidar: Turbulence Intensity Estimates with a Continuous-Wave Wind Lidar
"> Figure 1
<p>Visualization of the SEAWATCH Wind LiDAR Buoy in pitched orientation. Shown are the global right-handed North-West-Up (NWU) coordinate system and the north-east-down (NED) reference frame of the motion reference unit (MRU) (gray); unit vectors <math display="inline"><semantics> <msub> <mover accent="true"> <mi>e</mi> <mo>→</mo> </mover> <mi>x</mi> </msub> </semantics></math>, <math display="inline"><semantics> <msub> <mover accent="true"> <mi>e</mi> <mo>→</mo> </mover> <mi>y</mi> </msub> </semantics></math>, and <math display="inline"><semantics> <msub> <mover accent="true"> <mi>e</mi> <mo>→</mo> </mover> <mi>z</mi> </msub> </semantics></math> along the rotated body coordinate axes of the (MRU) (blue); unit vectors <math display="inline"><semantics> <msub> <mover accent="true"> <mi>e</mi> <mo>→</mo> </mover> <msub> <mi>θ</mi> <mn>0</mn> </msub> </msub> </semantics></math>, <math display="inline"><semantics> <msub> <mover accent="true"> <mi>e</mi> <mo>→</mo> </mover> <msub> <mi>θ</mi> <mn>270</mn> </msub> </msub> </semantics></math>, and <math display="inline"><semantics> <msub> <mover accent="true"> <mi>e</mi> <mo>→</mo> </mover> <mi>h</mi> </msub> </semantics></math> defining the lidar frame of reference (red); the line-of-sight (LOS) unit vector <math display="inline"><semantics> <msub> <mover accent="true"> <mi>e</mi> <mo>→</mo> </mover> <msub> <mi>LOS</mi> <msub> <mi>θ</mi> <mn>0</mn> </msub> </msub> </msub> </semantics></math> for the azimuth offset angle <math display="inline"><semantics> <msub> <mi>θ</mi> <mn>0</mn> </msub> </semantics></math> (green); and the LOS unit vector <math display="inline"><semantics> <msub> <mover accent="true"> <mi>e</mi> <mo>→</mo> </mover> <msub> <mi>LOS</mi> <mi>θ</mi> </msub> </msub> </semantics></math> for an arbitrary <math display="inline"><semantics> <mi>θ</mi> </semantics></math> (yellow). Additionally, the separation vector <math display="inline"><semantics> <mover accent="true"> <mi>d</mi> <mo>→</mo> </mover> </semantics></math> between the MRU and lidar prism is shown, as are the nominal and real azimuth (<math display="inline"><semantics> <mi>θ</mi> </semantics></math> and <math display="inline"><semantics> <msub> <mi>θ</mi> <mi>r</mi> </msub> </semantics></math>) and zenith angles (<math display="inline"><semantics> <mi>ϕ</mi> </semantics></math> and <math display="inline"><semantics> <msub> <mi>ϕ</mi> <mi>r</mi> </msub> </semantics></math>). (Sketch not to scale).</p> "> Figure 2
<p>Overview of the influence of motion on line-of-sight estimates and reconstructed wind vectors of a velocity–azimuth display (VAD) scanning floating lidar system. Shown are examples of translational motion with <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>v</mi> <mo>^</mo> </mover> <mo>=</mo> <mn>1</mn> <mspace width="0.166667em"/> <msup> <mi>ms</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> </semantics></math> amplitude oscillating with frequency (<b>a</b>) <math display="inline"><semantics> <mrow> <msub> <mi>f</mi> <mi>v</mi> </msub> <mo>≪</mo> <mn>1</mn> <mspace width="0.166667em"/> <mi>Hz</mi> </mrow> </semantics></math> and (<b>b</b>) <math display="inline"><semantics> <mrow> <msub> <mi>f</mi> <mi>v</mi> </msub> <mo>=</mo> <mn>1</mn> <mspace width="0.166667em"/> <mi>Hz</mi> </mrow> </semantics></math>, and the rotational motion of <math display="inline"><semantics> <mrow> <msup> <mn>10.5</mn> <mo>∘</mo> </msup> </mrow> </semantics></math> peak angle oscillating with (<b>c</b>) <math display="inline"><semantics> <mrow> <msub> <mi>f</mi> <mi>v</mi> </msub> <mo>≪</mo> <mn>1</mn> <mspace width="0.166667em"/> <mi>Hz</mi> </mrow> </semantics></math> and (<b>d</b>) <math display="inline"><semantics> <mrow> <msub> <mi>f</mi> <mi>v</mi> </msub> <mo>=</mo> <mn>1</mn> <mspace width="0.166667em"/> <mi>Hz</mi> </mrow> </semantics></math>, where <math display="inline"><semantics> <mrow> <mn>1</mn> <mspace width="0.166667em"/> <mi>Hz</mi> </mrow> </semantics></math> is the rotation frequency of the lidar prism. Green lines (dashed in <b>c</b>,<b>d</b>) are the radial velocity components of constant horizontal wind blowing in <math display="inline"><semantics> <mrow> <mi>θ</mi> <mo>=</mo> <msup> <mn>0</mn> <mo>∘</mo> </msup> </mrow> </semantics></math> direction with a magnitude of <math display="inline"><semantics> <mrow> <mi>U</mi> <mo>=</mo> <mn>5</mn> <mspace width="0.166667em"/> <msup> <mi>ms</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> </semantics></math> as a function of the lidar azimuth angle <math display="inline"><semantics> <mi>θ</mi> </semantics></math>. Blue lines are the influence of translational motion. Red lines are the total line-of-sight velocities. Color shades represent different phases of the oscillatory motion. Circle and cross markers represent the reconstructed wind vectors after conventional VAD processing, where the position on the <span class="html-italic">y</span>-axis is the magnitude and the position on the <span class="html-italic">x</span>-axis is the wind direction <math display="inline"><semantics> <mo>Θ</mo> </semantics></math>. More information in <a href="#sec2dot3dot1-remotesensing-12-00898" class="html-sec">Section 2.3.1</a>.</p> "> Figure 3
<p>Comparison of turbulence intensity (<math display="inline"><semantics> <mrow> <mi>T</mi> <mspace width="-0.166667em"/> <mi>I</mi> </mrow> </semantics></math>) estimates based on wind data time series from internal data processing vs. emulated data processing. Only three height levels shown for clarity. The dashed-dotted lines limit a <math display="inline"><semantics> <mrow> <mo>±</mo> <mn>0.01</mn> </mrow> </semantics></math> interval parallel to the dashed <math display="inline"><semantics> <mrow> <mi>y</mi> <mo>=</mo> <mi>x</mi> </mrow> </semantics></math> line.</p> "> Figure 4
<p>Standard deviation of the motion compensated horizontal wind speed <math display="inline"><semantics> <msub> <mi>σ</mi> <msub> <mi>u</mi> <mi>hor</mi> </msub> </msub> </semantics></math> as a function of timing offset between MRU and lidar data. <math display="inline"><semantics> <msub> <mi>σ</mi> <msub> <mi>u</mi> <mi>hor</mi> </msub> </msub> </semantics></math> is the mean of all height levels for one arbitrary ten-minute interval. The absolute minimum at <math display="inline"><semantics> <mrow> <mo>−</mo> <mn>0.16</mn> <mspace width="0.166667em"/> <mi mathvariant="normal">s</mi> </mrow> </semantics></math> indicates the sweet spot that corresponds to the real offset between the two datasets.</p> "> Figure 5
<p>Timing offset at which the sweet spot from <a href="#remotesensing-12-00898-f004" class="html-fig">Figure 4</a> is found for all available ten-minute intervals.</p> "> Figure 6
<p>Map indicating the location of the floating lidar unit 593 and the land-based fixed reference lidar unit 495. The elevation difference above sea level and the geometry of the measurement cones is shown for all measurement heights. The selected offshore wind sector <math display="inline"><semantics> <mrow> <mo>[</mo> <msup> <mn>135</mn> <mo>∘</mo> </msup> <mo>,</mo> <msup> <mn>250</mn> <mo>∘</mo> </msup> <mo>]</mo> </mrow> </semantics></math> is indicated in dark blue. (Map data adapted from <a href="http://www.kartverket.no" target="_blank">www.kartverket.no</a>).</p> "> Figure 7
<p>Average of measured horizontal mean wind velocities from the floating lidar with (red) and without (blue) motion compensation, as well as from the fixed reference lidar (green), sorted by measurement height.</p> "> Figure 8
<p>Average <math display="inline"><semantics> <mrow> <mi>T</mi> <mspace width="-0.166667em"/> <mi>I</mi> </mrow> </semantics></math> for all measurements and sorted by measurement heights. Blue circle markers indicate <math display="inline"><semantics> <mrow> <mi>T</mi> <mspace width="-0.166667em"/> <mi>I</mi> </mrow> </semantics></math> based on uncompensated measurements from the floating lidar. Red cross markers show corresponding values with motion compensation. Green square markers stand for values from the land-based fixed reference lidar for comparison. Bar plots show the motion-induced <math display="inline"><semantics> <mrow> <mi>T</mi> <mspace width="-0.166667em"/> <mi>I</mi> </mrow> </semantics></math> as the difference between measurements with the floating lidar and the fixed lidar (green) compared to the amount of motion-induced <math display="inline"><semantics> <mrow> <mi>T</mi> <mspace width="-0.166667em"/> <mi>I</mi> </mrow> </semantics></math> detected by the algorithm (red). The number of available measurement values at each height is given.</p> "> Figure 9
<p><math display="inline"><semantics> <mrow> <mi>T</mi> <mspace width="-0.166667em"/> <mi>I</mi> </mrow> </semantics></math> from all measurement heights binned by mean wind velocity. Legend as in <a href="#remotesensing-12-00898-f008" class="html-fig">Figure 8</a> plus markers for the mean tilt amplitude <math display="inline"><semantics> <mover> <mi>α</mi> <mo>¯</mo> </mover> </semantics></math> and mean translational velocity <math display="inline"><semantics> <mover> <mi>v</mi> <mo>¯</mo> </mover> </semantics></math> that scale with the right hand side <span class="html-italic">y</span>-axis.</p> "> Figure 10
<p><math display="inline"><semantics> <mrow> <mi>T</mi> <mspace width="-0.166667em"/> <mi>I</mi> </mrow> </semantics></math> from all measurement heights binned by <math display="inline"><semantics> <mover> <mi>α</mi> <mo>¯</mo> </mover> </semantics></math>, the mean tilt angle of the buoy. Legend as in <a href="#remotesensing-12-00898-f008" class="html-fig">Figure 8</a> plus markers for the horizontal mean wind velocity <span class="html-italic">U</span> and the relative emulation error <math display="inline"><semantics> <mi>ϵ</mi> </semantics></math> that refer to the right hand side <span class="html-italic">y</span>-axis.</p> "> Figure 11
<p>Top: (<b>a</b>) Overview of the individual error between <math display="inline"><semantics> <mrow> <mi>T</mi> <mspace width="-0.166667em"/> <mi>I</mi> </mrow> </semantics></math> measured by reference lidar and uncompensated floating lidar (blue) and compensated floating lidar (red). Bottom: Close up view of two examples of the plot above where the motion-induced turbulence is particularly high (<b>b</b>) and low (<b>c</b>). (<b>d</b>) Probability density functions (PDF) of the error</p> "> Figure 12
<p>Scatter plot of turbulence intensities from the floating lidar uncompensated (blue) and compensated (red) vs. from the land-based reference lidar. Deming regression lines are given in corresponding colors. The equations of the regression lines and their standard deviations are listed. The black dashed line is the <math display="inline"><semantics> <mrow> <mi>y</mi> <mo>=</mo> <mi>x</mi> </mrow> </semantics></math> line. Some datapoints lie outside the plotted area.</p> ">
Abstract
:1. Introduction
2. Theory
2.1. Turbulence Intensity
2.2. Coordinate System and Vector Rotations
2.3. The Motion-Induced Error in TI Measurements
2.3.1. Error in Radial Velocities due to Translational Motion
2.3.2. Change in Scanning Geometry due to Rotational Motion
2.3.3. Changing Measurement Elevation due to Rotation under the Influence of Wind Shear and Veer
3. Method
3.1. Emulation of Conventional VAD Processing
3.2. The Motion Compensation Algorithm
3.3. Time Synchronization
3.4. Data Handling
3.5. Instrumentation and Measurement Setup
3.6. Data Filtering
3.7. Measurement Uncertainty
4. Results and Discussion
4.1. Mean Wind
4.2. TI Profile
4.3. TI vs. Velocity
4.4. TI vs. Tilt Angle
4.5. Individual Error Analysis
4.6. Scatter Analysis
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
LOS | Line-of-sight |
MRU | Motion reference unit |
NWU | North-west-up |
Res. | Resonance |
Rot. | Rotational |
Std. dev. | Standard deviation |
Turbulence intensity | |
Transl. | Translational |
VAD | Velocity–azimuth display |
References
- Petersen, S.; Sarmento, A.; Cândido, J.; Godreau, C. Preliminary study on an offshore wind energy resource monitoring system. In Renewable Energies Offshore; Soarez, C.G., Ed.; Taylor & Francis: Abingdon, UK, 2015; pp. 213–218. [Google Scholar]
- Gottschall, J.; Gribben, B.; Stein, D.; Würth, I. Floating lidar as an advanced offshore wind speed measurement technique: Current technology status and gap analysis in regard to full maturity. WIREs Energy Environ. 2017, 6. [Google Scholar] [CrossRef]
- The Carbon Trust. Carbon Trust Offshore Wind Accelerator Roadmap for the Commercial Acceptance of Floating LiDAR Technology. Version 2.0. October 2018. [Google Scholar]
- Tiana-Alsina, J.; Rocadenbosch, F.; Gutiérrez-Antuñano, M.A. Vertical azimuth display simulator for wind-Doppler lidar error assessment. In Proceedings of the 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Fort Worth, TX, USA, 23–28 July 2017; pp. 1614–1617. [Google Scholar] [CrossRef] [Green Version]
- Gottschall, J.; Wolken-Möhlmann, G.; Viergutz, T.; Lange, B. Results and conclusions of a floating-lidar offshore test. Energy Procedia 2014, 53, 156–161. [Google Scholar] [CrossRef]
- Mathisen, J.P. Measurement of wind profile with a buoy mounted lidar. In Proceedings of the 10th Deep Sea Offshore Wind R&D Conference, DeepWind’2013, Trondheim, Norway, 24–25 January 2013. [Google Scholar]
- Gutiérrez-Antuñano, M.A.; Tiana-Alsina, J.; Salcedo, A.; Rocadenbosch, F. Estimation of the Motion-Induced-Horizontal-Wind-Speed Standard Deviation in an Offshore Doppler Lidar. Remote Sens. 2018, 10, 2037. [Google Scholar] [CrossRef] [Green Version]
- Tiana-Alsina, A.J.; Gutiérrez, M.A.; Würth, I.; Puigdefábregas, J.; Rocadenbosch, F. Motion compensation study for a floating Doppler wind LiDAR. In Proceedings of the 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Milan, Italy, 26–31 July 2015. [Google Scholar] [CrossRef]
- Gutiérrez, M.A.; Tiana-Alsina, J.; Bischoff, O.; Cateura, J.; Rocadenbosch, F. Performance evaluation of a floating Doppler wind lidar buoy in mediterranean near-shore conditions. In Proceedings of the 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Milan, Italy, 26–31 July 2015. [Google Scholar] [CrossRef]
- Yamaguchi, A.; Ishihara, T. A new motion compensation algorithm of floating lidar system for the assessment of turbulence intensity. J. Phys. Conf. Ser. 2016, 753. [Google Scholar] [CrossRef]
- Gottschall, J.; Wolken-Möhlmann, G.; Lange, B. About offshore resource assessment with floating lidars with special respect to turbulence and extreme events. J. Phys. Conf. Ser. 2014, 555. [Google Scholar] [CrossRef]
- Sathe, A.; Mann, J.; Gottschall, J.; Courtney, M.S. Can wind lidars measure turbulence? J. Atmos. Ocean. Tech. 2011, 853–868. [Google Scholar] [CrossRef] [Green Version]
- Kelberlau, F.; Mann, J. Better turbulence spectra from velocity-azimuth display scanning wind lidar. Atmos. Meas. Tech. 2019, 12, 1871–1888. [Google Scholar] [CrossRef] [Green Version]
- Kelberlau, F.; Mann, J. Cross-contamination effect on turbulence spectra from Doppler beam swinging wind lidar. Wind Energy Sci. Discuss. 2019. [Google Scholar] [CrossRef] [Green Version]
- Emeis, S. Wind Energy Meteorology, 2nd ed.; Springer International Publishing AG: Berlin/Heidelberg, Germany, 2018. [Google Scholar] [CrossRef]
- Grewal, M.S.; Weill, P.L.R.; Andrews, A.P. Global Positioning Systems, Inertial Navigation, and Integration; chapter Appendix C: Coordinate Transformations; John Wiley & Sons Inc.: Hoboken, NJ, USA, 2006; pp. 456–501. [Google Scholar] [CrossRef] [Green Version]
- Cole, I.R. Modelling CPV. Ph.D. Thesis, Loughborough University, Loughborough, UK, 2015. [Google Scholar]
- Gottschall, J.; Catalano, E.; Dörenkämper, M.; Witha, B. The NEWA Ferry Lidar Experiment: Measuring Mesoscale Winds in the Southern Baltic Sea. Remote Sens. 2018, 10, 1620. [Google Scholar] [CrossRef] [Green Version]
- Zhai, X.; Wu, S.; Liu, B.; Song, X.; Yin, J. Shipborne Wind Measurement and Motion-induced Error Correction of a Coherent Doppler Lidar over the Yellow Sea in 2014. Atmos. Meas. Tech. 2018, 11, 1313–1331. [Google Scholar] [CrossRef] [Green Version]
- Wolken-Möhlmann, G.; Lilov, H.; Lange, B. Simulation of Motion Induced Measurement Errors for Wind Measurements Using LIDAR on Floating Platforms; Fraunhofer IWES: Bremerhaven, Germany, 2010. [Google Scholar]
- Branlard, E.; Pedersen, A.T.; Mann, J.; Angelou, N.; Fischer, A.; Mikkelsen, T.; Harris, M.; Slinger, C.; Montes, B. Retrieving wind statistics from average spectrum of continuous-wave lidar. Atmos. Meas. Tech. 2013, 6, 1673–1683. [Google Scholar] [CrossRef] [Green Version]
- Angelou, N.; Foroughi Abari, F.; Mann, J.; Mikkelsen, T.; Sjöholm, M. Challenges in noise removal from Doppler spectra acquired by a continuous-wave lidar. In Proceedings of the 26th International Laser Radar Conference, Porto Heli, Greece, 25–29 June 2012. [Google Scholar]
- Pitter, M.; Slinger, C.; Harris, M. Introduction to continuous-wave Doppler lidar. In Remote Sensing for Wind Energy; DTU Wind Energy-E-Report-E-0084; DNV GL-Energy: Kaiser-Wilhelm-Koog, Germany, 2015. [Google Scholar]
- Mann, J.; Peña, A.; Bingöl, F.; Wagner, R.; Courtney, M.S. Lidar scanning of momentum flux in and above the surface layer. J. Atmos. Ocean. Technol. 2010, 27, 959–976. [Google Scholar] [CrossRef]
- Dellwik, E.; Mann, J.; Bingöl, F. Flow tilt angles near forest edges – Part 2: Lidar anemometry. Biogeosciences 2010, 7, 1759–1768. [Google Scholar] [CrossRef] [Green Version]
- Mark, A.; Köhne, V.; Stein, D. Assessment of the Fugro OCEANOR Seawatch Wind LiDAR Buoy WS 170 Pre-Deployment Validation at Frøya, Norway; Technical Report GLGH-4270 17 14462-R-0002, Rev. C; DNV GL-Energy: Kaiser-Wilhelm-Koog, Germany, 2017. [Google Scholar]
- Wylie, S. Turbulence Intensity measurements from a ground-based vertically-profiling lidar. In Proceedings of the WindEurope Resource Assessment Workshop Session 4: Using Lidar to Reduce Uncertainty, Brussels, Belgium, 27–28 June 2019. [Google Scholar]
- Türk, M.; Emeis, S. The dependence of offshore turbulence intensity on wind speed. J. Wind Eng. Ind. Aerodyn. 2010, 98, 466–471. [Google Scholar] [CrossRef]
- Svensson, N.; Arnqvist, J.; Bergström, H.; Rutgersson, A.; Sahlée, E. Measurements and Modelling of Offshore Wind Profiles in a Semi-Enclosed Sea. Atmosphere 2019, 10, 194. [Google Scholar] [CrossRef] [Green Version]
- Adcock, R.J. A Problem in Least Squares. Analyst 1878, 5, 53–54. [Google Scholar] [CrossRef]
- Cornbleet, P.J.; Gochman, N. Incorrect least-squares regression coefficients in method-comparison analysis. Clin. Chem. 1979, 25, 432–438. [Google Scholar] [CrossRef] [PubMed]
- Abari, C.F.; Pedersen, A.T.; Mann, J. An all-fiber image-reject homodyne coherent Doppler wind lidar. Opt. Express 2014, 22, 25880–25894. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, S.; Hui, R. Frequency-modulated continuous-wave lidar using I\Q modulator for simplified heterodyne detection. Opt. Lett. 2012, 37, 2022–2024. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Name | Symbol | Mean | Min | Max | Std. dev. | Unit |
---|---|---|---|---|---|---|
Mean wind speed | U | 7.2 | 1.4 | 22.1 | 3.2 | [] |
Turbulence intensity | 5.0 | 0.6 | 41.6 | 3.7 | [%] | |
Mean dynamic tilt angle | 2.91 | 0.62 | 8.73 | 1.84 | ] | |
Mean tilt period | 2.51 | 2.11 | 2.70 | 0.10 | [] | |
Mean heave velocity | 0.13 | 0.03 | 0.41 | 0.08 | [] | |
Mean heave displacement | 0.12 | 0.03 | 0.41 | 0.08 | [] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kelberlau, F.; Neshaug, V.; Lønseth, L.; Bracchi, T.; Mann, J. Taking the Motion out of Floating Lidar: Turbulence Intensity Estimates with a Continuous-Wave Wind Lidar. Remote Sens. 2020, 12, 898. https://doi.org/10.3390/rs12050898
Kelberlau F, Neshaug V, Lønseth L, Bracchi T, Mann J. Taking the Motion out of Floating Lidar: Turbulence Intensity Estimates with a Continuous-Wave Wind Lidar. Remote Sensing. 2020; 12(5):898. https://doi.org/10.3390/rs12050898
Chicago/Turabian StyleKelberlau, Felix, Vegar Neshaug, Lasse Lønseth, Tania Bracchi, and Jakob Mann. 2020. "Taking the Motion out of Floating Lidar: Turbulence Intensity Estimates with a Continuous-Wave Wind Lidar" Remote Sensing 12, no. 5: 898. https://doi.org/10.3390/rs12050898