Temporal Variation and Spatial Structure of the Kuroshio-Induced Submesoscale Island Vortices Observed from GCOM-C and Himawari-8 Data
"> Figure 1
<p>The bottom topography around Green Island and the path of the Kuroshio (red line and arrow).</p> "> Figure 2
<p>(<b>a</b>) The cruise experiment results with (<b>b</b>,<b>c</b>) velocity (U component positive in the east, V component positive in the north), (<b>d</b>) temperature, (<b>e</b>) salinity, and (<b>f</b>) Chl-a from stations A1 to A7 on 10 November 2012.</p> "> Figure 3
<p>Case of the island vortex obtained from the global change observation mission (GCOM-C) second-generation global imager (SGLI) data taken at 02:12 (UTC), 25 April 2019. (<b>a</b>) Sea surface temperature (SST) (°C), (<b>b</b>,<b>c</b>) zoom in on vortices of (<b>a</b>,<b>d</b>) Chl-a (<math display="inline"><semantics> <mrow> <mrow> <mi>mg</mi> <mo>/</mo> <msup> <mi mathvariant="normal">m</mi> <mn>3</mn> </msup> </mrow> </mrow> </semantics></math>), (<b>e</b>,<b>f</b>) zoom in on vortices of (<b>d</b>). The black arrow in (<b>a</b>) is the current velocity from the OSCAR data. The first arrow (22.33°N, 121.33°E) has a speed of 0.58 m/s, and the second arrow (22.67°N, 121.67°E) has a speed of 0.66 m/s.</p> "> Figure 4
<p>SST and chlorophyll-a (Chl-a) of L1 to L10 in <a href="#remotesensing-12-00883-f003" class="html-fig">Figure 3</a>e.</p> "> Figure 5
<p>Case of the island vortex obtained from GCOM-C SGLI image taken at 02:22 (UTC), July 13, 2019. (<b>a</b>,<b>b</b>) SST (°C), (<b>c</b>,<b>d</b>) Chl-a (<math display="inline"><semantics> <mrow> <mrow> <mi>mg</mi> <mo>/</mo> <msup> <mi mathvariant="normal">m</mi> <mn>3</mn> </msup> </mrow> </mrow> </semantics></math>), (<b>e</b>) SST, and Chl-a values of L1 to L4 in (b). The black arrow in (<b>a</b>) is the current velocity from the OSCAR data. The first arrow (22.33°N, 121.33°E) has a speed of 0.46 m/s, and the second arrow (22.67°N, 121.67°E) has a speed of 0.59 m/s.</p> "> Figure 6
<p>Two different spatially distributed vortices with (<b>a</b>,<b>b</b>) Chl-a (<math display="inline"><semantics> <mrow> <mrow> <mi>mg</mi> <mo>/</mo> <msup> <mi mathvariant="normal">m</mi> <mn>3</mn> </msup> </mrow> </mrow> </semantics></math>) and (<b>c</b>,<b>d</b>) SST (°C). Two cases obtained from GCOM-C SGLI data taken at 02:07 (UTC) 27 July 2018 (left) and at 02:04 (UTC) 21 June 2019 (right), (<b>e</b>,<b>f</b>) SST and Chl-a values of L1 and L2.</p> "> Figure 7
<p>Results of the MITgcm numerical mode lasting one day. The background is the dimensionless parameter <math display="inline"><semantics> <mrow> <mrow> <mi mathvariant="italic">Ro</mi> </mrow> </mrow> </semantics></math>.</p> "> Figure 8
<p>Case of the island vortex train with (<b>a</b>) SST (°C) and (<b>b</b>) Chl-a (<math display="inline"><semantics> <mrow> <mrow> <mi>mg</mi> <mo>/</mo> <msup> <mi mathvariant="normal">m</mi> <mn>3</mn> </msup> </mrow> </mrow> </semantics></math>) obtained from GCOM-C SGLI data taken at 02:07 (UTC), 27 July 2018 (UTC). (<b>c</b>,<b>d</b>) are zoom in on SST and Chl-a of vortex 3. (<b>e</b>,<b>f</b>) same as (<b>c</b>,<b>d</b>), but for vortex 4. (<b>g</b>–<b>j</b>) are SST and Chl-a values of L1 to L4. The black arrow (22.67°N, 121.67°E) in (<b>a</b>) is the current velocity from the OSCAR data with a speed of 0.51 m/s.</p> "> Figure 9
<p>The 24-h continuous Himawari-8 SST images from 21:00 UTC on 12 July 2016 to 20:00 UTC on 13 July 2016. Red stars and red dots represent the center positions of the two vortex cases.</p> "> Figure 10
<p>(<b>a</b>) trajectory of 101 vortex cases, (<b>b</b>) the distribution probability (%) of the vortices for 101 cases, and (<b>c</b>) a histogram of the property speed statistics for 101 vortex cases.</p> "> Figure 11
<p>The Strouhal number (<math display="inline"><semantics> <mrow> <mrow> <mi mathvariant="italic">St</mi> </mrow> </mrow> </semantics></math>) versus the Reynolds number (<math display="inline"><semantics> <mrow> <mrow> <mi mathvariant="italic">Re</mi> </mrow> </mrow> </semantics></math> ) diagram. The point for this study is expressed as the mean value with one standard deviation.</p> "> Figure 12
<p>The OSCAR sea surface current velocity from 2010 to 2019, (<b>a</b>) the annual mean for (<b>b</b>) summer and (<b>c</b>) winter and (<b>d</b>) the average of the incoming current velocity for each month.</p> "> Figure 13
<p>The probability distribution of the Chl-a concentration (>0.15 <math display="inline"><semantics> <mrow> <mrow> <mi>mg</mi> <mo>/</mo> <msup> <mi mathvariant="normal">m</mi> <mn>3</mn> </msup> </mrow> </mrow> </semantics></math>) in different seasons.</p> "> Figure 14
<p>The island wake development from the MITgcm simulation for different Reynolds numbers. (<b>a</b>) <span class="html-italic">Re</span> = 70, (<b>b</b>) <span class="html-italic">Re</span> = 118, (<b>c</b>) <span class="html-italic">Re</span> = 156. The sub-image represents the change in speed (m/s) along 22.6°N.</p> ">
Abstract
:1. Introduction
1.1. Background
1.2. Objectives
2. Materials and Methods
2.1. Sea Surface Temperature and Chlorophyll-a Concentration
2.2. Ocean Currents
2.3. Numerical Model
2.4. In-Situ Observation
3. Results
3.1. Field Experiment
3.2. Spatial Structure of Island Wake
3.3. Temporal Variation and Vortex Trajectory
4. Discussion
4.1. The Relationship Between Re and St
4.2. Seasonal Changes in and Chlorophyll-a Concentrations
4.3. Uncertainties, Errors, and Accuracies
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zeiden, K.L.; Rudnick, D.L.; MacKinnon, J.A. Glider observations of a mesoscale oceanic island wake. J. Phys. Oceanogr. 2019, 49, 2217–2235. [Google Scholar] [CrossRef]
- St. Laurent, L.; Ijichi, T.; Merrifield, S.T.; Shapiro, J.; Simmons, H.L. Turbulence and vorticity in the wake of Palau. Oceanography 2019, 32, 102–109. [Google Scholar] [CrossRef] [Green Version]
- Kodaira, T.; Waseda, T. Tidally generated island wakes and surface water cooling over Izu Ridge. Ocean Dyn. 2019, 69, 1373–1385. [Google Scholar] [CrossRef]
- Tanaka, T.; Hasegawa, D.; Yasuda, I.; Tsuji, H.; Fujio, S.; Goto, Y.; Nishioka, J. Enhanced vertical turbulent nitrate flux in the Kuroshio across the Izu Ridge. J. Oceanogr. 2019, 75, 195–203. [Google Scholar] [CrossRef]
- Chang, M.H.; Tang, T.Y.; Ho, C.R.; Chao, S.Y. Kuroshio-induced wake in the lee of Green Island off Taiwan. J. Geophys. Res. Ocean. 2013, 118, 1508–1519. [Google Scholar] [CrossRef]
- Huang, S.J.; Ho, C.R.; Lin, S.L.; Liang, S.J. Spatial-temporal scales of Green Island wake due to passing of the Kuroshio current. Int. J. Remote Sens. 2014, 35, 4484–4495. [Google Scholar] [CrossRef]
- Zheng, Z.W.; Zheng, Q. Variability of island-induced ocean vortex trains, in the Kuroshio region southeast of Taiwan Island. Cont. Shelf Res. 2014, 81, 1–6. [Google Scholar] [CrossRef]
- Hsu, P.C.; Chang, M.H.; Lin, C.C.; Huang, S.J.; Ho, C.R. Investigation of the island-induced ocean vortex train of the Kuroshio Current using satellite imagery. Remote Sens. Environ. 2017, 193, 54–64. [Google Scholar] [CrossRef]
- Hsu, P.C.; Cheng, K.H.; Jan, S.; Lee, H.J.; Ho, C.R. Vertical structure and surface patterns of Green Island wakes induced by the Kuroshio. Deep-Sea Res. Part I 2019, 143, 1–16. [Google Scholar] [CrossRef]
- Gove, J.M.; McManus, M.A.; Neuheimer, A.B.; Polovina, J.J.; Drazen, J.C.; Smith, C.R.; Merrifield, M.A.; Frienlander, A.M.; Ehses, J.S.; Young, C.W.; et al. Near-island biological hotspots in barren ocean basins. Nat. Commun. 2016, 7, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Chen, T.C.; Ku, K.C.; Ying, T.C. A process-based collaborative model of marine tourism service system–The case of Green Island area, Taiwan. Ocean Coast. Manag. 2012, 64, 37–46. [Google Scholar] [CrossRef]
- Denis, V.; Soto, D.; De Palmas, S.; Lin, Y.T.; Benayahu, Y.; Huang, Y.; Liu, S.L.; Chen, J.W.; Chen, Q.; Sturaro, N.; et al. Mesophotic Coral Ecosystems. In Coral Reefs of the World; Loya, Y., Puglise, K., Bridge, T., Eds.; Springer: Cham, Switzerland, 2019; Volume 12, pp. 249–264. [Google Scholar] [CrossRef]
- Hsu, T.W.; Doong, D.J.; Hsieh, K.J.; Liang, S.J. Numerical study of monsoon effect on Green Island wake. J. Coast. Res. 2015, 31, 1141–1150. [Google Scholar] [CrossRef]
- Liu, C.L.; Chang, M.H. Numerical studies of submesoscale island wakes in the Kuroshio. J. Geophys. Res. Ocean. 2018, 123, 5669–5687. [Google Scholar] [CrossRef]
- Chang, M.H.; Jan, S.; Liu, C.L.; Cheng, Y.H.; Mensah, V. Observations of island wakes at high Rossby numbers: Evolution of submesoscale vortices and free shear layers. J. Phys. Oceanogr. 2019, 49, 2997–3016. [Google Scholar] [CrossRef]
- Zheng, Q.; Lin, H.; Meng, J.; Hu, X.; Song, Y.T.; Zhang, Y.; Li, C. Sub-mesoscale ocean vortex trains in the Luzon Strait. J. Geophys. Res. Ocean. 2008, 113. [Google Scholar] [CrossRef]
- Taniguchi, N.; Kida, S.; Sakuno, Y.; Mutsuda, H.; Syamsudin, F. Short-Term Variation of the Surface Flow Pattern South of Lombok Strait Observed from the Himawari-8 Sea Surface Temperature. Remote Sens.-Basel 2019, 11, 1491. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Emery, W.J.; Wu, X.; Li, M.; Li, C.; Zhang, L. Computing Coastal Ocean Surface Currents from MODIS and VIIRS Satellite Imagery. Remote Sens. 2017, 9, 1083. [Google Scholar] [CrossRef] [Green Version]
- Hu, Z.; Qi, Y.; He, X.; Wang, Y.H.; Wang, D.P.; Cheng, X.; Liu, X.H.; Wang, T. Characterizing surface circulation in the Taiwan Strait during NE monsoon from Geostationary Ocean Color Imager. Remote Sens. Environ. 2019, 221, 687–694. [Google Scholar] [CrossRef]
- Ditri, A.L.; Minnett, P.J.; Liu, Y.; Kilpatrick, K.; Kumar, A. The Accuracies of Himawari-8 and MTSAT-2 sea-surface temperatures in the tropical western Pacific Ocean. Remote Sens. 2018, 10, 212. [Google Scholar] [CrossRef] [Green Version]
- ESR. OSCAR Third Degree Resolution Ocean Surface Currents; Ver. 1; PO.DAAC: Pasadena, CA, USA, 2009. [Google Scholar] [CrossRef]
- Bonjean, F.; Lagerloef, G.S.E. Diagnostic model and analysis of the surface currents in the tropical Pacific Ocean. J. Phys. Oceanogr. 2002, 32, 2938–2954. [Google Scholar] [CrossRef]
- Johnson, E.S.; Bonjean, F.; Lagerloef, G.S.; Gunn, J.T.; Mitchum, G.T. Validation and error analysis of OSCAR sea surface currents. J. Atmos. Ocean. Technol. 2007, 24, 688–701. [Google Scholar] [CrossRef]
- Marshall, J.; Adcroft, A.; Hill, C.; Perelman, L.; Heisey, C. A finite-volume, incompressible Navier Stokes model for studies of the ocean on parallel computers. J. Geophys. Res. Ocean. 1997, 102, 5753–5766. [Google Scholar] [CrossRef] [Green Version]
- Orlanski, I. A simple boundary condition for unbounded hyperbolic flows. J. Comput. Phys. 1976, 21, 251–269. [Google Scholar] [CrossRef]
- Klymak, J.M.; Legg, S.M. A simple mixing scheme for models that resolve breaking internal waves. Ocean. Model. 2010, 33, 224–234. [Google Scholar] [CrossRef]
- Williamson, C.H.K.; Brown, G.L. A series in 1/√ Re to represent the Strouhal–Reynolds number relationship of the cylinder wake. J. Fluids Struct. 1998, 12, 1073–1085. [Google Scholar] [CrossRef]
- Apel, J.R. Principles of Ocean Physics; Academic Press: London, UK, 1987. [Google Scholar]
- Hsu, P.C.; Lin, C.C.; Huang, S.J.; Ho, C.R. Effects of cold eddy on Kuroshio meander and its surface properties, east of Taiwan. IEEE J.-STARS 2016, 9, 5055–5063. [Google Scholar] [CrossRef]
- Kurihara, Y.; Murakami, H.; Kachi, M. Sea surface temperature from the new Japanese geostationary meteorological Himawari-8 satellite. Geophys. Res. Lett. 2016, 43, 1234–1240. [Google Scholar] [CrossRef] [Green Version]
L (m) | Reference | ||||
---|---|---|---|---|---|
7000 | 1.3 | 100 | 91 | 0.24 | [5] |
5000 | 1 | 50 | 100 200 500 | 0.17 0.18 0.20 | [6] |
7000 | 0.675 | 15 | 315 | 0.24 | [14] |
5500 | 100 | This study |
Average | Maximum | Minimum | |
---|---|---|---|
Spring | 0.47 ± 0.10 | 0.82 | 0.27 |
Summer | 0.56 ± 0.13 | 0.94 | 0.28 |
Fall | 0.36 ± 0.18 | 0.84 | 0.02 |
Winter | 0.34 ± 0.13 | 0.63 | 0.02 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hsu, P.-C.; Ho, C.-Y.; Lee, H.-J.; Lu, C.-Y.; Ho, C.-R. Temporal Variation and Spatial Structure of the Kuroshio-Induced Submesoscale Island Vortices Observed from GCOM-C and Himawari-8 Data. Remote Sens. 2020, 12, 883. https://doi.org/10.3390/rs12050883
Hsu P-C, Ho C-Y, Lee H-J, Lu C-Y, Ho C-R. Temporal Variation and Spatial Structure of the Kuroshio-Induced Submesoscale Island Vortices Observed from GCOM-C and Himawari-8 Data. Remote Sensing. 2020; 12(5):883. https://doi.org/10.3390/rs12050883
Chicago/Turabian StyleHsu, Po-Chun, Chia-Ying Ho, Hung-Jen Lee, Ching-Yuan Lu, and Chung-Ru Ho. 2020. "Temporal Variation and Spatial Structure of the Kuroshio-Induced Submesoscale Island Vortices Observed from GCOM-C and Himawari-8 Data" Remote Sensing 12, no. 5: 883. https://doi.org/10.3390/rs12050883