First Evidence of Mesoscale Ocean Eddies Signature in GNSS Reflectometry Measurements
<p>A sketch of the gridded GNSS-Reflectometry profile of Cyclone GNSS (CYGNSS) over an eddy and the local coordinate system with x- and y-axes oriented toward east and north, respectively.</p> "> Figure 2
<p>Exemplary cases of GNSS-Reflectometry <math display="inline"><semantics> <msup> <mi>σ</mi> <mn>0</mn> </msup> </semantics></math> double-jump (<b>a</b>–<b>c</b>) and single-jump (<b>d</b>–<b>f</b>) behaviors observed in Cyclone GNSS (CYGNSS) tracks.</p> "> Figure 3
<p>A track of Cyclone GNSS (CYGNSS) overpassing an eddy on 4 July 2017, 12:24. The top-left panel displays sea surface temperature, surface wind (white arrows) and current (blue cones). On the top-right, instantaneous surface sensible heat flux (SHF) as well as surface stress (blue arrows) are visualized. The bottom panel profiles CYGNSS <math display="inline"><semantics> <msup> <mi>σ</mi> <mn>0</mn> </msup> </semantics></math> along with the wind and current velocity, instantaneous SHF and surface stress magnitudes.</p> "> Figure 4
<p>A track of Cyclone GNSS (CYGNSS) overpassing three eddies on 4 June 2017, 08:11. The top panel displays sea surface temperature, surface wind (white arrows) and current (blue cones). In the middle, instantaneous surface sensible heat flux (SHF) as well as surface stress (blue arrows) are visualized. The bottom panel profiles CYGNSS <math display="inline"><semantics> <msup> <mi>σ</mi> <mn>0</mn> </msup> </semantics></math> along with the wind and current velocity, instantaneous SHF and surface stress magnitudes, referenced at the center of the middle eddy.</p> "> Figure 5
<p>A track of Cyclone GNSS (CYGNSS) overpassing three eddies on 29 June 2017, 20:45. The top panel displays sea surface temperature, surface wind (white arrows) and current (blue cones). In the middle, instantaneous surface sensible heat flux (SHF) as well as surface stress (blue arrows) are visualized. The bottom panel profiles CYGNSS <math display="inline"><semantics> <msup> <mi>σ</mi> <mn>0</mn> </msup> </semantics></math> along with the wind and current velocity, instantaneous SHF and surface stress magnitudes, referenced at the center of the second eddy.</p> "> Figure 6
<p>Principal components of the profiles and the total variance of the data explained by each principal component.</p> "> Figure 7
<p>Schematic representation of surface stress change due to the interaction of an eastward uniform wind with the surface current associated with an anticyclonic eddy (<b>a</b>), Correlation of the <math display="inline"><semantics> <msup> <mi>σ</mi> <mn>0</mn> </msup> </semantics></math> profiles of Cyclone GNSS (CYGNSS) with anomalies of instantaneous surface sensible heat flux at different wind speeds (<b>b</b>), the impact of different angular distances of the CYGNSS tracks with surface stress vector on the correlation between the <math display="inline"><semantics> <msup> <mi>σ</mi> <mn>0</mn> </msup> </semantics></math> profiles and mean turbulent surface stress (<b>c</b>).</p> ">
Abstract
:1. Introduction
2. Data and Method
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Small, R.D.; DeSzoeke, S.; Xie, S.; O’Neill, L.; Seo, H.; Song, Q.; Cornillon, P.; Spall, M.; Minobe, S. Air–sea interaction over ocean fronts and eddies. Dyn. Atmos. Ocean. 2008, 45, 274–319. [Google Scholar] [CrossRef]
- Frenger, I.; Gruber, N.; Knutti, R.; Münnich, M. Imprint of Southern Ocean eddies on winds, clouds and rainfall. Nat. Geosci. 2013, 6, 608. [Google Scholar] [CrossRef]
- Yang, P.; Jing, Z.; Wu, L. An Assessment of Representation of Oceanic Mesoscale Eddy-Atmosphere Interaction in the Current Generation of General Circulation Models and Reanalyses. Geophys. Res. Lett. 2018, 45, 11–856. [Google Scholar] [CrossRef]
- Jin, S.; Cardellach, E.; Xie, F. GNSS Remote Sensing; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
- Zavorotny, V.U.; Gleason, S.; Cardellach, E.; Camps, A. Tutorial on remote sensing using GNSS bistatic radar of opportunity. IEEE Geosci. Remote. Sens. Mag. 2014, 2, 8–45. [Google Scholar] [CrossRef] [Green Version]
- Ruf, C.S.; Atlas, R.; Chang, P.S.; Clarizia, M.P.; Garrison, J.L.; Gleason, S.; Katzberg, S.J.; Jelenak, Z.; Johnson, J.T.; Majumdar, S.J.; et al. New ocean winds satellite mission to probe hurricanes and tropical convection. Bull. Am. Meteorol. Soc. 2016, 97, 385–395. [Google Scholar] [CrossRef]
- Foti, G.; Gommenginger, C.; Jales, P.; Unwin, M.; Shaw, A.; Robertson, C.; Rosello, J. Spaceborne GNSS reflectometry for ocean winds: First results from the UK TechDemoSat-1 mission. Geophys. Res. Lett. 2015, 42, 5435–5441. [Google Scholar] [CrossRef] [Green Version]
- Ruf, C.S.; Gleason, S.; McKague, D.S. Assessment of CYGNSS wind speed retrieval uncertainty. IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens. 2018, 12, 87–97. [Google Scholar] [CrossRef]
- Asgarimehr, M.; Wickert, J.; Reich, S. TDS-1 GNSS Reflectometry: Development and Validation of Forward Scattering Winds. IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens. 2018, 11, 4534–4541. [Google Scholar] [CrossRef]
- Asgarimehr, M.; Wickert, J.; Reich, S. Evaluating Impact of Rain Attenuation on Space-borne GNSS Reflectometry Wind Speeds. Remote. Sens. 2019, 11, 1048. [Google Scholar] [CrossRef] [Green Version]
- Alonso-Arroyo, A.; Zavorotny, V.U.; Camps, A. Sea ice detection using UK TDS-1 GNSS-R data. IEEE Trans. Geosci. Remote. Sens. 2017, 55, 4989–5001. [Google Scholar] [CrossRef] [Green Version]
- Asgarimehr, M.; Zavorotny, V.; Wickert, J.; Reich, S. Can GNSS Reflectometry Detect Precipitation Over Oceans? Geophys. Res. Lett. 2018, 45, 12–585. [Google Scholar] [CrossRef] [Green Version]
- Clarizia, M.P.; Ruf, C.; Cipollini, P.; Zuffada, C. First spaceborne observation of sea surface height using GPS-Reflectometry. Geophys. Res. Lett. 2016, 43, 767–774. [Google Scholar] [CrossRef] [Green Version]
- Wickert, J.; Cardellach, E.; Martín-Neira, M.; Bandeiras, J.; Bertino, L.; Andersen, O.B.; Camps, A.; Catarino, N.; Chapron, B.; Fabra, F.; et al. GEROS-ISS: GNSS reflectometry, radio occultation, and scatterometry onboard the international space station. IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens. 2016, 9, 4552–4581. [Google Scholar] [CrossRef] [Green Version]
- Cardellach, E.; Wickert, J.; Baggen, R.; Benito, J.; Camps, A.; Catarino, N.; Chapron, B.; Dielacher, A.; Fabra, F.; Flato, G.; et al. GNSS Transpolar Earth Reflectometry exploriNg System (G-TERN): Mission Concept. IEEE Access 2018, 6, 13980–14018. [Google Scholar] [CrossRef]
- Semmling, A.; Beckheinrich, J.; Wickert, J.; Beyerle, G.; Schön, S.; Fabra, F.; Pflug, H.; He, K.; Schwabe, J.; Scheinert, M. Sea surface topography retrieved from GNSS reflectometry phase data of the GEOHALO flight mission. Geophys. Res. Lett. 2014, 41, 954–960. [Google Scholar] [CrossRef] [Green Version]
- Ruffini, G.; Soulat, F.; Caparrini, M.; Germain, O.; Martín-Neira, M. The Eddy Experiment: Accurate GNSS-R ocean altimetry from low altitude aircraft. Geophys. Res. Lett. 2004, 31. [Google Scholar] [CrossRef] [Green Version]
- Germain, O.; Ruffini, G.; Soulat, F.; Caparrini, M.; Chapron, B.; Silvestrin, P. The Eddy Experiment: GNSS-R speculometry for directional sea-roughness retrieval from low altitude aircraft. Geophys. Res. Lett. 2004, 31. [Google Scholar] [CrossRef] [Green Version]
- Ruf, C.S.; Chew, C.; Lang, T.; Morris, M.G.; Nave, K.; Ridley, A.; Balasubramaniam, R. A new paradigm in earth environmental monitoring with the CYGNSS small satellite constellation. Sci. Rep. 2018, 8, 8782. [Google Scholar] [CrossRef] [Green Version]
- Gleason, S.; Ruf, C.S.; O’Brien, A.J.; McKague, D.S. The CYGNSS Level 1 calibration algorithm and error analysis based on on-orbit measurements. IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens. 2018, 12, 37–49. [Google Scholar] [CrossRef]
- Ruf, C.; Asharaf, S.; Balasubramaniam, R.; Gleason, S.; Lang, T.; McKague, D.; Twigg, D.; Waliser, D. In-Orbit Performance of the Constellation of CYGNSS Hurricane Satellites. Bull. Am. Meteorol. Soc. 2019, 100, 2009–2023. [Google Scholar] [CrossRef]
- Faghmous, J.H.; Frenger, I.; Yao, Y.; Warmka, R.; Lindell, A.; Kumar, V. A daily global mesoscale ocean eddy dataset from satellite altimetry. Sci. Data 2015, 2, 150028. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonjean, F.; Lagerloef, G.S. Diagnostic model and analysis of the surface currents in the tropical Pacific Ocean. J. Phys. Oceanogr. 2002, 32, 2938–2954. [Google Scholar] [CrossRef]
- Hersbach, H.; Dee, D. ERA5 reanalysis is in production. ECMWF Newsl. 2016, 147, 5–6. [Google Scholar]
- Jolliffe, I.T.; Cadima, J. Principal component analysis: A review and recent developments. Philos. Trans. R. Soc. Math. Phys. Eng. Sci. 2016, 374, 20150202. [Google Scholar] [CrossRef]
- Zavorotny, V.U.; Voronovich, A.G. Scattering of GPS signals from the ocean with wind remote sensing application. IEEE Trans. Geosci. Remote. Sens. 2000, 38, 951–964. [Google Scholar] [CrossRef] [Green Version]
- Zavorotny, V.U.; Voronovich, A.G. Validity of the Kirchhoff-Geometric Optics Approach for Modeling of Ocean Bistatic Radar Scattering. In Proceedings of the IGARSS 2019–2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August 2019; pp. 668–671. [Google Scholar] [CrossRef]
- Plant, W.J. A relationship between wind stress and wave slope. J. Geophys. Res. Ocean. 1982, 87, 1961–1967. [Google Scholar] [CrossRef]
- Phillips, O. On the response of short ocean wave components at a fixed wavenumber to ocean current variations. J. Phys. Oceanogr. 1984, 14, 1425–1433. [Google Scholar] [CrossRef]
- Voronovich, A.G.; Zavorotny, V.U. Bistatic radar equation for signals of opportunity revisited. IEEE Trans. Geosci. Remote. Sens. 2017, 56, 1959–1968. [Google Scholar] [CrossRef]
- Johannessen, J.A.; Kudryavtsev, V.; Akimov, D.; Eldevik, T.; Winther, N.; Chapron, B. On radar imaging of current features: 2. Mesoscale eddy and current front detection. J. Geophys. Res. Ocean. 2005, 110. [Google Scholar] [CrossRef] [Green Version]
- Wallace, J.M.; Mitchell, T.; Deser, C. The influence of sea-surface temperature on surface wind in the eastern equatorial Pacific: Seasonal and interannual variability. J. Clim. 1989, 2, 1492–1499. [Google Scholar] [CrossRef]
- Samelson, R.; Skyllingstad, E.; Chelton, D.; Esbensen, S.; O’Neill, L.; Thum, N. On the coupling of wind stress and sea surface temperature. J. Clim. 2006, 19, 1557–1566. [Google Scholar] [CrossRef]
- Sugimoto, S.; Aono, K.; Fukui, S. Local atmospheric response to warm mesoscale ocean eddies in the Kuroshio-Oyashio Confluence region. Sci. Rep. 2017, 7, 11871. [Google Scholar] [CrossRef] [Green Version]
- Ma, Z.; Fei, J.; Liu, L.; Huang, X.; Cheng, X. Effects of the Cold Core Eddy on Tropical Cyclone Intensity and Structure under Idealized Air–Sea Interaction Conditions. Mon. Weather. Rev. 2013, 141, 1285–1303. [Google Scholar] [CrossRef]
- Walker, N.D.; Leben, R.R.; Pilley, C.T.; Shannon, M.; Herndon, D.C.; Pun, I.F.; Lin, I.I.; Gentemann, C.L. Slow translation speed causes rapid collapse of northeast Pacific Hurricane Kenneth over cold core eddy. Geophys. Res. Lett. 2014, 41, 7595–7601. [Google Scholar] [CrossRef]
- Voronovich, A.G.; Zavorotny, V.U. The transition from weak to strong diffuse radar bistatic scattering from rough ocean surface. IEEE Trans. Antennas Propag. 2017, 65, 6029–6034. [Google Scholar] [CrossRef]
- Renault, L.; Molemaker, M.J.; McWilliams, J.C.; Shchepetkin, A.F.; Lemarié, F.; Chelton, D.; Illig, S.; Hall, A. Modulation of Wind Work by Oceanic Current Interaction with the Atmosphere. J. Phys. Oceanogr. 2016, 46, 1685–1704. [Google Scholar] [CrossRef]
- Seo, H.; Miller, A.J.; Norris, J.R. Eddy–Wind Interaction in the California Current System: Dynamics and Impacts. J. Phys. Oceanogr. 2016, 46, 439–459. [Google Scholar] [CrossRef]
- Gagliardini, D.A. Medium Resolution Microwave, Thermal and Optical Satellite Sensors: Characterizing Coastal Environments Through the Observation of Dynamical Processes. In Remote Sensing of the Changing Oceans; Tang, D., Ed.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 251–277. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hoseini, M.; Asgarimehr, M.; Zavorotny, V.; Nahavandchi, H.; Ruf, C.; Wickert, J. First Evidence of Mesoscale Ocean Eddies Signature in GNSS Reflectometry Measurements. Remote Sens. 2020, 12, 542. https://doi.org/10.3390/rs12030542
Hoseini M, Asgarimehr M, Zavorotny V, Nahavandchi H, Ruf C, Wickert J. First Evidence of Mesoscale Ocean Eddies Signature in GNSS Reflectometry Measurements. Remote Sensing. 2020; 12(3):542. https://doi.org/10.3390/rs12030542
Chicago/Turabian StyleHoseini, Mostafa, Milad Asgarimehr, Valery Zavorotny, Hossein Nahavandchi, Chris Ruf, and Jens Wickert. 2020. "First Evidence of Mesoscale Ocean Eddies Signature in GNSS Reflectometry Measurements" Remote Sensing 12, no. 3: 542. https://doi.org/10.3390/rs12030542