Monitoring Droughts in the Greater Changbai Mountains Using Multiple Remote Sensing-Based Drought Indices
"> Figure 1
<p>Location map of the Greater Changbai Mountains (GCM).</p> "> Figure 2
<p>Simplified land surface temperature (LST)- normalized difference vegetation index (NDVI) triangle (Adopted from [<a href="#B27-remotesensing-12-00530" class="html-bibr">27</a>]).</p> "> Figure 3
<p>Six drought indices averaged over 18 years for the Greater Changbai Mountains (GCM). (<b>a</b>) Precipitation condition index (PCI), (<b>b</b>) temperature condition index (TCI), (<b>c</b>) vegetation condition index (VCI), (<b>d</b>) vegetation health index (VHI), (<b>e</b>) scaled drought condition index (SDCI), and (<b>f</b>) temperature–vegetation dryness index (TVDI).</p> "> Figure 4
<p>Slopes of drought indices during 2001–2018. (<b>a</b>) PCI, (<b>b</b>) TCI, (<b>c</b>) VCI, (<b>d</b>) VHI, (<b>e</b>) SDCI, and (<b>f</b>) TVDI.</p> "> Figure 5
<p>Relationship between annual drought indices and precipitation in the GCM. (<b>a</b>–<b>n</b>) are the 14 prefecture-level cities. (<b>a</b>) Anshan; (<b>b</b>) Baishan; (<b>c</b>) Benxi; (<b>d</b>) Dandong; (<b>e</b>) Fushun; (<b>f</b>) Jilin; (<b>g</b>) Jixi; (<b>h</b>) Liaoyang; (<b>i</b>) Liaoyuan; (<b>j</b>) Mudanjiang; (<b>k</b>) Qitaihe; (<b>l</b>) Shuangyashan; (<b>m</b>) Tonghua; (<b>n</b>) Yanji.</p> "> Figure 6
<p>Relationship between annual drought indices and temperature in the GCM. (<b>a</b>–<b>n</b>) are the 14 prefecture-level cities. (<b>a</b>) Anshan; (<b>b</b>) Baishan; (<b>c</b>) Benxi; (<b>d</b>) Dandong; (<b>e</b>) Fushun; (<b>f</b>) Jilin; (<b>g</b>) Jixi; (<b>h</b>) Liaoyang; (<b>i</b>) Liaoyuan; (<b>j</b>) Mudanjiang; (<b>k</b>) Qitaihe; (<b>l</b>) Shuangyashan; (<b>m</b>) Tonghua; (<b>n</b>) Yanji.</p> "> Figure 7
<p>Drought indices and their changing slopes for different land cover types: (<b>a</b>) Drought indices in 2018; (<b>b</b>) drought indices in 2001; and (<b>c</b>) slopes (×100) of drought indices from 2001 to 2018.</p> "> Figure 8
<p>(<b>a</b>) Landforms of the GCM; (<b>b</b>–<b>g</b>) Mean values of drought indices in different geomorphic units (<b>b</b>: PCI; <b>c</b>: TCI; <b>d</b>: VCI; <b>e</b>: VHI; <b>f</b>: SDCI; and <b>g</b>: TVDI).</p> ">
Abstract
:1. Introduction
2. Study Area and Data
2.1. Study Area
2.2. Data
3. Methodology
3.1. Drought Indices
3.2. Trend Analysis
4. Results
4.1. Spatial Pattern
4.2. Temporal Trend
4.3. Correlations between Drought Indices and Meterological Factors
4.4. Correlations between Drought Indices and Land Cover Types
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Mishra, A.K.; Singh, V.P. A review of drought concepts. J. Hydrol. 2010, 391, 204–216. [Google Scholar] [CrossRef]
- Guo, E.L.; Liu, X.P.; Zhang, J.Q.; Wang, Y.F.; Wang, C.L.; Wang, R.; Li, D.J. Assessing spatiotemporal variation of drought and its impact on maize yield in Northeast China. J. Hydrol. 2017, 553, 231–247. [Google Scholar] [CrossRef]
- Wu, J.J.; Zhou, L.; Liu, M.; Zhang, J.; Leng, S.; Diao, C.Y. Establishing and assessing the Integrated Surface Drought Index (ISDI) for agricultural drought monitoring in mid-eastern China. Int. J. Appl. Earth Obs. Geoinf. 2013, 23, 397–410. [Google Scholar] [CrossRef]
- Kelley, C.P.; Mohtadi, S.; Cane, M.A.; Seager, R.; Kushnir, Y. Climate change in the Fertile Crescent and implications of the recent Syrian drought. Proc. Natl. Acad. Sci. USA 2015, 112, 3241–3246. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Mu, Q.; Huang, J. Assessing the remotely sensed Drought Severity Index for agricultural drought monitoring and impact analysis in North China. Ecol. Indic. 2016, 63, 296–309. [Google Scholar] [CrossRef]
- Cong, D.; Zhao, S.; Chen, C.; Duan, Z. Characterization of droughts during 2001–2014 based on remote sensing: A case study of Northeast China. Ecol. Inform. 2017, 39, 56–67. [Google Scholar] [CrossRef]
- Liang, L.; Sun, Q.; Luo, X.; Wang, J.H.; Zhang, L.P.; Deng, M.X.; Di, L.P.; Liu, Z.X. Long-term spatial and temporal variations of vegetative drought based on vegetation condition index in China. Ecosphere 2017, 8. [Google Scholar] [CrossRef]
- Mirabbasi, R.; Anagnostou, E.N.; Fakheri-Fard, A.; Dinpashoh, Y.; Eslamian, S. Analysis of meteorological drought in northwest Iran using the Joint Deficit Index. J. Hydrol. 2013, 492, 35–48. [Google Scholar] [CrossRef]
- Kogan, F.N. Droughts of the Late 1980s in the United States as Derived from NOAA Polar-Orbiting Satellite Data. Bull. Am. Meteorol. Soc. 1995, 76. [Google Scholar] [CrossRef] [2.0.CO;2" target='_blank'>Green Version]
- Kogan, F.N. Application of Vegetation Index and Brightness Temperature for Drought Detection. Adv. Space Res. 1995, 15, 91–100. [Google Scholar] [CrossRef]
- Kogan, F.N. Global Drought Watch from Space. Bull. Am. Meteorol. Soc. 1997, 78. [Google Scholar] [CrossRef]
- Liang, L.; Qin, Z.; Zhao, S.; Di, L.; Zhang, C.; Deng, M.; Lin, H.; Zhang, L.; Wang, L.; Liu, Z. Estimating crop chlorophyll content with hyperspectral vegetation indices and the hybrid inversion method. Int. J. Remote Sens. 2016, 37, 2923–2949. [Google Scholar] [CrossRef]
- Liang, L.; Di, L.; Zhang, L.; Deng, M.; Qin, Z.; Zhao, S.; Lin, H. Estimation of crop LAI using hyperspectral vegetation indices and a hybrid inversion method. Remote Sens. Environ. 2015, 165, 123–134. [Google Scholar] [CrossRef]
- Jiao, W.Z.; Zhang, L.F.; Chang, Q.; Fu, D.J.; Cen, Y.; Tong, Q.X. Evaluating an Enhanced Vegetation Condition Index (VCI) Based on VIUPD for Drought Monitoring in the Continental United States. Remote Sens. 2016, 8, 21. [Google Scholar] [CrossRef] [Green Version]
- Wang, K.Y.; Li, T.J.; Wei, J.H. Exploring Drought Conditions in the Three River Headwaters Region from 2002 to 2011 Using Multiple Drought Indices. Water 2019, 11, 20. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.; Wang, S.; Zhou, Y.; Wang, L.; Zhu, J.; Wang, F. Lightning-caused forest fire risk rating assessment based on case-based reasoning: a case study in DaXingAn Mountains of China. Nat. Hazards 2016, 81, 347–363. [Google Scholar] [CrossRef]
- Li, X.; He, B.B.; Quan, X.W.; Liao, Z.M.; Bai, X.J. Use of the Standardized Precipitation Evapotranspiration Index (SPEI) to Characterize the Drying Trend in Southwest China from 1982–2012. Remote Sens. 2015, 7, 10917–10937. [Google Scholar] [CrossRef] [Green Version]
- Kogan, F.; Salazar, L.; Roytman, L. Forecasting crop production using satellite-based vegetation health indices in Kansas, USA. Int. J. Remote Sens. 2012, 33, 2798–2814. [Google Scholar] [CrossRef]
- Salazar, L.; Kogan, F.; Roytman, L. Using vegetation health indices and partial least squares method for estimation of corn yield. Int. J. Remote Sens. 2008, 29, 175–189. [Google Scholar] [CrossRef]
- Bayarjargal, Y.; Karnieli, A.; Bayasgalan, M.; Khudulmur, S.; Gandush, C.; Tucker, C.J. A comparative study of NOAA-AVHRR derived drought indices using change vector analysis. Remote Sens. Environ. 2006, 105, 9–22. [Google Scholar] [CrossRef]
- Unganai, L.S.; Kogan, F.N. Drought monitoring and corn yield estimation in southern Africa from AVHRR data. Remote Sens. Environ. 1998, 63, 219–232. [Google Scholar] [CrossRef]
- Kogan, F.N. World droughts in the new millennium from AVHRR-based vegetation health indices. Eos Trans. Am. Geophys. Union 2002, 83, 557, 562–563. [Google Scholar] [CrossRef]
- Bokusheva, R.; Kogan, F.; Vitkovskaya, I.; Conradt, S.; Batyrbayeva, M. Satellite-based vegetation health indices as a criteria for insuring against drought-related yield losses. Agric. For. Meteorol. 2016, 220, 200–206. [Google Scholar] [CrossRef] [Green Version]
- Zhang, A.Z.; Jia, G.S. Monitoring meteorological drought in semiarid regions using multi-sensor microwave remote sensing data. Remote Sens. Environ. 2013, 134, 12–23. [Google Scholar] [CrossRef]
- Rhee, J.; Im, J.; Carbone, G.J. Monitoring agricultural drought for arid and humid regions using multi-sensor remote sensing data. Remote Sens. Environ. 2010, 114, 2875–2887. [Google Scholar] [CrossRef]
- Sandholt, I.; Rasmussen, K.; Andersen, J. A simple interpretation of the surface temperature/vegetation index space for assessment of surface moisture status. Remote Sens. Environ. 2002, 79, 213–224. [Google Scholar] [CrossRef]
- Han, Y.; Wang, Y.; Zhao, Y. Estimating Soil Moisture Conditions of the Greater Changbai Mountains by Land Surface Temperature and NDVI. IEEE Trans. Geosci. Remote Sens. 2010, 48, 2509–2515. [Google Scholar] [CrossRef]
- Baniya, B.; Tang, Q.H.; Xu, X.M.; Haile, G.G.; Chhipi-Shrestha, G. Spatial and Temporal Variation of Drought Based on Satellite Derived Vegetation Condition Index in Nepal from 1982–2015. Sensors 2019, 19. [Google Scholar] [CrossRef] [Green Version]
- MOD13A3 MODIS/Terra vegetation Indices Monthly L3 Global 1km SIN Grid V006. Available online: https://lpdaac.usgs.gov/products/mod13a3v006/ (accessed on 14 July 2019).
- MYD11C3 MODIS/Aqua Land Surface Temperature/Emissivity Monthly L3 Global 0.05Deg CMG V006. Available online: https://lpdaac.usgs.gov/products/myd11c3v006/ (accessed on 14 July 2019).
- MCD12Q1 MODIS/Terra+Aqua Land Cover Type Yearly L3 Global 500m SIN Grid V006. Available online: https://lpdaac.usgs.gov/products/mcd12q1v006/ (accessed on 14 July 2019).
- TRMM (TMPA/3B43) Rainfall Estimate L3 1 Month 0.25 Degree x 0.25 Degree V7. Available online: https://pmm.nasa.gov/data-access/downloads/trmm (accessed on 14 July 2019).
- Du, L.T.; Tian, Q.J.; Yu, T.; Meng, Q.Y.; Jancso, T.; Udvardy, P.; Huang, Y. A comprehensive drought monitoring method integrating MODIS and TRMM data. Int. J. Appl. Earth Obs. Geoinf. 2013, 23, 245–253. [Google Scholar] [CrossRef]
- Zhang, L.F.; Jiao, W.Z.; Zhang, H.M.; Huang, C.P.; Tong, Q.X. Studying drought phenomena in the Continental United States in 2011 and 2012 using various drought indices. Remote Sens. Environ. 2017, 190, 96–106. [Google Scholar] [CrossRef]
- Huang, F.; Xu, S.L. Spatio-Temporal Variations of Rain-Use Efficiency in the West of Songliao Plain, China. Sustainability 2016, 8. [Google Scholar] [CrossRef] [Green Version]
- Le Page, M.; Zribi, M. Analysis and Predictability of Drought In Northwest Africa Using Optical and Microwave Satellite Remote Sensing Products. Sci. Rep. 2019, 9, 1466. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karnieli, A.; Agam, N.; Pinker, R.T.; Anderson, M.; Imhoff, M.L.; Gutman, G.G.; Panov, N.; Goldberg, A. Use of NDVI and Land Surface Temperature for Drought Assessment: Merits and Limitations. J. Clim. 2010, 23, 618–633. [Google Scholar] [CrossRef]
- Karnieli, A.; Bayasgalan, M.; Bayarjargal, Y.; Agam, N.; Khudulmur, S.; Tucker, C.J. Comments on the use of the Vegetation Health Index over Mongolia. Int. J. Remote Sens. 2006, 27, 2017–2024. [Google Scholar] [CrossRef]
- Garcia, M.; Fernández, N.; Villagarcía, L.; Domingo, F.; Puigdefábregas, J.; Sandholt, I. Accuracy of the Temperature–Vegetation Dryness Index using MODIS under water-limited vs. energy-limited evapotranspiration conditions. Remote Sens. Environ. 2014, 149, 100–117. [Google Scholar] [CrossRef]
- Zribi, M.; Dridi, G.; Amri, R.; Lili-Chabaane, Z. Analysis of the Effects of Drought on Vegetation Cover in a Mediterranean Region through the Use of SPOT-VGT and TERRA-MODIS Long Time Series. Remote Sens. 2016, 8. [Google Scholar] [CrossRef] [Green Version]
- Long, E.; Cheng, W.-M.; Zhou, C.-H.; Yao, Y.-H.; Liu, H.-J. Extraction of landform information in Changbai Mountains based on Srtm-DEM and TM data. In In Proceedings of the 2007 IEEE International Geoscience and Remote Sensing Symposium, IGARSS, Barcelona, Spain, 23–28 July 2007. [Google Scholar]
Satellite Mission | Product | Data Type | Spatial Resolution (m) | Temporal Resolution | Source |
---|---|---|---|---|---|
MODIS | MOD13A3.006 | NDVI | 1,000 | monthly | [29] |
MYD11C3.006 | LST | 500 | monthly | [30] | |
MCD12Q1.006 | Land cover | 500 | yearly | [31] | |
TMPA | TRMM 3B43 | Precipitation | ~25,000 | monthly | [32] |
Drought Index | Data Source | Formula | Reference |
---|---|---|---|
PCI | TRMM | [33] | |
TCI | MODIS | [10] | |
VCI | MODIS | [9] |
Drought Index | Formula | Weights | Weight Determination Method | Reference |
---|---|---|---|---|
VHI | α = 0.5, β = 0.5 | Empirical weights | [11] | |
SDCI | α = 0.25, β = 0.25, γ = 0.5 | Empirical weights | [25] |
Name of Class | PCI | TCI | VCI | SDCI | VHI | TVDI |
---|---|---|---|---|---|---|
Extreme drought | 0–0.1 | 0–0.1 | 0–0.1 | 0–0.2 | 0–0.1 | |
Severe drought | 0.1–0.2 | 0.1–0.2 | 0.1–0.2 | 0.2–0.3 | 0.1–0.2 | 0.8–1 |
Moderate drought | 0.2–0.3 | 0.2–0.3 | 0.2–0.3 | 0.3–0.4 | 0.2–0.3 | 0.6–0.8 |
Mild drought | 0.3–0.4 | 0.3–0.4 | 0.3–0.4 | 0.4–0.5 | 0.3–0.4 | 0.4–0.6 |
Abnormal drought | 0.4–0.5 | 0.4–0.5 | 0.4–0.5 | |||
No drought | 0.5–1 | 0.5–1 | 0.5–1 | 0.5–1 | 0.4–1 | 0–0.4 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, Y.; Li, Z.; Huang, C.; Zhou, Y.; Zong, S.; Hao, T.; Niu, H.; Yao, H. Monitoring Droughts in the Greater Changbai Mountains Using Multiple Remote Sensing-Based Drought Indices. Remote Sens. 2020, 12, 530. https://doi.org/10.3390/rs12030530
Han Y, Li Z, Huang C, Zhou Y, Zong S, Hao T, Niu H, Yao H. Monitoring Droughts in the Greater Changbai Mountains Using Multiple Remote Sensing-Based Drought Indices. Remote Sensing. 2020; 12(3):530. https://doi.org/10.3390/rs12030530
Chicago/Turabian StyleHan, Yang, Ziying Li, Chang Huang, Yuyu Zhou, Shengwei Zong, Tianyi Hao, Haofang Niu, and Haiyan Yao. 2020. "Monitoring Droughts in the Greater Changbai Mountains Using Multiple Remote Sensing-Based Drought Indices" Remote Sensing 12, no. 3: 530. https://doi.org/10.3390/rs12030530