The Precipitation Inferred from Soil Moisture (PrISM) Near Real-Time Rainfall Product: Evaluation and Comparison
"> Figure 1
<p>Location of the five reference, ground-based rainfall datasets: Burkina Faso (20 stations), Central Africa (42 stations), East Africa (78 stations) and the two AMMA-CATCH sites located in Niger (region of Niamey) and Benin (region of Nalohou). The two squares inside the two left graphs represent the two selected 0.25° pixels in Niger and Benin. Precipitation product on top of land cover on the right map illustrates a time step (3 h) of the PrISM precipitation product (2 July 2012 3 to 6 a.m.).</p> "> Figure 2
<p>Illustration of the PF assimilation scheme for the Niger site. The initial satellite precipitation rate (in red) produces the associated soil moisture evolution (in red). Stochastic perturbations of the initial satellite precipitation rate produce an ensemble of potential soil moisture evolutions (in grey). The SMOS retrievals (five orange diamonds) are used to select the most probable soil moisture curves (in orange) and to calculate the averaged soil moisture (in blue), which is associated with a specific precipitation rate (in blue). In this case, a decrease in the initial satellite precipitation rate is proposed which is consistent with in situ precipitation measurements (in black).</p> "> Figure 3
<p>Example of comparison between in situ precipitation measurements (Benin 0.25° site, 2015, in grey) and the ten precipitation products (Precipitation Inferred from Soil Moisture (PrISM), SM2RAIN, CMORPH (Raw and Adj), TRMM (Raw and Adj), IMERG (Early and Final), Climate Hazards group Infrared Precipitation with Stations (CHIRPS)-025 and Tropical Applications of Meteorology using SATellite and ground-based operations (AMSAT)-025). Bars show daily rainfall amounts (left axis), curves show cumulative rainfall (right axis). Statistical scores are reported in <a href="#remotesensing-12-00481-t003" class="html-table">Table 3</a>.</p> "> Figure 4
<p>Taylor diagrams for the Benin (<b>left</b>) and Niger (<b>right</b>) 0.25° sites for the year 2015 for the 11 precipitation products. Color dots refer to the different products (blue = CMORPH, red = TRMM, purple = IMERG, green = TAMSAT_025, cyan = SM2RAIN, orange = CHIRPS, dark green = GPCC and black = PrISM). Statistical scores are given in <a href="#remotesensing-12-00481-t003" class="html-table">Table 3</a>.</p> "> Figure 5
<p>Taylor diagrams for the Benin (<b>left</b>) and Niger (<b>right</b>) 0.25° sites and the 2010–2016 period (except for IMERG, 2015–2016) and the 11 precipitation products. Color dots refer to the different products (blue = CMORPH, red = TRMM, purple = IMERG, green = TAMSAT_025, cyan = SM2RAIN, orange = GPCC and black = PrISM).</p> "> Figure 6
<p>Statistical scores (R, root–mean–square error (RMSE) and bias) for the five regions (Benin, Niger, Burkina-Faso, Central Africa and East Africa) and for the 11 precipitation products. The temporal period depends on the satellite product and in situ availabilities.</p> "> Figure A1
<p>Example of comparison between in situ precipitation measurements (Niger 0.25° site, 2015, in grey) and the ten precipitation products (PrISM, SM2RAIN, CMORPH (Raw and Adj), TRMM (Raw and Adj), IMERG (Early and Final), CHIRPS-025 and TAMSAT-025). Statistical scores are reported in <a href="#remotesensing-12-00481-t003" class="html-table">Table 3</a>.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ground-Based Precipitation Measurements
2.2. Satellite Precipitation Products
2.3. The SMOS Soil Moisture Dataset
2.4. The PrISM Methodology
2.4.1. The API Soil Moisture/Precipitation Model
2.4.2. The CDF Matching Procedure
2.4.3. The Particle Filter Assimilation Scheme
3. Results
3.1. Assessment at the Local Scale (Niger and Benin)
3.2. Assessment at the Regional Scale
4. Limitation of the PrISM Methodology
5. Summary and Next Step
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- Sultan, B.; Barbier, B.; Fortilus, J.; Mbaye, S.M.; Leclerc, G. Estimating the Potential Economic Value of Seasonal Forecasts in West Africa: A Long-Term Ex-Ante Assessment in Senegal. Weather Clim. Soc. 2010, 2, 69–87. [Google Scholar] [CrossRef]
- Washington, R.; Harrison, M.; Conway, D.; Black, E.; Challinor, A.; Grimes, D.; Jones, R.; Morse, A.; Kay, G.; Todd, M. African Climate Change: Taking the Shorter Route. Bull. Am. Meteorol. Soc. 2006, 87, 1355–1366. [Google Scholar] [CrossRef]
- Nicholson, S.E.; Some, B.; Mccollum, J.; Nelkin, E.; Klotter, D.; Berte, Y.; Diallo, B.M.; Gaye, I.; Kpabeba, G.; Ndiaye, O.; et al. Validation of TRMM and Other Rainfall Estimates with a High-Density Gauge Dataset for West Africa. Part I: Validation of GPCC Rainfall Product and Pre-TRMM Satellite and Blended Products. J. Appl. Meteorol. 2003, 42, 1337–1354. [Google Scholar] [CrossRef]
- Gosset, M.; Viarre, J.; Quantin, G.; Alcoba, M. Evaluation of several rainfall products used for hydrological applications over West Africa using two high-resolution gauge networks. Q. J. R. Meteorol. Soc. 2013, 139, 923–940. [Google Scholar] [CrossRef]
- Camberlin, P.; Barraud, G.; Bigot, S.; Dewitte, O.; Imwangana, F.M.; Mateso, J.M.; Martiny, N.; Monsieurs, E.; Moron, V.; Pellarin, T.; et al. Evaluation of remotely sensed rainfall products over Central Africa. Q. J. R. Meteorol. Soc. 2019, 145, 2115–2138. [Google Scholar] [CrossRef]
- Serrat-Capdevila, A.; Merino, M.; Valdes, J.B.; Durcik, M. Evaluation of the Performance of Three Satellite Precipitation Products over Africa. Remote Sens. 2016, 8, 836. [Google Scholar] [CrossRef] [Green Version]
- Poméon, T.; Jackisch, D.; Diekkrüger, B. Evaluating the performance of remotely sensed and reanalysed precipitation data over West Africa using HBV light. J. Hydrol. 2017, 547, 222–235. [Google Scholar] [CrossRef]
- Maidment, R.I.; Grimes, D.I.F.; Allan, R.P.; Greatrex, H.; Rojas, O.; Leo, O. Evaluation of satellite-based and model re-analysis rainfall estimates for Uganda. Meteorol. Appl. 2013, 20, 308–317. [Google Scholar] [CrossRef] [Green Version]
- Roca, R.; Chambon, P.; Jobard, I.; Kirstetter, P.-E.; Gosset, M.; Bergès, J.C. Comparing Satellite and Surface Rainfall Products over West Africa at Meteorologically Relevant Scales during the AMMA Campaign Using Error Estimates. J. Appl. Meteorol. Clim. 2010, 49, 715–731. [Google Scholar] [CrossRef]
- Jobard, I.; Chopin, F.; Bergès, J.C.; Roca, R. An intercomparison of 10-day satellite precipitation products during West African monsoon. Int. J. Remote Sens. 2011, 32, 2353–2376. [Google Scholar] [CrossRef]
- Maggioni, V.; Sapiano, M.R.P.; Adler, R.F. Estimating Uncertainties in High-Resolution Satellite Precipitation Products: Systematic or Random Error? J. Hydrometeorol. 2016, 17, 1119–1129. [Google Scholar] [CrossRef]
- Pan, M.; Wood, E.; Wojcik, R.; McCabe, M. Estimation of regional terrestrial water cycle using multi-sensor remote sensing observations and data assimilation. Remote Sens. Environ. 2008, 112, 1282–1294. [Google Scholar] [CrossRef]
- Crow, W.T. A Novel Method for Quantifying Value in Spaceborne Soil Moisture Retrievals. J. Hydrometeorol. 2007, 8, 56–67. [Google Scholar] [CrossRef] [Green Version]
- Pellarin, T.; Ali, A.; Chopin, F.; Jobard, I.; Bergès, J.-C. Using spaceborne surface soil moisture to constrain satellite precipitation estimates over West Africa. Geophys. Res. Lett. 2008, 35, 35. [Google Scholar] [CrossRef] [Green Version]
- McCabe, M.; Wood, E.; Wojcik, R.; Pan, M.; Sheffield, J.; Gao, H.; Su, H. Hydrological consistency using multi-sensor remote sensing data for water and energy cycle studies. Remote Sens. Environ. 2008, 112, 430–444. [Google Scholar] [CrossRef]
- Crow, W.T.; Huffman, G.J.; Bindlish, R.; Jackson, T.J. Improving Satellite-Based Rainfall Accumulation Estimates Using Spaceborne Surface Soil Moisture Retrievals. J. Hydrometeorol. 2009, 10, 199–212. [Google Scholar] [CrossRef] [Green Version]
- Pellarin, T.; Tran, T.; Cohard, J.-M.; Galle, S.; Laurent, J.-P.; De Rosnay, P.; Vischel, T. Soil moisture mapping over West Africa with a 30-min temporal resolution using AMSR-E observations and a satellite-based rainfall product. Hydrol. Earth Syst. Sci. 2009, 13, 1887–1896. [Google Scholar] [CrossRef] [Green Version]
- Brocca, L.; Moramarco, T.; Melone, F.; Wagner, W. A new method for rainfall estimation through soil moisture observations. Geophys. Res. Lett. 2013, 40, 853–858. [Google Scholar] [CrossRef]
- Brocca, L.; Ciabatta, L.; Massari, C.; Moramarco, T.; Hahn, S.; Hasenauer, S.; Kidd, R.; Dorigo, W.; Wagner, W.; Levizzani, V. Soil as a natural rain gauge: Estimating global rainfall from satellite soil moisture data. J. Geophys. Res. Atmos. 2014, 119, 5128–5141. [Google Scholar] [CrossRef]
- Koster, R.D.; Brocca, L.; Crow, W.T.; Burgin, M.S.; De Lannoy, G.J.M. Precipitation Estimation Using L-Band and C-Band Soil Moisture Retrievals. Water Resour. Res. 2016, 52, 7213–7225. [Google Scholar] [CrossRef] [Green Version]
- Massari, C.; Crow, W.; Brocca, L. An assessment of the performance of global rainfall estimates without ground-based observations. Hydrol. Earth Syst. Sci. 2017, 21, 4347–4361. [Google Scholar] [CrossRef] [Green Version]
- Wanders, N.; Pan, M.; Wood, E. Correction of real-time satellite precipitation with multi-sensor satellite observations of land surface variables. Remote Sens. Environ. 2015, 160, 206–221. [Google Scholar] [CrossRef]
- Brocca, L.; Pellarin, T.; Crow, W.T.; Ciabatta, L.; Massari, C.; Ryu, D.; Su, C.-H.; Rüdiger, C.; Kerr, Y. Rainfall estimation by inverting SMOS soil moisture estimates: A comparison of different methods over Australia. J. Geophys. Res. Atmos. 2016, 121, 12062–12079. [Google Scholar] [CrossRef]
- Román-Cascón, C.; Pellarin, T.; Gibon, F.; Brocca, L.; Cosme, E.; Crow, W.; Fernández-Prieto, D.; Kerr, Y.H.; Massari, C. Correcting satellite-based precipitation products through SMOS soil moisture data assimilation in two land-surface models of different complexity: API and SURFEX. Remote Sens. Environ. 2017, 200, 295–310. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, D.; Wang, G.; Qiu, J.; Liao, W. Use of SMAP Soil Moisture and Fitting Methods in Improving GPM Estimation in Near Real Time. Remote Sens. 2019, 11, 368. [Google Scholar] [CrossRef] [Green Version]
- Schamm, K.; Ziese, M.; Becker, A.; Finger, P.; Meyer-Christoffer, A.; Schneider, U.; Schröder, M.; Stender, P. Global gridded precipitation over land: A description of the new GPCC First Guess Daily product. Earth Syst. Sci. Data 2014, 6, 49–60. [Google Scholar] [CrossRef] [Green Version]
- Adler, R.F.; Huffman, G.J.; Chang, A.; Ferraro, R.; Xie, P.P.; Janowiak, J.; Rudolf, B.; Schneider, U.; Curtis, S.; Bolvin, D.; et al. The version-2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979-present). J. Hydrometeorol. 2003, 4, 1147–1167. [Google Scholar] [CrossRef]
- Adler, R.F.; Sapiano, M.R.P.; Huffman, G.J.; Wang, J.-J.; Gu, G.; Bolvin, D.; Chiu, L.; Schneider, U.; Becker, A.; Nelkin, E.; et al. The Global Precipitation Climatology Project (GPCP) Monthly Analysis (New Version 2.3) and a Review of 2017 Global Precipitation. Atmosphere 2018, 9, 138. [Google Scholar] [CrossRef] [Green Version]
- New, M.; Lister, D.; Hulme, M.; Makin, I. A high-resolution data set of surface climate over global land areas. Clim. Res. 2002, 21, 1–25. [Google Scholar] [CrossRef] [Green Version]
- Galle, S.; Grippa, M.; Peugeot, C.; Moussa, I.B.; Cappelaere, B.; Demarty, J.; Mougin, E.; Panthou, G.; Adjomayi, P.; Agbossou, E.; et al. AMMA-CATCH, a Critical Zone Observatory in West Africa Monitoring a Region in Transition. Vadose Zone J. 2018, 17, 180062. [Google Scholar] [CrossRef] [Green Version]
- Lebel, T.; Cappelaere, B.; Galle, S.; Hanan, N.; Kergoat, L.; Levis, S.; Vieux, B.; Descroix, L.; Gosset, M.; Mougin, E.; et al. AMMA-CATCH studies in the Sahelian region of West-Africa: An overview. J. Hydrol. 2009, 375, 3–13. [Google Scholar] [CrossRef] [Green Version]
- Camberlin, P. Temperature trends and variability in the Greater Horn of Africa: Interactions with precipitation. Clim. Dyn. 2017, 48, 477–498. [Google Scholar] [CrossRef]
- Joyce, R.J.; Janowiak, J.E.; Arkin, P.A.; Xie, P.P. CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. J. Hydrometeorol. 2004, 5, 487–503. [Google Scholar] [CrossRef]
- Huffman, G.J.; Bolvin, D.T.; Nelkin, E.J.; Wolff, D.B.; Adler, R.F.; Gu, G.; Hong, Y.; Bowman, K.P.; Stocker, E.F. The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-Global, Multiyear, Combined-Sensor Precipitation Estimates at Fine Scales. J. Hydrometeorol. 2007, 8, 38–55. [Google Scholar] [CrossRef]
- Huffman, G.J.; Bolvin, D.T.; Nelkin, E.J. 2015: Day 1 IMERG Final Run Release Notes. NASA Doc. 9. Available online: https://pmm.nasa.gov/sites/default/files/document_files/IMERG_FinalRun_Day1_release_notes.pdf (accessed on 7 November 2018).
- Massari, C.; Brocca, L.; Pellarin, T.; Abramowitz, G.; Filippucci, P.; Ciabatta, L.; Maggioni, V.; Kerr, Y.; Prieto, D.F. A daily/25 km short-latency rainfall product for data scarce regions based on the integration of the GPM IMERG Early Run with multiple satellite soil moisture products. Hydrol. Earth Syst. Sci. 2020. under review. [Google Scholar]
- Thorne, V.; Coakeley, P.; Grimes, D.; Dugdale, G. Comparison of TAMSAT and CPC rainfall estimates with raingauges, for southern Africa. Int. J. Remote Sens. 2001, 22, 1951–1974. [Google Scholar] [CrossRef]
- Maidment, R.I.; Grimes, D.; Black, E.; Tarnavsky, E.; Young, M.; Greatrex, H.; Allan, R.P.; Stein, T.; Nkonde, E.; Senkunda, S.; et al. A new, long-term daily satellite-based rainfall dataset for operational monitoring in Africa. Sci. Data 2017, 4, 170063. [Google Scholar] [CrossRef]
- Tarnavsky, E.; Grimes, D.; Maidment, R.; Black, E.; Allan, R.P.; Stringer, M.; Chadwick, R.; Kayitakire, F. Extension of the TAMSAT Satellite-Based Rainfall Monitoring over Africa and from 1983 to Present. J. Appl. Meteorol. Clim. 2014, 53, 2805–2822. [Google Scholar] [CrossRef] [Green Version]
- Maidment, R.I.; Grimes, D.; Allan, R.P.; Tarnavsky, E.; Stringer, M.; Hewison, T.; Roebeling, R.; Black, E. The 30 year TAMSAT African Rainfall Climatology And Time series (TARCAT) data set. J. Geophys. Res. Atmos. 2014, 119, 10619–10644. [Google Scholar] [CrossRef] [Green Version]
- Funk, C.; Peterson, P.; Landsfeld, M.; Pedreros, D.; Verdin, J.; Shukla, S.; Husak, G.; Rowland, J.; Harrison, L.; Hoell, A.; et al. The climate hazards infrared precipitation with stations-a new environmental record for monitoring extremes. Sci. Data 2015, 2. [Google Scholar] [CrossRef] [Green Version]
- Brocca, L.; Massari, C.; Ciabatta, L.; Moramarco, T.; Penna, D.; Zuecco, G.; Pianezzola, L.; Borga, M.; Matgen, P.; Martínez-Fernández, J. Rainfall estimation from in situ soil moisture observations at several sites in Europe: An evaluation of the SM2RAIN algorithm. J. Hydrol. Hydromech. 2015, 63, 201–209. [Google Scholar] [CrossRef] [Green Version]
- Ciabatta, L.; Marra, A.C.; Panegrossi, G.; Casella, D.; Sanò, P.; Dietrich, S.; Massari, C.; Brocca, L. Daily precipitation estimation through different microwave sensors: Verification study over Italy. J. Hydrol. 2017, 545, 436–450. [Google Scholar] [CrossRef]
- Massari, C.; Brocca, L.; Moramarco, T.; Tramblay, Y.; Lescot, J.-F.D. Potential of soil moisture observations in flood modelling: Estimating initial conditions and correcting rainfall. Adv. Water Resour. 2014, 74, 44–53. [Google Scholar] [CrossRef]
- Brocca, L.; Filippucci, P.; Hahn, S.; Ciabatta, L.; Massari, C.; Camici, S.; Schueller, L.; Bojkov, B.; Wagner, W. SM2RAIN-ASCAT (2007-2018): Global daily satellite rainfall data from ASCAT soil moisture observations. Earth Syst. Sci. Data 2019, 11, 1583–1601. [Google Scholar] [CrossRef] [Green Version]
- Bishop, C.H.; Abramowitz, G. Climate model dependence and the replicate Earth paradigm. Clim. Dyn. 2013, 41, 885–900. [Google Scholar] [CrossRef] [Green Version]
- Hobeichi, S.; Abramowitz, G.; Evans, J.; Ukkola, A. Derived Optimal Linear Combination Evapotranspiration (DOLCE): A global gridded synthesis ET estimate. Hydrol. Earth Syst. Sci. 2018, 22, 1317–1336. [Google Scholar] [CrossRef] [Green Version]
- Kerr, Y.; Waldteufel, P.; Wigneron, J.-P.; Martinuzzi, J.; Font, J.; Berger, M. Soil moisture retrieval from space: The Soil Moisture and Ocean Salinity (SMOS) mission. IEEE Trans. Geosci. Remote Sens. 2001, 39, 1729–1735. [Google Scholar] [CrossRef]
- Kerr, Y.; Al-Yaari, A.; Rodriguez-Fernandez, N.; Parrens, M.; Molero, B.; Leroux, D.; Bircher, S.; Mahmoodi, A.; Mialon, A.; Richaume, P.; et al. Overview of SMOS performance in terms of global soil moisture monitoring after six years in operation. Remote Sens. Environ. 2016, 180, 40–63. [Google Scholar] [CrossRef]
- Pellarin, T.; Louvet, S.; Gruhier, C.; Quantin, G.; Legout, C. A simple and effective method for correcting soil moisture and precipitation estimates using AMSR-E measurements. Remote Sens. Environ. 2013, 136, 28–36. [Google Scholar] [CrossRef]
- Doucet, A.; Godsill, S.; Andrieu, C. On sequential Monte Carlo sampling methods for Bayesian filtering. Stat. Comput. 2000, 10, 197–208. [Google Scholar] [CrossRef]
- Moradkhani, H.; Hsu, K.-L.; Gupta, H.; Sorooshian, S. Uncertainty assessment of hydrologic model states and parameters: Sequential data assimilation using the particle filter. Water Resour. Res. 2005, 41, 41. [Google Scholar] [CrossRef] [Green Version]
- Van Leeuwen, P.J. Particle Filtering in Geophysical Systems. Mon. Weather Rev. 2009, 137, 4089–4114. [Google Scholar] [CrossRef]
- Evensen, G. Sampling strategies and square root analysis schemes for the EnKF. Ocean Dyn. 2004, 54, 539–560. [Google Scholar] [CrossRef]
- Reichle, R.H.; Crow, W.T.; Koster, R.D.; Sharif, H.O.; Mahanama, S.P.P. Contribution of soil moisture retrievals to land data assimilation products. Geophys. Res. Lett. 2008, 35. [Google Scholar] [CrossRef] [Green Version]
- Yan, H.; DeChant, C.M.; Moradkhani, H. Improving Soil Moisture Profile Prediction With the Particle Filter-Markov Chain Monte Carlo Method. IEEE Trans. Geosci. Remote Sens. 2015, 53, 1–14. [Google Scholar] [CrossRef]
- Taylor, K.E. Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res. Space Phys. 2001, 106, 7183–7192. [Google Scholar] [CrossRef]
Data Set | Nb Stations | Period | Time Scale |
---|---|---|---|
Niger | 12 | 2010–2016 | 3 h |
Benin | 10 | 2010–2016 | 3 h |
Burkina Faso | 20 | 2010–2015 | Daily |
Central Africa | 42 | 2010–2016 | Daily |
East Africa | 78 | 2010–2013 | Daily |
Data Set | Spatial Resolution | Time-Scale | Period | Latency | Ground Calibration |
---|---|---|---|---|---|
PrISM | 0.25° | 3-hourly | 2010–present | ~5 day | no |
CMORPH-Raw | 0.25° | 3-hourly | 1998–present | 18 h | no |
TRMM-RT | 0.25° | 3-hourly | 1998–present | ~6 h | no |
IMERG-Early | 0.1° | 30 min | March 2015–present | ~12 h | no |
TAMSAT-v3.0 | 0.0375° | Daily | 1983–present | ~2 days | no |
SM2RAIN | 0.25° | Daily | 2015–2018 | ~5 days | no |
CHIRPS-v2.0 | 0.25° | Daily | 1981–present | ~3 weeks | yes |
GPCC | 1° | Daily | 2009–present | 15–45 days | yes |
CMORPH-Adj | 0.25° | 3-hourly | 1998–present | >1 month | yes |
TRMM-3B42 | 0.25° | 3-hourly | 1998–present | >1 month | yes |
IMERG-Final | 0.1° | 30 min | March 2015–present | >1 month | yes |
2015 | Benin 0.25° (1150 mm, 103 Rainy Days) | Niger 0.25° (601 mm, 43 Rainy Days) | ||||||
---|---|---|---|---|---|---|---|---|
R | RMSE (mm/d) | Bias (mm) | Rainy Days (>1 mm/d) | R | RMSE (mm/d) | Bias (mm) | Rainy Days (>1 mm/d) | |
PrISM | 0.81 | 4.4 | −26 | 101 | 0.81 | 3.7 | +68 | 55 |
CMORPH-Raw | 0.75 | 5.6 | +96 | 102 | 0.80 | 6.7 | +451 | 56 |
TRMM-Raw | 0.65 | 6.8 | −12 | 94 | 0.75 | 6.9 | +489 | 54 |
IMERG-Early | 0.78 | 4.6 | −165 | 90 | 0.63 | 5.3 | +86 | 57 |
TAMSAT-025 | 0.72 | 5.0 | −419 | 92 | 0.77 | 3.9 | −169 | 50 |
SM2RAIN | 0.76 | 4.6 | +66 | 168 | 0.74 | 4.1 | −203 | 48 |
CHIRPS | 0.77 | 4.7 | −40 | 112 | 0.70 | 4.3 | −138 | 55 |
GPCC | 0.42 | 6.8 | −137 | 135 | 0.33 | 5.9 | −147 | 71 |
CMORPH-Adj | 0.80 | 4.3 | −322 | 88 | 0.82 | 4.3 | +152 | 51 |
TRMM-Adj | 0.70 | 6.1 | −75 | 92 | 0.75 | 4.1 | +1 | 53 |
IMERG-Final | 0.80 | 4.5 | −115 | 94 | 0.66 | 4.6 | −54 | 52 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pellarin, T.; Román-Cascón, C.; Baron, C.; Bindlish, R.; Brocca, L.; Camberlin, P.; Fernández-Prieto, D.; Kerr, Y.H.; Massari, C.; Panthou, G.; et al. The Precipitation Inferred from Soil Moisture (PrISM) Near Real-Time Rainfall Product: Evaluation and Comparison. Remote Sens. 2020, 12, 481. https://doi.org/10.3390/rs12030481
Pellarin T, Román-Cascón C, Baron C, Bindlish R, Brocca L, Camberlin P, Fernández-Prieto D, Kerr YH, Massari C, Panthou G, et al. The Precipitation Inferred from Soil Moisture (PrISM) Near Real-Time Rainfall Product: Evaluation and Comparison. Remote Sensing. 2020; 12(3):481. https://doi.org/10.3390/rs12030481
Chicago/Turabian StylePellarin, Thierry, Carlos Román-Cascón, Christian Baron, Rajat Bindlish, Luca Brocca, Pierre Camberlin, Diego Fernández-Prieto, Yann H. Kerr, Christian Massari, Geremy Panthou, and et al. 2020. "The Precipitation Inferred from Soil Moisture (PrISM) Near Real-Time Rainfall Product: Evaluation and Comparison" Remote Sensing 12, no. 3: 481. https://doi.org/10.3390/rs12030481