CSA-MSO3DCNN: Multiscale Octave 3D CNN with Channel and Spatial Attention for Hyperspectral Image Classification
"> Figure 1
<p>Three layers octave 3D convolution.</p> "> Figure 2
<p>The detailed structure of channel and spatial attention module. (Top) Channel-wise attention module. (Bottom) Spatial-wise attention module.</p> "> Figure 3
<p>The overall flowchart of the proposed method. (Top) Using principal component analysis (PCA) and octave 3D CNN to extract features. (Bottom) Utilizing the channel and spatial attention module to refine features and finally to classify.</p> "> Figure 4
<p>The Indian Pines data set. (<b>a</b>) A false color map. (<b>b</b>) The ground truth map.</p> "> Figure 5
<p>The University of Pavia data set. (<b>a</b>) A false color map. (<b>b</b>) The ground truth map.</p> "> Figure 6
<p>The Grss_dfc_2013 data set. (<b>a</b>) A false color map. (<b>b</b>) The ground truth map.</p> "> Figure 7
<p>The Grss_dfc_2014 data set. (<b>a</b>) A false color map. (<b>b</b>) The ground truth map.</p> "> Figure 8
<p>Classification maps provided for the Indian Pines data set by different methods. (<b>a</b>) A false color map. (<b>b</b>) The ground truth map. (<b>c</b>) CNN (93.03%). (<b>d</b>) M3DCNN (99.12%). (<b>e</b>) SSRN (99.32%). (<b>f</b>) MSDN-SA (99.21%). (<b>g</b>) MSO3DCNN (99.53%). (<b>h</b>) CSA-MSO3DCNN (99.68%).</p> "> Figure 9
<p>Normalized confusion matrices of classification results for the Indian Pines data set. (<b>a</b>) CNN. (<b>b</b>) M3DCNN. (<b>c</b>) SSRN. (<b>d</b>) MSDN-SA. (<b>e</b>) MSO3DCNN. (<b>f</b>) CSA-MSO3DCNN.</p> "> Figure 10
<p>Classification maps provided for the University of Pavia data set by different methods. (<b>a</b>) A false color map. (<b>b</b>) The ground truth map. (<b>c</b>) CNN (85.89%). (<b>d</b>) M3DCNN (99.03%). (<b>e</b>) SSRN (99.19%). (<b>f</b>) MSDN-SA (99.31%). (<b>g</b>) MSO3DCNN (99.54%). (<b>h</b>) CSA-MSO3DCNN (99.76%).</p> "> Figure 11
<p>Normalized confusion matrices of classification results for the University of Pavia data set. (<b>a</b>) CNN. (<b>b</b>) M3DCNN. (<b>c</b>) SSRN. (<b>d</b>) MSDN-SA. (<b>e</b>) MSO3DCNN. (<b>f</b>) CSA-MSO3DCNN.</p> "> Figure 12
<p>Classification maps provided for the Grss_dfc_2013 data set by different methods. (<b>a</b>) A false color map (<b>b</b>) The ground truth map (<b>c</b>) CNN (94.59%). (<b>d</b>) M3DCNN (99.10%). (<b>e</b>) SSRN (99.32%). (<b>f</b>) MSDN-SA (99.45%). (<b>g</b>) MSO3DCNN (99.37%). (<b>h</b>) CSA-MSO3DCNN (99.69%).</p> "> Figure 13
<p>Normalized confusion matrices of classification results for the Grss_dfc_2013 data. (<b>a</b>) CNN. (<b>b</b>) M3DCNN. (<b>c</b>) SSRN. (<b>d</b>) MSDN-SA. (<b>e</b>) MSO3DCNN. (<b>f</b>) CSA-MSO3DCNN.</p> "> Figure 14
<p>Classification maps provided for the Grss_dfc_2014 data set by different methods. (<b>a</b>) A false color map. (<b>b</b>) The ground truth map. (<b>c</b>) CNN (66.78%). (<b>d</b>) M3DCNN (90.45%). (<b>e</b>) SSRN (90.60%). (<b>f</b>) MSDN-SA (93.49%). (<b>g</b>) MSO3DCNN (96.39%). (<b>h</b>) CSA-MSO3DCNN (97.96%).</p> "> Figure 15
<p>Normalized confusion matrices of classification results for the Grss_dfc_2014 data. (<b>a</b>) CNN. (<b>b</b>) M3DCNN. (<b>c</b>) SSRN. (<b>d</b>) MSDN-SA. (<b>e</b>) MSO3DCNN. (<b>f</b>) CSA-MSO3DCNN.</p> "> Figure 16
<p>The OA of different training set sizes for four data sets. (<b>a</b>) Indian Pines data set. (<b>b</b>) University of Pavia data set. (<b>c</b>) Grss_dfc_2013 data set. (<b>d</b>) Grss_dfc_2014 data set.</p> ">
Abstract
:1. Introduction
- There is a lot of spatial redundancy in the hyperspectral data processing which takes up much memory space. Especially when 3D CNN is adopted to learn the feature, it will include numerous parameters which is disadvantage to the classification performance, compared to the 2D CNN and 1D CNN.
- Although the methods of combining DL method and attention mechanism have achieved successes for HSIs classification, to my best knowledge, there is not much research on the spatial attention for HSIs classification which does play an important role for HSIs classification.
- The proposed network takes full advantages of octave 3D CNN with different kernels to capture diverse features and reduce the spatial redundancy simultaneously. Given the same input and structure, our proposed method works more effectively than the method based on normal 3D CNN.
- A new attention mechanism with two attention modules is employed to refine the feature maps, which selects the discriminative features from the spectral and spatial views. This boosts the performance of our proposed network which further captures the similarity of adjacent pixels and the correlation of various spectral bands.
2. Related Works
2.1. Convolutional Neural Network
2.2. Attention Mechanisms
3. CSA-MSO3DCNN for Hyperspectral Images Classification
3.1. Octave Convolution
3.2. Channel and Spatial Attention
3.3. Proposed Network Architecture
4. Experimental Results and Analysis
4.1. Experimental Data
- Indian Pines Indian Pines is a very popular hyperspectral data set which has 16 different classes. It was obtained by airborne visible/infrared imaging spectrometer (AVIRIS) which contains 200 spectral bands after removing the noisy bands. The data set has a spatial dimension of 145 × 145 with 10,249 labeled pixels and covers the wavelengths between 0.4 to 2.5 m with 20 m spatial resolution. Figure 4a,b are a false color image and the corresponding ground truth map.
- University of Pavia is over an urban area surrounding University of Pavia, Italy. It is collected by the reflective optics system imaging spectrometer (ROSIS) and has been widely used in HSIs classification. The data set has a spatial dimension of 610 × 340 and a spatial resolution of 1.3 m per pixel. It has 115 spectral bands ranging from 0.43 to 0.86 m with 12 noisy bands. In experiments, the 12 noisy bands are removed. The false color and reference ground truth image are shown in Figure 5a,b, respectively.
- Grss_dfc_2013 is a public HSI data set, which was released in the 2013 IEEE GRSS Data Fusion Contest, collected by NSF-funded Center for Airborne Laser Map- ping (NCALM), and acquired over the University of Houston campus and the surrounding area in 23 June 2012. It has a spatial dimension of 349 × 1905 with 2.5 m spatial resolution, in the range of 380 nm to 1050 nm, and has 144 spectral bands. In Figure 6a,b, a false color composite image and the ground truth map are displayed.
- Grss_dfc_2014 is a coarser-resolution long-wave infrared (LWIR, thermal infrared) hyperspectral data set, which is more challenging and employed in 2014 IEEE GRSS Data Fusion Contest. It was acquired by an 84-channel imager that covered the wavelengths between 7.8 to 11.5 m with approximately 1-m spatial resolution. The size of this data set is 795 × 564 pixels with 22532 labeled pixels and is classed into seven classes. Figure 7a,b give a false color image of Grss_dfc_2014 and the ground truth map.
4.2. Experimental Setup
4.3. Experimental Results and Discussion
- CNN [20]: A method exploits CNN to encode the spectral–spatial information of pixels and a MLP to conduct the classification task.
- M3DCNN [25]: A multiscale 3D CNN method for HSIs classification, which different branches have different sizes of 3D convolution kernel.
- SRN: [26] A spectral–spatial 3D deep learning network with residual structure, which effectively mitigates over-fitting.
- MSDN-SA: [37] A dense 3D CNN framework with spectral-wise attention mechanism.
- MSO3DCNN: Our proposed method without attention module.
4.3.1. Results for Indian Pines Data Set
4.3.2. Results for The University of Pavia Data Set
4.3.3. Results for the Grss_dfc_2013 Data Set
4.3.4. Results for The Grss_dfc_2014 Data Set
4.3.5. The Effects of Parameters and Number of Training Samples
- In our method, characterizes the ratio between high frequency and low frequency, which decides the balance of spatial information and spatial redundancy. Thus we test a series of different values to evaluate and get the OA results which are listed in Table 9. The test experimental results reveal that the best results are obtained for four data sets when .
- To figure out the influence of the size of the 3D patch , different spatial sizes are conducted on the four data sets where d is set to 20. The OA results are provided in Table 10. The experimental results show that too large or too small spatial size is not recommended which means excessive noise or too little spatial information is included. It is not beneficial for the classification.
- In the fully connected layer, the drop out is generally employed to overcome over-fitting. The effects of various drop out are depicted in Table 11. It could be observed that 0.5 was a suitable value for all four data sets, which can suppress over-fitting and train model in a balanced way.
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wang, Q.; He, X.; Li, X. Locality and structure regularized low rank representation for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2018, 57, 911–923. [Google Scholar] [CrossRef] [Green Version]
- Yuan, Y.; Feng, Y.; Lu, X. Projection-Based NMF for Hyperspectral Unmixing. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 2632–2643. [Google Scholar] [CrossRef]
- Li, W.; Du, Q.; Zhang, B. Combined sparse and collaborative representation for hyperspectral target detection. Pattern Recognit. 2015, 48, 3904–3916. [Google Scholar] [CrossRef]
- Pan, B.; Shi, Z.; Xu, X. MugNet: Deep learning for hyperspectral image classification using limited samples. ISPRS J. Photogramm. Remote Sens. 2018, 145, 108–119. [Google Scholar] [CrossRef]
- Zhou, S.; Xue, Z.; Du, P. Semisupervised Stacked Autoencoder With Cotraining for Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2019, 57, 3813–3826. [Google Scholar] [CrossRef]
- Ghamisi, P.; Plaza, J.; Chen, Y.; Li, J.; Plaza, A.J. Advanced Spectral Classifiers for Hyperspectral Images: A review. IEEE Geosci. Remote Sens. Mag. 2017, 5, 8–32. [Google Scholar] [CrossRef] [Green Version]
- Camps-Valls, G.; Marsheva, T.V.B.; Zhou, D. Semi-Supervised Graph-Based Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2007, 45, 3044–3054. [Google Scholar] [CrossRef]
- Gu, Y.; Feng, K. L1-graph semisupervised learning for hyperspectral image classification. In Proceedings of the 2012 IEEE International Geoscience and Remote Sensing Symposium, Munich, Germany, 22–27 July 2012; pp. 1401–1404. [Google Scholar]
- Ma, L.; Crawford, M.M.; Yang, X.; Guo, Y. Local-manifold-learning-based graph construction for semisupervised hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2014, 53, 2832–2844. [Google Scholar] [CrossRef]
- Shao, Y.; Sang, N.; Gao, C.; Ma, L. Probabilistic class structure regularized sparse representation graph for semi-supervised hyperspectral image classification. Pattern Recognit. 2017, 63, 102–114. [Google Scholar] [CrossRef]
- Roscher, R.; Waske, B.; Forstner, W. Incremental import vector machines for classifying hyperspectral data. IEEE Trans. Geosci. Remote Sens. 2012, 50, 3463–3473. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Marpu, P.R.; Plaza, A.; Bioucas-Dias, J.M.; Benediktsson, J.A. Generalized composite kernel framework for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2013, 51, 4816–4829. [Google Scholar] [CrossRef]
- Jiang, J.; Ma, J.; Wang, Z.; Chen, C.; Liu, X. Hyperspectral image classification in the presence of noisy labels. IEEE Trans. Geosci. Remote Sens. 2019, 57, 851–865. [Google Scholar] [CrossRef] [Green Version]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. In Proceedings of the Advances in Neural Information Processing Systems, Lake Tahoe, NV, USA, 3–6 December 2012; pp. 1097–1105. [Google Scholar]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 1–9. [Google Scholar]
- Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the inception architecture for computer vision. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 2818–2826. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Hu, W.; Huang, Y.; Wei, L.; Zhang, F.; Li, H. Deep convolutional neural networks for hyperspectral image classification. J. Sens. 2015, 2015, 258619. [Google Scholar] [CrossRef] [Green Version]
- Makantasis, K.; Karantzalos, K.; Doulamis, A.; Doulamis, N. Deep supervised learning for hyperspectral data classification through convolutional neural networks. In Proceedings of the 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Milan, Italy, 26–31 July 2015; pp. 4959–4962. [Google Scholar]
- Li, W.; Wu, G.; Zhang, F.; Du, Q. Hyperspectral image classification using deep pixel-pair features. IEEE Trans. Geosci. Remote Sens. 2016, 55, 844–853. [Google Scholar] [CrossRef]
- Zhang, M.; Li, W.; Du, Q. Diverse region-based CNN for hyperspectral image classification. IEEE Trans. Image Process. 2018, 27, 2623–2634. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Jiang, H.; Li, C.; Jia, X.; Ghamisi, P. Deep feature extraction and classification of hyperspectral images based on convolutional neural networks. IEEE Trans. Geosci. Remote Sens. 2016, 54, 6232–6251. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Zhang, H.; Shen, Q. Spectral–spatial classification of hyperspectral imagery with 3D convolutional neural network. Remote Sens. 2017, 9, 67. [Google Scholar] [CrossRef] [Green Version]
- He, M.; Li, B.; Chen, H. Multi-scale 3d deep convolutional neural network for hyperspectral image classification. In Proceedings of the 2017 IEEE International Conference on Image Processing (ICIP), Beijing, China, 17–20 September 2017; pp. 3904–3908. [Google Scholar]
- Zhong, Z.; Li, J.; Luo, Z.; Chapman, M. Spectral–spatial residual network for hyperspectral image classification: A 3-D deep learning framework. IEEE Trans. Geosci. Remote Sens. 2017, 56, 847–858. [Google Scholar] [CrossRef]
- Wang, W.; Dou, S.; Jiang, Z.; Sun, L. A Fast Dense Spectral–Spatial Convolution Network Framework for Hyperspectral Images Classification. Remote Sens. 2018, 10, 1068. [Google Scholar] [CrossRef] [Green Version]
- Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely connected convolutional networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 4700–4708. [Google Scholar]
- Sellami, A.; Farah, M.; Farah, I.R.; Solaiman, B. Hyperspectral imagery classification based on semi-supervised 3-D deep neural network and adaptive band selection. Expert Syst. Appl. 2019, 129, 246–259. [Google Scholar] [CrossRef]
- Mnih, V.; Heess, N.; Graves, A. Recurrent models of visual attention. In Proceedings of the Advances in Neural Information Processing Systems, Montreal, QC, Canada, 8–13 December 2014; pp. 2204–2212. [Google Scholar]
- Ba, J.; Mnih, V.; Kavukcuoglu, K. Multiple object recognition with visual attention. arXiv 2014, arXiv:1412.7755. [Google Scholar]
- Xu, K.; Ba, J.; Kiros, R.; Cho, K.; Courville, A.; Salakhudinov, R.; Zemel, R.; Bengio, Y. Show, attend and tell: Neural image caption generation with visual attention. In Proceedings of the 32nd International Conference on Machine Learning, Lille, France, 6–11 July 2015; pp. 2048–2057. [Google Scholar]
- Jaderberg, M.; Simonyan, K.; Zisserman, A. Spatial transformer networks. In Proceedings of the Advances in Neural Information Processing Systems, Montreal, QC, Canada, 7–12 December 2015; pp. 2017–2025. [Google Scholar]
- Chen, L.; Zhang, H.; Xiao, J.; Nie, L.; Shao, J.; Liu, W.; Chua, T.S. Sca-cnn: Spatial and channel-wise attention in convolutional networks for image captioning. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 5659–5667. [Google Scholar]
- Hu, J.; Shen, L.; Sun, G. Squeeze-and-excitation networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 7132–7141. [Google Scholar]
- Haut, J.M.; Paoletti, M.E.; Plaza, J.; Plaza, A.; Li, J. Visual Attention-Driven Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2019, 57, 8065–8080. [Google Scholar] [CrossRef]
- Fang, B.; Li, Y.; Zhang, H.; Chan, J.C.W. Hyperspectral Images Classification Based on Dense Convolutional Networks with Spectral-Wise Attention Mechanism. Remote Sens. 2019, 11, 159. [Google Scholar] [CrossRef] [Green Version]
- Mamalet, F.; Garcia, C. Simplifying convnets for fast learning. In Proceedings of the International Conference on Artificial Neural Networks, Lausanne, Switzerland, 11–14 September 2012; Springer: Berlin/Heidelberg, Germany, 2012; pp. 58–65. [Google Scholar]
- Chollet, F. Xception: Deep learning with depthwise separable convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 1251–1258. [Google Scholar]
- Yu, F.; Koltun, V. Multi-scale context aggregation by dilated convolutions. arXiv 2015, arXiv:1511.07122. [Google Scholar]
- Rensink, R.A. The dynamic representation of scenes. Vis. Cogn. 2000, 7, 17–42. [Google Scholar] [CrossRef]
- Corbetta, M.; Shulman, G.L. Control of goal-directed and stimulus-driven attention in the brain. Nat. Rev. Neurosci. 2002, 3, 201–215. [Google Scholar] [CrossRef]
- Gehring, J.; Auli, M.; Grangier, D.; Yarats, D.; Dauphin, Y.N. Convolutional Sequence to Sequence Learning. In Proceedings of the 34th International Conference on Machine Learning, JMLR.org, ICML’17, Sydney, Australia, 6–11 August 2017; Volume 70, pp. 1243–1252. [Google Scholar]
- Chu, X.; Yang, W.; Ouyang, W.; Ma, C.; Yuille, A.L.; Wang, X. Multi-context attention for human pose estimation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 1831–1840. [Google Scholar]
- Zhang, X.; Wang, T.; Qi, J.; Lu, H.; Wang, G. Progressive attention guided recurrent network for salient object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 714–722. [Google Scholar]
- Park, J.; Woo, S.; Lee, J.Y.; Kweon, I.S. Bam: Bottleneck attention module. arXiv 2018, arXiv:1807.06514. [Google Scholar]
- Woo, S.; Park, J.; Lee, J.Y.; So Kweon, I. Cbam: Convolutional block attention module. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 3–19. [Google Scholar]
- Chen, Y.; Fang, H.; Xu, B.; Yan, Z.; Kalantidis, Y.; Rohrbach, M.; Yan, S.; Feng, J. Drop an octave: Reducing spatial redundancy in convolutional neural networks with octave convolution. arXiv 2019, arXiv:1904.05049. [Google Scholar]
- 2013 IEEE GRSS Data Fusion Contest. Available online: http://www.grss-ieee.org/community/technical-committees/data-fusion/ (accessed on 23 June 2012).
- 2014 IEEE GRSS Data Fusion Contest. Available online: http://www.grss-ieee.org/community/technical-committees/data-fusion/ (accessed on 27 January 2014).
- Ahmad, M.; Khan, A.; Khan, A.M.; Mazzara, M.; Distefano, S.; Sohaib, A.; Nibouche, O. Spatial Prior Fuzziness Pool-Based Interactive Classification of Hyperspectral Images. Remote Sens. 2019, 11, 1136. [Google Scholar] [CrossRef] [Green Version]
Label | Class Name | Train | Test |
---|---|---|---|
1 | Alfalfa | 23 | 23 |
2 | Corn-notill | 300 | 1128 |
3 | Corn-min | 300 | 530 |
4 | Corn | 118 | 119 |
5 | Grass/Pasture | 241 | 242 |
6 | Grass/Trees | 300 | 430 |
7 | Grass/Pasture-mowed | 14 | 14 |
8 | Hay-windrowed | 239 | 239 |
9 | Oats | 10 | 10 |
10 | Soybeans-notill | 300 | 672 |
11 | Soybeans-min | 300 | 2155 |
12 | Soybeans-clean | 296 | 297 |
13 | Wheat | 102 | 103 |
14 | Woods | 300 | 965 |
15 | Building-Grass-Trees-Drives | 193 | 193 |
16 | Stone-steel Towers | 46 | 47 |
- | Total | 3082 | 7176 |
Label | Class Name | Train | Test |
---|---|---|---|
1 | Asphalt | 200 | 6431 |
2 | Meadows | 200 | 18,449 |
3 | Gravel | 200 | 1899 |
4 | Trees | 200 | 2864 |
5 | Sheets | 200 | 1145 |
6 | Baresoil | 200 | 4829 |
7 | Bitumen | 200 | 1130 |
8 | Bricks | 200 | 3482 |
9 | Shadows | 200 | 747 |
- | Total | 1800 | 40,976 |
Label | Class Name | Train | Test |
---|---|---|---|
1 | Healthy grass | 200 | 1051 |
2 | Stressed grass | 200 | 1054 |
3 | Synthetic grass | 200 | 497 |
4 | Trees | 200 | 1044 |
5 | Soil | 200 | 1042 |
6 | Water | 162 | 163 |
7 | Residential | 200 | 1068 |
8 | Commercial | 200 | 1044 |
9 | Road | 200 | 1052 |
10 | Highway | 200 | 1027 |
11 | Railway | 200 | 1035 |
12 | Parking Lot 1 | 200 | 1033 |
13 | Parking Lot 2 | 200 | 269 |
14 | Tennis Court | 200 | 228 |
15 | Running Track | 200 | 460 |
- | Total | 2962 | 12,067 |
Label | Class Name | Train | Test |
---|---|---|---|
1 | Road | 200 | 4243 |
2 | Trees | 200 | 893 |
3 | Red roof | 200 | 1654 |
4 | Grey roof | 200 | 1926 |
5 | Concrete roof | 200 | 3688 |
6 | Vegetation | 200 | 7157 |
7 | Bare soil | 200 | 1571 |
- | Total | 1400 | 21,132 |
Class | CNN | M3DCNN | SSRN | MSDN-SA | MSO3DCNN | CSA-MSO3DCNN |
---|---|---|---|---|---|---|
1 | ||||||
2 | ||||||
3 | ||||||
4 | ||||||
5 | ||||||
6 | ||||||
7 | ||||||
8 | ||||||
9 | ||||||
10 | ||||||
11 | ||||||
12 | ||||||
13 | ||||||
14 | ||||||
15 | ||||||
16 | ||||||
OA(%) | ||||||
AA(%) | ||||||
Class | CNN | M3DCNN | SSRN | MSDN-SA | MSO3DCNN | CSA-MSO3DCNN |
---|---|---|---|---|---|---|
1 | ||||||
2 | ||||||
3 | ||||||
4 | ||||||
5 | ||||||
6 | ||||||
7 | ||||||
8 | ||||||
9 | ||||||
OA(%) | ||||||
AA(%) | ||||||
Class | CNN | M3DCNN | SSRN | MSDN-SA | MSO3DCNN | CSA-MSO3DCNN |
---|---|---|---|---|---|---|
1 | ||||||
2 | ||||||
3 | ||||||
4 | ||||||
5 | ||||||
6 | ||||||
7 | ||||||
8 | ||||||
9 | ||||||
10 | ||||||
11 | ||||||
12 | ||||||
13 | ||||||
14 | ||||||
15 | ||||||
OA(%) | ||||||
AA(%) | ||||||
Class | CNN | M3DCNN | SSRN | MSDN-SA | MSO3DCNN | CSA-MSO3DCNN |
---|---|---|---|---|---|---|
1 | ||||||
2 | ||||||
3 | ||||||
4 | ||||||
5 | ||||||
6 | ||||||
7 | ||||||
OA(%) | ||||||
AA(%) | ||||||
Indian Pines | University of Pavia | Grss_dfc_2013 | Grss_dfc_2014 | |
---|---|---|---|---|
0.1 | 97.76 | 98.38 | 99.22 | 96.67 |
0.2 | 98.91 | 99.19 | 99.56 | 97.12 |
0.25 | 99.68 | 99.76 | 99.69 | 97.96 |
0.3 | 98.86 | 98.15 | 99.45 | 97.53 |
Spatial Size | Indian Pines | University of Pavia | Grss_dfc_2013 | Grss_dfc_2014 |
---|---|---|---|---|
97.87 | 98.33 | 98.22 | 93.47 | |
98.63 | 99.42 | 99.46 | 96.42 | |
99.68 | 99.76 | 99.69 | 97.96 | |
99.10 | 99.76 | 99.45 | 94.23 | |
97.54 | 98.35 | 99.23 | 90.57 |
Drop Out | Indian Pines | University of Pavia | Grss_dfc_2013 | Grss_dfc_2014 |
---|---|---|---|---|
0.2 | 92.41 | 90.13 | 91.43 | 87.47 |
0.4 | 98.96 | 99.26 | 99.00 | 97.38 |
0.5 | 99.68 | 99.76 | 99.69 | 97.96 |
0.6 | 98.63 | 98.85 | 99.26 | 96.56 |
0.8 | 93.33 | 91.47 | 90.35 | 92.31 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, Q.; Xiao, Y.; Wang, D.; Luo, B. CSA-MSO3DCNN: Multiscale Octave 3D CNN with Channel and Spatial Attention for Hyperspectral Image Classification. Remote Sens. 2020, 12, 188. https://doi.org/10.3390/rs12010188
Xu Q, Xiao Y, Wang D, Luo B. CSA-MSO3DCNN: Multiscale Octave 3D CNN with Channel and Spatial Attention for Hyperspectral Image Classification. Remote Sensing. 2020; 12(1):188. https://doi.org/10.3390/rs12010188
Chicago/Turabian StyleXu, Qin, Yong Xiao, Dongyue Wang, and Bin Luo. 2020. "CSA-MSO3DCNN: Multiscale Octave 3D CNN with Channel and Spatial Attention for Hyperspectral Image Classification" Remote Sensing 12, no. 1: 188. https://doi.org/10.3390/rs12010188