The Performance of Different Mapping Functions and Gradient Models in the Determination of Slant Tropospheric Delay
"> Figure 1
<p>Geometry of ray-tracing with the piecewise-linear (PWL) approach.</p> "> Figure 2
<p>Variation of precipitable water vapor (PWV) in the selected six regions during 2018. doy, day of year: (<b>a</b>) Temperate Zone (<b>b</b>) Qinghai—Tibet Plateau (<b>c</b>) Equator (<b>d</b>) Sahara Dessert (<b>e</b>) Amazon Rainforest (<b>f</b>) North Pole.</p> "> Figure 3
<p>The root-mean-squares (RMSs) and biases of the NMF, GMF, andVMF1 for the six regions at the nine elevations (70°, 50°, 30°, 20°, 15°, 10°, 7°, 5°, and 3°): (<b>a</b>) Temperate Zone (<b>b</b>) Qinghai–Tibet Plateau (<b>c</b>) Equator (<b>d</b>) Sahara Dessert (<b>e</b>) Amazon Rainforest (<b>f</b>) North Pole.</p> "> Figure 4
<p>The RMSs and biases of VMF1 for the six regions at the different elevations (70°, 50°, 30°, 20°, 15°, 10°, 7°, 5°, and 3°): (<b>a</b>) Temperate Zone (<b>b</b>) Qinghai—Tibet Plateau (<b>c</b>) Equator (<b>d</b>) Sahara Dessert (<b>e</b>) Amazon Rainforest (<b>f</b>) North Pole.</p> "> Figure 5
<p>The RMSs and biases of VMF1 and VMF1 with three gradient models for the six regions at the nine elevations (70°, 50°, 30°, 20°, 15°, 10°, 7°, 5°, 3°) in four seasons: (<b>a</b>) Temperate Zone (<b>b</b>) Qinghai—Tibet Plateau (<b>c</b>) Equator (<b>d</b>) Sahara Dessert (<b>e</b>) Amazon Rainforest (<b>f</b>) North Pole.</p> "> Figure 6
<p>The RMSs and biases for the six regions in the four seasons: (<b>a</b>) Temperate Zone (<b>b</b>) Qinghai—Tibet Plateau (<b>c</b>) Equator (<b>d</b>) Sahara Dessert (<b>e</b>) Amazon Rainforest (<b>f</b>) North Pole.</p> "> Figure 7
<p>The RMSs of STD, SHD, and SWD for the six regions at the different elevations (70°, 50°, 30°, 20°, 15°, 10°, 7°, 5°, and 3°): (<b>a</b>) Temperate Zone (<b>b</b>) Qinghai—Tibet Plateau (<b>c</b>) Equator (<b>d</b>) Sahara Dessert (<b>e</b>) Amazon Rainforest (<b>f</b>) North Pole.</p> "> Figure 8
<p>The bending effects for the six regions at different elevations (70°, 50°, 30°, 20°, 15°, 10°, 7°, 5°, and 3°): (<b>a</b>) Temperate Zone (<b>b</b>) Qinghai—Tibet Plateau (<b>c</b>) Equator (<b>d</b>) Sahara Dessert (<b>e</b>) Amazon Rainforest (<b>f</b>) North Pole.</p> ">
Abstract
:1. Introduction
2. Data and Methodology
2.1. Mapping Function
2.2. Gradient Model
2.3. Ray-Tracing
2.4. Methods
3. Results
3.1. Variation of PWV
3.2. Mapping Function
3.3. Gradient Model
3.4. Bending Effect
4. Discussions
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bevis, M.; Businger, S.; Herring, T.A.; Rocken, C.; Anthes, R.A.; Ware, R.H. GPS meteorology: Remote sensing of atmospheric water vapor using the global positioning system. J. Geophys. Res. Atmos. 1992, 97, 15787–15801. [Google Scholar] [CrossRef]
- Lay, O.P. Phase calibration and water vapor radiometry for millimeter-wave arrays. Astron. Astrophys. Suppl. Ser. 1997, 122, 547–557. [Google Scholar] [CrossRef]
- Rocken, C.; Ware, R.; Hove, T.V.; Solheim, F.; Alber, C.; Johnson, J.; Bevis, M.; Businger, S. Sensing atmospheric water vapor with the Global Positioning System. Geophys. Res. Lett. 1993, 20, 2631–2634. [Google Scholar] [CrossRef] [Green Version]
- Rocken, C.; Hove, T.V.; Johnson, J.; Solheim, F.; Ware, R.; Bevis, M.; Chiswell, S.; Businger, S. GPS/STORM—GPS sensing of atmospheric water vapor for meteorology. J. Atmos. Ocean. Technol. 1995, 12, 468–478. [Google Scholar] [CrossRef]
- Li, X.; Dick, G.; Ge, M.; Heise, S.; Wickert, J.; Bender, M. Real-time GPS sensing of atmospheric water vapor: Precise point positioning with orbit, clock, and phase delay corrections. Geophys. Res. Lett. 2014, 41, 3615–3621. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Dick, G.; Lu, C.; Ge, M.; Nilsson, T.; Ning, T.; Wickert, J.; Schuh, H. Multi-GNSS Meteorology: Real-Time Retrieving of Atmospheric Water Vapor From BeiDou, Galileo, GLONASS, and GPS Observations. IEEE Trans. Geosci. Remote Sens. 2015, 53, 6385–6393. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Li, M.; Zhong, W.; Wong, M.S. An approach to evaluate the absolute accuracy of WVR water vapor measurements inferred from multiple water vapor techniques. J. Geodyn. 2013, 72, 86–94. [Google Scholar] [CrossRef]
- Liu, Z.; Wong, M.S.; Nichol, J.; Chan, P. A multi-sensor study of water vapour from radiosonde, MODIS and AERONET: A case study of Hong Kong. Int. J. Climatol. 2013, 33, 109–120. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Li, W.; Shi, C.; Zhao, Q.; Su, X.; Qu, L.; Liu, Z. Assessment of precipitable water vapor derived from ground-based BeiDou observations with Precise Point Positioning approach. Adv. Space Res. 2015, 55, 150–162. [Google Scholar] [CrossRef]
- Li, Z.; Muller, J.P.; Cross, P. Comparison of precipitable water vapor derived from radiosonde, GPS, and Moderate-Resolution Imaging Spectroradiometer measurements. J. Geophys. Res. Atmos. 2003, 108. [Google Scholar] [CrossRef]
- Wilgan, K.; Rohm, W.; Bosy, J. Multi-observation meteorological and GNSS data comparison with Numerical Weather Prediction model. Atmos. Res. 2015, 156, 29–42. [Google Scholar] [CrossRef]
- Yao, Y.B.; Shan, L.L.; Zhao, Q.Z. Establishing a method of short-term rainfall forecasting based on GNSS-derived PWV and its application. Sci. Rep. 2017, 7, 11. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.; Yao, Y.; Yao, W. GPS-based PWV for precipitation forecasting and its application to a typhoon event. J. Atmos. Sol.-Terr. Phys. 2018, 167, 124–133. [Google Scholar] [CrossRef]
- Zhang, K.; Manning, T.; Wu, S.; Rohm, W.; Silcock, D.; Choy, S. Capturing the Signature of Severe Weather Events in Australia Using GPS Measurements. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 1839–1847. [Google Scholar] [CrossRef]
- Businger, S.; Chiswell, S.R.; Bevis, M.; Duan, J.; Anthes, R.; Rocken, C.; Ware, R.; Exner, M.; Vanhove, T.; Solheim, F. The Promise of GPS in Atmospheric Monitoring. Bull. Am. Meteorol. Soc. 1996, 77, 5–18. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Zhang, K.; Wu, S.; Fan, S.; Cheng, Y. Water vapor-weighted mean temperature and its impact on the determination of precipitable water vapor and its linear trend. J. Geophys. Res. Atmos. 2016, 121, 833–852. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, K.; Wu, S.; Li, Z.; Cheng, Y.; Li, L.; Yuan, H. The correlation between GNSS-derived precipitable water vapor and sea surface temperature and its responses to El Niño–Southern Oscillation. Remote Sens. Environ. 2018, 216, 1–12. [Google Scholar] [CrossRef]
- Chen, B.; Liu, Z. Global water vapor variability and trend from the latest 36 year (1979 to 2014) data of ECMWF and NCEP reanalyses, radiosonde, GPS, and microwave satellite. J. Geophys. Res. Atmos. 2016, 121, 11–442. [Google Scholar] [CrossRef]
- Kuo, Y.-H.; Guo, Y.-R.; Westwater, E.R. Assimilation of precipitable water measurements into a mesoscale numerical model. Mon. Weather Rev. 1993, 121, 1215–1238. [Google Scholar] [CrossRef] [Green Version]
- Kuo, Y.-H.; Zou, X.; Guo, Y.-R. Variational Assimilation of Precipitable Water Using a Nonhydrostatic Mesoscale Adjoint Model. Part. I: Moisture Retrieval and Sensitivity Experiments. Mon. Weather Rev. 1996, 124, 122–147. [Google Scholar] [CrossRef] [Green Version]
- Bender, M.; Dick, G.; Ge, M.; Deng, Z.; Wickert, J.; Kahle, H.-G.; Raabe, A.; Tetzlaff, G. Development of a GNSS water vapour tomography system using algebraic reconstruction techniques. Adv. Space Res. 2011, 47, 1704–1720. [Google Scholar] [CrossRef] [Green Version]
- Kawabata, T.; Shoji, Y. Applications of GNSS Slant Path Delay Data on Meteorology at Storm Scales. In Multifunctional Operation and Application of GPS; IntechOpen: London, UK, 2018. [Google Scholar]
- Ha, S.-Y.; Kuo, Y.-H.; Guo, Y.-R.; Lim, G.-H. Variational Assimilation of Slant-Path Wet Delay Measurements from a Hypothetical Ground-Based GPS Network. Part. I: Comparison with Precipitable Water Assimilation. Mon. Weather Rev. 2003, 131, 2635–2655. [Google Scholar] [CrossRef] [Green Version]
- Seko, H.; Kawabata, T.; Tsuyuki, T.; Nakamura, H.; Koizumi, K.; Iwabuchi, T. Impacts of GPS-derived water vapor and radial wind measured by Doppler radar on numerical prediction of precipitation. J. Meteorol. Soc. Jpn. Ser. II 2004, 82, 473–489. [Google Scholar] [CrossRef] [Green Version]
- Bauer, H.-S.; Wulfmeyer, V.; Schwitalla, T.; Zus, F.; Grzeschik, M. Operational assimilation of GPS slant path delay measurements into the MM5 4DVAR system. Tellus A Dyn. Meteorol. Oceanogr. 2011, 63, 263–282. [Google Scholar] [CrossRef]
- Kawabata, T.; Shoji, Y.; Seko, H.; Saito, K. A numerical study on a mesoscale convective system over a subtropical island with 4D-Var assimilation of GPS slant total delays. J. Meteorol. Soc. Jpn. Ser. II 2013, 91, 705–721. [Google Scholar] [CrossRef] [Green Version]
- Rocken, C.; Braun, J.; Meertens, C.; Ware, R.; Sokolovskiy, S.; Van Hove, T. Water Vapor Tomography with Low Cost GPS Receivers [Presentation]; Department of Energy: Tucson, AZ, USA, 1998. [Google Scholar]
- Braun, J.; Rocken, C.; Meertens, C.; Ware, R. Development of a water vapor tomography system using low cost L1 GPS receivers. In Proceedings of the 9th ARM Science Team Meeting Proceedings, San Antonio, TX, USA, 22–26 March 1999. [Google Scholar]
- Rohm, W.; Bosy, J. Local tomography troposphere model over mountains area. Atmos. Res. 2009, 93, 777–783. [Google Scholar] [CrossRef]
- Chen, B.; Liu, Z. Voxel-optimized regional water vapor tomography and comparison with radiosonde and numerical weather model. J. Geod. 2014, 88, 691–703. [Google Scholar] [CrossRef]
- Flores, A.; Ruffini, G.; Rius, A. 4D tropospheric tomography using GPS slant wet delays. In Annales Geophysicae; Springer: Berlin/Heidelberg, Germany, 2000. [Google Scholar]
- Nilsson, T.; Gradinarsky, L. Water vapor tomography using GPS phase observations: Simulation results. IEEE Trans. Geosci. Remote Sens. 2006, 44, 2927–2941. [Google Scholar] [CrossRef]
- Heublein, M.; Zhu, X.X.; Alshawaf, F.; Mayer, M.; Bamler, R.; Hinz, S. Compressive sensing for neutrospheric water vapor tomography using GNSS and InSAR observations. In Proceedings of the 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Milan, Italy, 26–31 July 2015; IEEE: Piscataway, NJ, USA, 2015. [Google Scholar]
- Yao, Y.; Zhao, Q. Maximally using GPS observation for water vapor tomography. IEEE Trans. Geosci. Remote Sens. 2016, 54, 7185–7196. [Google Scholar] [CrossRef]
- Benevides, P.; Nico, G.; Catalão, J.; Miranda, P.M. Analysis of galileo and GPS integration for GNSS tomography. IEEE Trans. Geosci. Remote Sens. 2017, 55, 1936–1943. [Google Scholar] [CrossRef]
- Dong, Z.; Jin, S. 3-D Water Vapor Tomography in Wuhan from GPS, BDS and GLONASS Observations. Remote Sens. 2018, 10, 62. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Q.; Yao, Y.; Cao, X.; Zhou, F.; Xia, P. An Optimal Tropospheric Tomography Method Based on the Multi-GNSS Observations. Remote Sens. 2018, 10, 234. [Google Scholar] [CrossRef] [Green Version]
- Gradinarsky, L.P.; JarLemark, P. Ground-based GPS tomography of water vapor: Analysis of simulated and real data. J. Meteorol. Soc. Jpn. Ser. II 2004, 82, 551–560. [Google Scholar] [CrossRef] [Green Version]
- Bender, M.; Dick, G.; Wickert, J.; Ramatschi, M.; Ge, M.; Gendt, G.; Rothacher, M.; Raabe, A.; Tetzlaff, G. Estimates of the information provided by GPS slant data observed in Germany regarding tomographic applications. J. Geophys. Res. Atmos. 2009, 114, D0630. [Google Scholar] [CrossRef] [Green Version]
- Jin, S.; Cardellach, E.; Xie, F. GNSS Remote Sensing: Theory, Methods and Applications; Springer: Dordrecht, The Netherlands, 2014. [Google Scholar]
- Zhang, H.; Yuan, Y.; Li, W.; Ou, J.; Li, Y.; Zhang, B. GPS PPP-derived precipitable water vapor retrieval based on Tm/Ps from multiple sources of meteorological data sets in China. J. Geophys. Res. Atmos. 2017, 122, 4165–4183. [Google Scholar] [CrossRef]
- Realini, E.; Tsuda, T.; Sato, K.; Oigawa, M.; Iwaki, Y. Analysis of the temporal and spatial variability of the wet troposphere at a local scale by high-rate PPP using a dense GNSS network. In Proceedings of the 25th International Technical Meeting of the Satellite Division of the Institute of Navigation (Ion Gnss 2012), Nashville, TN, USA, 17–21 September 2012; pp. 3406–3412. [Google Scholar]
- Mendez Astudillo, J.; Lau, L.; Tang, Y.-T.; Moore, T. Analysing the Zenith Tropospheric Delay Estimates in On-line Precise Point Positioning (PPP) Services and PPP Software Packages. Sensors 2018, 18, 580. [Google Scholar] [CrossRef] [Green Version]
- Yuan, Y.; Zhang, K.; Rohm, W.; Choy, S.; Norman, R.; Wang, C.S. Real-time retrieval of precipitable water vapor from GPS precise point positioning. J. Geophys. Res. Atmos. 2014, 119, 10044–10057. [Google Scholar] [CrossRef]
- Shi, J.; Xu, C.; Li, Y.; Gao, Y. Impacts of real-time satellite clock errors on GPS precise point positioning-based troposphere zenith delay estimation. J. Geod. 2015, 89, 747–756. [Google Scholar] [CrossRef]
- Zhao, Q.; Yao, Y.; Yao, W.; Li, Z. Real-time precise point positioning-based zenith tropospheric delay for precipitation forecasting. Sci. Rep. 2018, 8, 7932. [Google Scholar] [CrossRef]
- Li, X.; Zus, F.; Lu, C.; Dick, G.; Ning, T.; Ge, M.; Wickert, J.; Schuh, H. Retrieving of atmospheric parameters from multi-GNSS in real time: Validation with water vapor radiometer and numerical weather model. J. Geophys. Res. Atmos. 2015, 120, 7189–7204. [Google Scholar] [CrossRef] [Green Version]
- Davis, J.L.; Herring, T.A.; Shapiro, I.I.; Rogers, A.E.E.; Elgered, G. Geodesy by radio interferometry: Effects of atmospheric modeling errors on estimates of baseline length. Radio Sci. 1985, 20, 1593–1607. [Google Scholar] [CrossRef]
- Macmillan, D.S. Atmospheric gradients from very long baseline interferometry observations. Geophys. Res. Lett. 1995, 22, 1041–1044. [Google Scholar] [CrossRef]
- Chen, G.; Herring, T.A. Effects of atmospheric azimuthal asymmetry on the analysis of space geodetic data. J. Geophys. Res. Solid Earth 1997, 102, 20489–20502. [Google Scholar] [CrossRef]
- Meindl, M.; Schaer, S.; Hugentobler, U.; Beutler, G. Tropospheric Gradient Estimation at CODE: Results from Global Solutions. J. Meteorol. Soc. Japan. Ser. II 2004, 82, 331–338. [Google Scholar] [CrossRef] [Green Version]
- Elgered, G.; Davis, J.; Herring, T.; Shapiro, I. Geodesy by radio interferometry: Water vapor radiometry for estimation of the wet delay. J. Geophys. Res. Solid Earth 1991, 96, 6541–6555. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, K.; Wu, S.; He, C.; Cheng, Y.; Li, X. Determination of zenith hydrostatic delay and its impact on GNSS-derived integrated water vapor. Atmos. Meas. Tech. 2017, 10, 2807–2820. [Google Scholar] [CrossRef] [Green Version]
- Marini, J.W. Correction of satellite tracking data for an arbitrary tropospheric profile. Radio Sci. 1972, 7, 223–231. [Google Scholar] [CrossRef]
- Ifadis, I. The Atmospheric Delay of Radio Waves: Modelling the Elevation Dependence on a Global Scale; Technical Report; Chalmers University of Technology: Göteborg, Sweden, 1986. [Google Scholar]
- Herring, T.A. Modeling atmospheric delays in the analysis of space geodetic data. In Publications on Geodesy Proceedings of Refraction of Transatmospheric Signals in Geodesy; Nederlandse Commissie voor Geodesie: Amersfoort, The Netherlands, 1992; Volume 36, pp. 157–164. [Google Scholar]
- Niell, A.E. Global mapping functions for the atmosphere delay at radio wavelengths. J. Geophys. Res. 1996, 101, 3227–3246. [Google Scholar] [CrossRef]
- Böhm, J.; Niell, A.; Tregoning, P.; Schuh, H. Global Mapping Function (GMF): A New Empirical Mapping Function based on Numerical Weather Model Data. 2006. Available online: https://agupubs.onlinelibrary.wiley.com/action/showCitFormats?doi=10.1029%2F2005GL025546 (accessed on 20 December 2019).
- Böhm, J.; Werl, B.; Schuh, H. Troposphere mapping functions for GPS and very long baseline interferometry from European Centre for Medium-Range Weather Forecasts operational analysis data. J. Geophys. Res. Solid Earth 2006, 111. [Google Scholar] [CrossRef]
- Lu, C.; Li, X.; Li, Z.; Heinkelmann, R.; Nilsson, T.; Dick, G.; Ge, M.; Schuh, H. GNSS tropospheric gradients with high temporal resolution and their effect on precise positioning. J. Geophys. Res. Atmos. 2016, 121, 912–930. [Google Scholar] [CrossRef] [Green Version]
- MacMillan, D.S.; Ma, C. Atmospheric gradients and the VLBI terrestrial and celestial reference frames. Geophys. Res. Lett. 1997, 24, 453–456. [Google Scholar] [CrossRef]
- Pany, T. Measuring and modeling the slant wet delay with GPS and the ECMWF NWP model. Phys. Chem. EarthParts A/B/C 2002, 27, 347–354. [Google Scholar] [CrossRef]
- Hofmeister, A. Determination of Path Delays in the Atmosphere for Geodetic VLBI by Means of Ray-Tracing. Ph.D. Thesis, Department of Geodesy and Geoinformation, Wien, Austria, 2016. [Google Scholar]
- Berrisford, P.; Dee, D.P.; Poli, P.; Brugge, R.; Mark, F.; Manuel, F.; Kållberg, P.W.; Kobayashi, S.; Uppala, S.; Adrian, S. The ERA-Interim Archive Version 2.0; ECMWF: Shinfield Park, UK, 2011. [Google Scholar]
- Bean, B.R.; Dutton, E. Radio Meteorology; Dover Publications: Washington, DC, USA, 1966. [Google Scholar]
- Böhm, J.; Schuh, H. Vienna Mapping Functions. In Proceedings of the 16th EVGA Working Meeting, Leipzig, Germany, 9–10 May 2003. [Google Scholar]
- Zus, F.; Douša, J.; Kačmařík, M.; Václavovic, P.; Balidakis, K.; Dick, G.; Wickert, J. Improving GNSS Zenith Wet Delay Interpolation by Utilizing Tropospheric Gradients: Experiments with a Dense Station Network in Central Europe in the Warm Season. Remote Sens. 2019, 11, 674. [Google Scholar] [CrossRef] [Green Version]
- Thayer, G. A rapid and accurate ray tracing algorithm for a horizontally stratified atmosphere. Radio Sci. 1967, 2, 249–252. [Google Scholar] [CrossRef]
- Hobiger, T.; Ichikawa, R.; Koyama, Y.; Kondo, T. Fast and accurate ray-tracing algorithms for real-time space geodetic applications using numerical weather models. J. Geophys. Res. Atmos. 2008, 113, 1–14. [Google Scholar] [CrossRef]
- Zus, F.; Bender, M.; Deng, Z.; Dick, G.; Heise, S.; Shang-Guan, M.; Wickert, J. A methodology to compute GPS slant total delays in a numerical weather model. Radio Sci. 2012, 47, 1–15. [Google Scholar] [CrossRef] [Green Version]
- National Imagery and Mapping Agency. Department of Defense World Geodetic System 1984: Its Definition and Relationships with Local Geodetic Systems; National Imagery and Mapping Agency: St. Louis, MO, USA, 2000. [Google Scholar]
- Böhm, J. Troposphärische Laufzeitverzögerungen in der VLBI; Institutfür Geodäsie und Geophysik, Fakultät fur Mathematik und Geoinformation, Technische Universität Wien: Vienna, Austria, 2004. [Google Scholar]
- Thayer, G.D. An improved equation for the radio refractive index of air. Radio Sci. 1974, 9, 803–807. [Google Scholar] [CrossRef]
- Owens, J.C. Optical Refractive Index of Air: Dependence on Pressure, Temperature and Composition. Appl. Opt. 1967, 6, 51–59. [Google Scholar] [CrossRef] [Green Version]
- Rüeger, J.M. Refractive index formulae for radio waves. In Proceedings of the FIG XXII International Congress, Washington, DC, USA, 19–26 April 2002; FIG: Washington, DC, USA, 2002. [Google Scholar]
- Nafisi, V.; Urquhart, L.; Santos, M.C.; Nievinski, F.G.; Bohm, J.; Wijaya, D.D.; Schuh, H.; Ardalan, A.A.; Hobiger, T.; Ichikawa, R.; et al. Comparison of Ray-Tracing Packages for Troposphere Delays. IEEE Trans. Geosci. Remote Sens. 2012, 50, 469–481. [Google Scholar] [CrossRef]
- Böhm, J.; Salstein, D.; Alizadeh, M.M.; Wijaya, D.D. Geodetic and Atmospheric Background. In Atmospheric Effects in Space Geodesy; Böhm, J., Schuh, H., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 1–33. [Google Scholar]
- Wallace, J.M.; Hobbs, P.V. Atmospheric Thermodynamics. In Atmospheric Science, 2nd ed.; Wallace, J.M., Hobbs, P.V., Eds.; Academic Press: San Diego, CA, USA, 2006; pp. 63–111. [Google Scholar]
- Kraus, H. Die Atmosphare “der Erde: Eine Einfu”hrung in die Meteorologie. [Erscheinungsort nicht ermittelbar]; Springer: Berlin/Heidelberg, Germany, 2004. [Google Scholar]
- Pavlis, N.K.; Holmes, S.A.; Kenyon, S.C.; Factor, J.K. The development and evaluation of the Earth Gravitational Model. 2008 (EGM2008). J. Geophys. Res. Solid Earth 2012, 117, B04406. [Google Scholar]
- Fotopoulos, G. An Analysis on the Optimal Combination of Geoid, Orthometric and Ellipsoidal Height Data. Ph.D. Thesis, University of Calgary, Department of Geomatics Engineering, Calgary, AB, Canada, 2003. [Google Scholar]
- Mendes, V. Modeling the Neutral Atmosphere Propagation Delay in Radiometric Space Techniques. Ph.D. Thesis, The University of New Brunswick, Fredericton, NB, Canada, 1998. [Google Scholar]
- Nilsson, T.; Böhm, J.; Wijaya, D.D.; Tresch, A.; Nafisi, V.; Schuh, H. Path Delays in the Neutral Atmosphere. In Atmospheric Effects in Space Geodesy; Böhm, J., Schuh, H., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 73–136. [Google Scholar]
- Hordyniec, P.; Kapłon, J.; Rohm, W.; Kryza, M. Residuals of Tropospheric Delays from GNSS Data and Ray-Tracing as a Potential Indicator of Rain and Clouds. Remote Sens. 2018, 10, 1917. [Google Scholar] [CrossRef] [Green Version]
- Zus, F.; Douša, J.; Kačmařík, M.; Václavovic, P.; Dick, G.; Wickert, J. Estimating the Impact of Global Navigation Satellite System Horizontal Delay Gradients in Variational Data Assimilation. Remote Sens. 2018, 11, 41. [Google Scholar] [CrossRef] [Green Version]
Region | Latitude Range | Longitude Range | Number of Grids | Height of Grids (m) |
---|---|---|---|---|
Temperature Zone | 33° N–36° N | 115° E–117° E | 9 | 200 |
Qinghai–Tibet Plateau | 29.5° N–32.5° N | 88.5° E–91.5° E | 9 | 4500 |
Equator | 1.5° S–1.5° N | 144° E–147° E | 9 | 200 |
Sahara Desert | 18° N–21°N | 1.5° W–1.5° E | 9 | 200 |
Amazon Rainforest | 2.5° S–5.5° S | 66° E–69° E | 9 | 200 |
North Pole | 85.5° N–90° N | 1.5° W–1.5° E | 10 | 200 |
Region | Annual Mean PWV (mm) | Annual Amplitude (mm) | Semi-Annual Amplitude (mm) |
---|---|---|---|
Temperature Zone | 23.17 | 19.98 | 5.62 |
Qinghai–Tibet Plateau | 6.40 | 7.22 | 2.64 |
Equator | 53.34 | 0.62 | 1.03 |
Sahara Desert | 21.57 | 5.36 | 14.68 |
Amazon Rainforest | 44.85 | 1.81 | 2.96 |
North Pole | 5.23 | 4.05 | 1.38 |
Azimuth | Temperate Zone | Qinghai–Tibet Plateau | Equator | Sahara Desert | Amazon Rainforest | North Pole |
---|---|---|---|---|---|---|
0° | 101.1 | 72.4 | 60.8 | 118.1 | 61.8 | −7.8 |
90° | 1.2 | 17.1 | 18.9 | 34.6 | −17.0 | −9.7 |
180° | −49.1 | −0.3 | 41.5 | 13.9 | −10.1 | −24.2 |
270° | −7.8 | 16.1 | 11.8 | 30.8 | −11.6 | −11.7 |
Elevation | Temperate Zone (%) | Qinghai–Tibet Plateau (%) | Equator (%) | Sahara Desert (%) | Amazon Rainforest (%) | North Pole (%) |
---|---|---|---|---|---|---|
3° | 59.11 | 36.64 | 42.78 | 39.92 | 66.73 | 51.65 |
5° | 62.48 | 52.20 | 47.84 | 49.83 | 73.41 | 60.67 |
7° | 62.84 | 57.70 | 50.46 | 54.00 | 75.97 | 62.17 |
10° | 63.05 | 60.22 | 54.27 | 58.57 | 77.65 | 61.22 |
15° | 62.87 | 64.86 | 56.85 | 61.18 | 77.91 | 60.53 |
20° | 62.75 | 65.62 | 57.54 | 61.62 | 77.76 | 61.08 |
30° | 62.21 | 64.44 | 57.68 | 61.51 | 78.18 | 61.30 |
50° | 61.07 | 56.62 | 51.44 | 55.46 | 67.26 | 53.19 |
70° | 57.54 | 38.89 | 51.59 | 54.17 | 68.41 | 36.17 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qiu, C.; Wang, X.; Li, Z.; Zhang, S.; Li, H.; Zhang, J.; Yuan, H. The Performance of Different Mapping Functions and Gradient Models in the Determination of Slant Tropospheric Delay. Remote Sens. 2020, 12, 130. https://doi.org/10.3390/rs12010130
Qiu C, Wang X, Li Z, Zhang S, Li H, Zhang J, Yuan H. The Performance of Different Mapping Functions and Gradient Models in the Determination of Slant Tropospheric Delay. Remote Sensing. 2020; 12(1):130. https://doi.org/10.3390/rs12010130
Chicago/Turabian StyleQiu, Cong, Xiaoming Wang, Zishen Li, Shaotian Zhang, Haobo Li, Jinglei Zhang, and Hong Yuan. 2020. "The Performance of Different Mapping Functions and Gradient Models in the Determination of Slant Tropospheric Delay" Remote Sensing 12, no. 1: 130. https://doi.org/10.3390/rs12010130