Hyperspectral Image Super-Resolution with 1D–2D Attentional Convolutional Neural Network
"> Figure 1
<p>Illustration of our 1D network architecture including the encoding sub-network and the up-sampling sub-network. The input of hyperspectral single image super-resolution (HSISR) are the low resolution (LR) Hyperspectral images (HSIs), and the inputs of hyperspectral pansharpening are LR HSI and pan. To ensure that both tasks can employ this network, the pan image used for hyperspectral pansharpening is simply addressed via a multi-scale learning network to extract deep spatial features, and then form a deep feature cube with the same size of the LR HSI. The detailed network and parameters setting for extraction of the deep features can be referenced from Figure 4 and Table 2.</p> "> Figure 2
<p>Illustration of 1D convolution path for spectral feature encoding, and 2D convolution path for spatial feature extraction of our proposed spectral and spatial residual block.</p> "> Figure 3
<p>The detailed structures of our proposed spatial attention block.</p> "> Figure 4
<p>The spatial inputs of hyperspectral pansharpening that is reconstructed as the same size of LR HSI.</p> "> Figure 5
<p>The performance of our proposed algorithm with the increasing <span class="html-italic">a</span>.</p> "> Figure 6
<p>The visual results of spatial super-resolution (SR) on Pavia University, in which the area in the red rectangle is enlarged three times in the bottom right corner of the image.</p> "> Figure 7
<p>The visual results of spatial SR on Pavia Center, in which the area in the red rectangle is enlarged three times in the bottom right corner of the image.</p> "> Figure 8
<p>Example spectrum of Pavia University: The figures above show the locations and the figures below show the corresponding spectrum.</p> "> Figure 9
<p>Example spectrum of Pavia Center: The figures above show the locations and the figures below show the corresponding spectrum.</p> "> Figure 10
<p>The visual results of hyperspectral pansharpenning on the CAVE. dataset, in which the area in the red rectangle is enlarged three times in the bottom right corner of the image.</p> "> Figure 11
<p>Example spectrum of the Cave dataset: The figures above show the locations and the figures below show the corresponding spectrum.</p> "> Figure 12
<p>The visual results of hyperspectral pansharpenning on the Harvard dataset, in which the area in the red rectangle is enlarged three times in the bottom right corner of the image.</p> "> Figure 13
<p>Example spectrum of Havard dataset: The figures above show the locations and the figures below show the corresponding spectrum.</p> ">
Abstract
:1. Introduction
- A novel 1D–2D attentional CNN is proposed for HSISR. Compared with the typical 3D CNN, our architecture is very elegant and efficient to encode spatial–spectral information for HSI 3D cube, which is also totally end-to-end trainable structure. More important, the ability to resolve hyperspectral pansharpening is also developed based on the uniform network.
- To take full consideration of the spatial information, a self attention mechanism is exploited in spatial network, which can efficiently employ the global spatial feature through learning non-local spatial information.
- Extensive experiments on the widely used benchmarks demonstrate that the proposed method could out perform other SOTA methods in both the HSISR and pan-sharpening problem.
2. Related Works
3. 1D–2D Attentional Convolutional Neural Network
3.1. Network Architecture
3.2. Residual Structure
3.3. Attention Mechanism
3.4. Pansharpening Case
3.5. Loss Function
4. Experiments Setting
4.1. Evaluation Criteria
4.2. Datasets and Parameter Setting
5. Experimental Results and Discussions
5.1. Discussion on the Proposed Framework: Ablation Study
5.1.1. Results of Hyperspectral SISR and Analysis
5.1.2. Results of Hyperspectral Pansharpening and Analysis
6. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Akgun, T.; Altunbasak, Y.; Mersereau, R.M. Super-resolution reconstruction of hyperspectral images. IEEE Trans. Image Process. 2005, 14, 1860–1875. [Google Scholar] [CrossRef] [PubMed]
- Andrews, H.C.; Patterson, C.L. Digital Interpolation of Discrete Images. IEEE Trans. Comput. 1976, 25, 196–202. [Google Scholar] [CrossRef]
- Shima, T. Bumpless monotonic bicubic interpolation for MOSFET device modelling. IEE Proc. I Solid State Electron. Devices 1985, 132, 147–150. [Google Scholar] [CrossRef]
- Patel, R.C.; Joshi, M.V. Super-Resolution of Hyperspectral Images: Use of Optimum Wavelet Filter Coefficients and Sparsity Regularization. IEEE Trans. Geosci. Remote Sens. 2015, 53, 1728–1736. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, X.; Han, Z.; He, S. Hyperspectral Image Super-Resolution via Nonlocal Low-Rank Tensor Approximation and Total Variation Regularization. Remote Sens. 2017, 9, 1286. [Google Scholar] [CrossRef]
- Rong, K.; Jiao, L.; Wang, S.; Liu, F. Pansharpening Based on Low-Rank and Sparse Decomposition. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 4793–4805. [Google Scholar] [CrossRef]
- Tu, T.M.; Su, S.C.; Shyu, H.C.; Huang, P.S. A new look at IHS-like image fusion methods. Inf. Fusion 2001, 2, 177–186. [Google Scholar] [CrossRef]
- Aiazzi, B.; Baronti, S.; Selva, M. Improving Component Substitution Pansharpening Through Multivariate Regression of MS+Pan Data. IEEE Trans. Geosci. Remote Sens. 2007, 45, 3230–3239. [Google Scholar] [CrossRef]
- Liu, J. Smoothing filter-based intensity modulation: A spectral preserve image fusion technique for improving spatial details. Int. J. Remote Sens. 2000, 21, 3461–3472. [Google Scholar] [CrossRef]
- Aiazzi, B.; Alparone, L.; Baronti, S.; Garzelli, A.; Selva, M. MTF-tailored multiscale fusion of high-resolution MS and Pan imagery. Photogramm. Eng. Remote Sens. 2006, 72, 591–596. [Google Scholar] [CrossRef]
- Vivone, G.; Restaino, R.; Dalla Mura, M.; Licciardi, G.; Chanussot, J. Contrast and error-based fusion schemes for multispectral image pansharpening. IEEE Geosci. Remote Sens. Lett. 2014, 11, 930–934. [Google Scholar] [CrossRef]
- Shensa, M.J. The discrete wavelet transform: Wedding the a trous and Mallat algorithms. IEEE Trans. Signal Process. 1992, 40, 2464–2482. [Google Scholar] [CrossRef]
- Wei, Q.; Bioucas-Dias, J.; Dobigeon, N.; Tourneret, J. Hyperspectral and Multispectral Image Fusion Based on a Sparse Representation. IEEE Trans. Geosci. Remote Sens. 2015, 53, 3658–3668. [Google Scholar] [CrossRef]
- Simões, M.; Bioucas-Dias, J.; Almeida, L.B.; Chanussot, J. A Convex Formulation for Hyperspectral Image Superresolution via Subspace-Based Regularization. IEEE Trans. Geosci. Remote Sens. 2015, 53, 3373–3388. [Google Scholar] [CrossRef]
- Wei, Q.; Dobigeon, N.; Tourneret, J.Y. Fast fusion of multi-band images based on solving a Sylvester equation. IEEE Trans. Image Process. 2015, 24, 4109–4121. [Google Scholar] [CrossRef]
- Hoyer, P.O. Non-negative sparse coding. In Proceedings of the 12th IEEE Workshop on Neural Networks for Signal Processing, Martigny, Switzerland, 6 September 2002; pp. 557–565. [Google Scholar] [CrossRef]
- Liao, W.; Huang, X.; Van Coillie, F.; Gautama, S.; Pižurica, A.; Philips, W.; Liu, H.; Zhu, T.; Shimoni, M.; Moser, G.; et al. Processing of Multiresolution Thermal Hyperspectral and Digital Color Data: Outcome of the 2014 IEEE GRSS Data Fusion Contest. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 2984–2996. [Google Scholar] [CrossRef]
- Dong, W.; Xiao, S.; Xue, X.; Qu, J. An Improved Hyperspectral Pansharpening Algorithm Based on Optimized Injection Model. IEEE Access 2019, 7, 16718–16729. [Google Scholar] [CrossRef]
- Li, Y.; Qu, J.; Dong, W.; Zheng, Y. Hyperspectral pansharpening via improved PCA approach and optimal weighted fusion strategy. Neurocomputing 2018, 315, 371–380. [Google Scholar] [CrossRef]
- Wang, X.; Girshick, R.; Gupta, A.; He, K. Non-local neural networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 7794–7803. [Google Scholar]
- Feichtenhofer, C.; Fan, H.; Malik, J.; He, K. SlowFast Networks for Video Recognition. arXiv 2018, arXiv:1812.03982. [Google Scholar]
- Yokoya, N.; Yairi, T.; Iwasaki, A. Coupled nonnegative matrix factorization unmixing for hyperspectral and multispectral data fusion. IEEE Trans. Geosci. Remote Sens. 2012, 50, 528–537. [Google Scholar] [CrossRef]
- Li, J.; Yuan, Q.; Shen, H.; Meng, X.; Zhang, L. Hyperspectral Image Super-Resolution by Spectral Mixture Analysis and Spatial–Spectral Group Sparsity. IEEE Geosci. Remote Sens. Lett. 2016, 13, 1250–1254. [Google Scholar] [CrossRef]
- Xu, X.; Tong, X.; Li, J.; Xie, H.; Zhong, Y.; Zhang, L.; Song, D. Hyperspectral image super resolution reconstruction with a joint spectral-spatial sub-pixel mapping model. In Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016; pp. 6129–6132. [Google Scholar]
- Pan, Z.; Yu, J.; Huang, H.; Hu, S.; Zhang, A.; Ma, H.; Sun, W. Super-Resolution Based on Compressive Sensing and Structural Self-Similarity for Remote Sensing Images. IEEE Trans. Geosci. Remote Sens. 2013, 51, 4864–4876. [Google Scholar] [CrossRef]
- Li, J.; Du, Q.; Li, Y.; Li, W. Hyperspectral Image Classification With Imbalanced Data Based on Orthogonal Complement Subspace Projection. IEEE Trans. Geosci. Remote Sens. 2018, 56, 3838–3851. [Google Scholar] [CrossRef]
- Tian, C.; Xu, Y.; Fei, L.; Yan, K. Deep Learning for Image Denoising: A Survey. arXiv 2018, arXiv:1810.05052. [Google Scholar]
- Li, Y.; Zheng, W.; Cui, Z.; Zhang, T. Face recognition based on recurrent regression neural network. Neurocomputing 2018, 297, 50–58. [Google Scholar] [CrossRef]
- Li, B.; Dai, Y.; He, M. Monocular depth estimation with hierarchical fusion of dilated CNNs and soft-weighted-sum inference. Pattern Recognit. 2018, 83, 328–339. [Google Scholar] [CrossRef]
- Li, B.; Shen, C.; Dai, Y.; van den Hengel, A.; He, M. Depth and surface normal estimation from monocular images using regression on deep features and hierarchical CRFs. In Proceedings of the CVPR, Boston, MA, USA, 8–10 June 2015; pp. 1119–1127. [Google Scholar]
- Zhong, P.; Gong, Z.; Li, S.; Schönlieb, C. Learning to Diversify Deep Belief Networks for Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2017, 55, 3516–3530. [Google Scholar] [CrossRef]
- Li, W.; Wu, G.; Zhang, F.; Du, Q. Hyperspectral Image Classification Using Deep Pixel-Pair Features. IEEE Trans. Geosci. Remote Sens. 2017, 55, 844–853. [Google Scholar] [CrossRef]
- Li, J.; Xi, B.; Li, Y.; Du, Q.; Wang, K. Hyperspectral Classification Based on Texture Feature Enhancement and Deep Belief Networks. Remote Sens. 2018, 10, 396. [Google Scholar] [CrossRef]
- Chen, Y.; Zhao, X.; Jia, X. Spectral–Spatial Classification of Hyperspectral Data Based on Deep Belief Network. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 2381–2392. [Google Scholar] [CrossRef]
- Li, J.; Zhao, X.; Li, Y.; Du, Q.; Xi, B.; Hu, J. Classification of Hyperspectral Imagery Using a New Fully Convolutional Neural Network. IEEE Geosci. Remote Sens. Lett. 2018, 15, 292–296. [Google Scholar] [CrossRef]
- Chen, Y.; Jiang, H.; Li, C.; Jia, X.; Ghamisi, P. Deep Feature Extraction and Classification of Hyperspectral Images Based on Convolutional Neural Networks. IEEE Trans. Geosci. Remote Sens. 2016, 54, 6232–6251. [Google Scholar] [CrossRef] [Green Version]
- Mignone, P.; Pio, G.; D’Elia, D.; Ceci, M. Exploiting Transfer Learning for the Reconstruction of the Human Gene Regulatory Network. Bioinformatics 2019. [Google Scholar] [CrossRef] [PubMed]
- Gatys, L.A.; Ecker, A.S.; Bethge, M. Image Style Transfer Using Convolutional Neural Networks. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 26 June–1 July 2016; pp. 2414–2423. [Google Scholar] [CrossRef]
- Yuan, Y.; Zheng, X.; Lu, X. Hyperspectral image superresolution by transfer learning. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 1963–1974. [Google Scholar] [CrossRef]
- Mei, S.; Yuan, X.; Ji, J.; Zhang, Y.; Wan, S.; Du, Q. Hyperspectral Image Spatial Super-Resolution via 3D Full Convolutional Neural Network. Remote Sens. 2017, 9, 1139. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Liu, Y.; Bai, X.; Tang, W.; Lei, P.; Zhou, J. Deep Residual Convolutional Neural Network for Hyperspectral Image Super-Resolution. In Proceedings of the ICIG, Shanghai, China, 13–15 September 2017. [Google Scholar]
- Lei, S.; Shi, Z.; Zou, Z. Super-Resolution for Remote Sensing Images via Local–Global Combined Network. IEEE Geosci. Remote Sens. Lett. 2017, 14, 1243–1247. [Google Scholar] [CrossRef]
- Li, Y.; Ding, C.; Wei, W.; Zhang, Y. Single Hyperspectral Image Super-Resolution with Grouped Deep Recursive Residual Network. In Proceedings of the 2018 IEEE Fourth International Conference on Multimedia Big Data (BigMM), Xi’an, China, 13–16 September 2018; pp. 1–4. [Google Scholar]
- Jia, J.; Ji, L.; Zhao, Y.; Geng, X. Hyperspectral image super-resolution with spectral–spatial network. Int. J. Remote Sens. 2018, 39, 7806–7829. [Google Scholar] [CrossRef]
- Zheng, K.; Gao, L.; Ran, Q.; Cui, X.; Zhang, B.; Liao, W.; Jia, S. Separable-spectral convolution and inception network for hyperspectral image super-resolution. Int. J. Mach. Learn. Cybern. 2019. [Google Scholar] [CrossRef]
- Tran, D.; Wang, H.; Torresani, L.; Ray, J.; LeCun, Y.; Paluri, M. A Closer Look at Spatiotemporal Convolutions for Action Recognition. In Proceedings of the CVPR, Salt Lake City, UT, USA, 18–22 June 2018; pp. 6450–6459. [Google Scholar]
- Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with convolutions. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 8–10 June 2015; pp. 1–9. [Google Scholar] [CrossRef] [Green Version]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 26 June–1 July 2016; pp. 770–778. [Google Scholar] [CrossRef] [Green Version]
- Springenberg, J.; Dosovitskiy, A.; Brox, T.; Riedmiller, M. Striving for Simplicity: The All Convolutional Net. In Proceedings of the ICLR (workshop track), San Diego, CA, USA, 7–9 May 2015. [Google Scholar]
- Lai, W.; Huang, J.; Ahuja, N.; Yang, M. Deep Laplacian Pyramid Networks for Fast and Accurate Super-Resolution. In Proceedings of the CVPR, Honolulu, HA, USA, 21–26 July 2017; pp. 5835–5843. [Google Scholar]
- Loncan, L.; Almeida, L.B.; Bioucas-Dias, J.M.; Briottet, X.; Chanussot, J.; Dobigeon, N.; Fabre, S.; Liao, W.; Licciardi, G.A.; Simões, M.; et al. Hyperspectral pansharpening: A review. IEEE Geosci. Remote Sens. Mag. 2015, 3, 27–46. [Google Scholar] [CrossRef] [Green Version]
- Khodr, J.; Younes, R. Dimensionality reduction on hyperspectral images: A comparative review based on artificial datas. In Proceedings of the 2011 4th International Congress on Image and Signal Processing, Shanghai, China, 15–17 October 2011; Volume 4, pp. 1875–1883. [Google Scholar] [CrossRef]
- Taşkın, G.; Kaya, H.; Bruzzone, L. Feature Selection Based on High Dimensional Model Representation for Hyperspectral Images. IEEE Trans. Image Process. 2017, 26, 2918–2928. [Google Scholar] [CrossRef]
- Wei, X.; Zhu, W.; Liao, B.; Cai, L. Scalable One-Pass Self-Representation Learning for Hyperspectral Band Selection. IEEE Trans. Geosci. Remote Sens. 2019, 57, 4360–4374. [Google Scholar] [CrossRef]
Layer | Spectral Net | Spatial Net | Output Size |
---|---|---|---|
conv1 | |||
res |
Llayer | Kernel | Stride | Output Size |
---|---|---|---|
conv1+Prelu | |||
Reshape | − | − | |
conv2+Prelu | |||
conv3+Prelu | |||
conv3+Prelu | |||
Concate | - |
Spa | Spe | 3D Conv | Spe-spa | Proposed | |
---|---|---|---|---|---|
(32) | (32) | (32) | (32,32) | (32,32) | |
MPSNR (↑) | 30.605 | 30.509 | 31.099 | 31.249 | 31.306 |
MSSIM (↑) | 0.8174 | 0.8165 | 0.8228 | 0.8222 | 0.8268 |
MRMSE (↓) | 7.2291 | 7.3388 | 7.1928 | 7.1511 | 7.0625 |
SAM (↓) | 3.9666 | 3.9650 | 3.9284 | 3.9170 | 3.8707 |
Layer | Spa | Spe | 3D Conv | Spe-spa | Proposed | ||
---|---|---|---|---|---|---|---|
input | |||||||
Conv+Prelu | |||||||
ResBlock1 | |||||||
Conv+Prelu | |||||||
SaBlock1 | - | - | - | - | - | - | |
ResBlock2 | |||||||
Conv+Prelu | |||||||
SaBlock2 | - | - | - | - | - | - | |
ResBlock3 | |||||||
Conv+Prelu | |||||||
SaBlock3 | - | - | - | - | - | - | |
Conv+Prelu | |||||||
UpsamplingBlock | |||||||
Conv+Prelu | |||||||
Conv+Prelu | |||||||
Reshape | Reshape | - | - | Reshape | Reshape | ||
Total | 139532 | 96332 | 269708 | 161780 | 174456 | ||
Output |
Up-Sampling | GDRRN | LapSRN | 3DFCN | Proposed | ||
---|---|---|---|---|---|---|
Pavia University | 2 | MPSNR (↑) | 33.348 | 34.797 | 34.956 | 36.705 |
MSSIM (↑) | 0.9241 | 0.9412 | 0.9449 | 0.9648 | ||
MRMSE (↓) | 5.4951 | 4.6660 | 4.5813 | 3.7003 | ||
SAM (↓) | 3.9006 | 2.9373 | 3.0519 | 2.5385 | ||
4 | MPSNR (↑) | 28.431 | 29.046 | 29.323 | 30.262 | |
MSSIM (↑) | 0.7811 | 0.8025 | 0.8095 | 0.8540 | ||
MRMSE (↓) | 9.7096 | 9.0532 | 8.7808 | 7.9537 | ||
SAM (↓) | 5.6290 | 4.6332 | 4.7339 | 4.2845 | ||
8 | MPSNR (↑) | 24.758 | 24.989 | 25.1381 | 25.953 | |
MSSIM (↑) | 0.6085 | 0.6325 | 0.6363 | 0.6965 | ||
MRMSE (↓) | 14.825 | 14.454 | 14.206 | 13.057 | ||
SAM (↓) | 8.104 | 7.0909 | 7.1711 | 6.5839 |
Up-Sampling | GDRRN | LapSRN | 3DFCN | Proposed | ||
---|---|---|---|---|---|---|
Pavia Center | 2 | MPSNR (↑) | 34.556 | 36.120 | 36.609 | 38.206 |
MSSIM (↑) | 0.9177 | 0.9393 | 0.9436 | 0.9562 | ||
MRMSE (↓) | 4.8165 | 4.0314 | 3.8193 | 3.1965 | ||
SAM (↓) | 3.4740 | 2.6484 | 2.6683 | 2.4156 | ||
4 | MPSNR (↑) | 29.798 | 30.859 | 30.376 | 31.696 | |
MSSIM (↑) | 0.7740 | 0.8083 | 0.8011 | 0.8446 | ||
MRMSE (↓) | 8.3246 | 7.3942 | 7.7929 | 6.7142 | ||
SAM (↓) | 4.8129 | 4.1540 | 4.2355 | 3.7263 | ||
8 | MPSNR (↑) | 27.039 | 27.399 | 27.318 | 28.104 | |
MSSIM (↑) | 0.6531 | 0.6667 | 0.6590 | 0.6812 | ||
MRMSE (↓) | 11.4716 | 11.0150 | 11.123 | 10.267 | ||
SAM (↓) | 5.9319 | 5.5958 | 5.8345 | 5.3134 |
Up-Sampling | GFPCA | CNMF | Hysure | Proposed | ||
---|---|---|---|---|---|---|
Cave | 4 | ERGAS (↓) | 4.2216 | 3.3440 | 5.0781 | 2.0729 |
MRMSE (↓) | 0.0186 | 0.0142 | 0.0222 | 0.0087 | ||
SAM (↓) | 4.2283 | 4.1727 | 6.0103 | 2.7853 | ||
CC(↑) | 0.9728 | 0.9788 | 0.9645 | 0.9889 |
Up-Sampling | GFPCA | CNMF | Hysure | Proposed | ||
---|---|---|---|---|---|---|
Harvard | 4 | ERGAS (↓) | 3.4676 | 2.6722 | 3.0837 | 2.2830 |
MRMSE (↓) | 0.0140 | 0.0098 | 0.0108 | 0.0072 | ||
SAM (↓) | 3.2621 | 3.0872 | 3.6035 | 3.1363 | ||
CC(↑) | 0.9324 | 0.9454 | 0.9453 | 0.9597 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Cui, R.; Li, B.; Song, R.; Li, Y.; Du, Q. Hyperspectral Image Super-Resolution with 1D–2D Attentional Convolutional Neural Network. Remote Sens. 2019, 11, 2859. https://doi.org/10.3390/rs11232859
Li J, Cui R, Li B, Song R, Li Y, Du Q. Hyperspectral Image Super-Resolution with 1D–2D Attentional Convolutional Neural Network. Remote Sensing. 2019; 11(23):2859. https://doi.org/10.3390/rs11232859
Chicago/Turabian StyleLi, Jiaojiao, Ruxing Cui, Bo Li, Rui Song, Yunsong Li, and Qian Du. 2019. "Hyperspectral Image Super-Resolution with 1D–2D Attentional Convolutional Neural Network" Remote Sensing 11, no. 23: 2859. https://doi.org/10.3390/rs11232859
APA StyleLi, J., Cui, R., Li, B., Song, R., Li, Y., & Du, Q. (2019). Hyperspectral Image Super-Resolution with 1D–2D Attentional Convolutional Neural Network. Remote Sensing, 11(23), 2859. https://doi.org/10.3390/rs11232859