Sequential InSAR Time Series Deformation Monitoring of Land Subsidence and Rebound in Xi’an, China
"> Figure 1
<p>Flow chart of sequential InSAR time series estimation.</p> "> Figure 2
<p>Quaternary geology map of Xi’an, where Chang’an-Lintong fault (CAF) and 14 ground fissures are superimposed, and loess ridge areas are labeled with white blocks.</p> "> Figure 3
<p>The illustration of interferogram configuration between the first group of SAR data (i.e., archived SAR data) and the newly received SAR images (i.e., new observation data from SAR satellites). (<b>A</b>) Single-link interferogram configuration; (<b>B</b>) network-link interferogram configuration. The blue lines indicate interferograms generated between archived SAR images in the first group by SBAS technology and the green lines show the new interferograms generated between newly received SAR images and older archived SAR images by SBAS technology.</p> "> Figure 4
<p>Annual deformation rate map in the vertical direction over the study area from 20 June 2015 to 17 July 2019. The deformation time series for six points indicated by A–F are shown in <a href="#remotesensing-11-02854-f005" class="html-fig">Figure 5</a>. Rectangular boxes L1 and L2 are enlarged and shown in Figures 6 and 8, respectively. Red dotted line indicates ground fissures, and the red line indicates CAF faults. The black pentagram indicates the location of the reference point.</p> "> Figure 5
<p>Deformation time series at six typical points (<b>A</b>–<b>F</b>), which are located in <a href="#remotesensing-11-02854-f004" class="html-fig">Figure 4</a>. The six points show different deformation magnitude.</p> "> Figure 6
<p>The deformation and optical image of Xi’an City Wall; (<b>A</b>) deformation rate map from 20 June 2015 to 17 July 2019, which is an enlargement of L1 in <a href="#remotesensing-11-02854-f004" class="html-fig">Figure 4</a>; (<b>B</b>) an optical image of Xi’an City Wall; (<b>C</b>) a photo of Xi’an City Wall.</p> "> Figure 7
<p>Deformation time series at points (<b>A</b>–<b>D</b>); their locations are indicated in <a href="#remotesensing-11-02854-f006" class="html-fig">Figure 6</a>A.</p> "> Figure 8
<p>Cumulative deformation time series of Yuhuazhai from 20 June 2015 to 17 July 2019.</p> "> Figure 9
<p>Cumulative rebound deformation time series of Yuhuazhai from 5 April 2018 to 17 July 2019. The black rectangular box is enlarged in <a href="#remotesensing-11-02854-f010" class="html-fig">Figure 10</a>.</p> "> Figure 10
<p>Enlarged deformation map of the area in the rectangle in <a href="#remotesensing-11-02854-f009" class="html-fig">Figure 9</a>, with indication of the ground fissure F4. The time series deformation of four points localized at A–D are shown in <a href="#remotesensing-11-02854-f011" class="html-fig">Figure 11</a>. The Yuhuazhai area indicated in the rectangle is shown in <a href="#remotesensing-11-02854-f012" class="html-fig">Figure 12</a>.</p> "> Figure 11
<p>Deformation time series at four points A–D in <a href="#remotesensing-11-02854-f010" class="html-fig">Figure 10</a>. Red lines divide time series deformation into three stages.</p> "> Figure 12
<p>Optical image of Yuhuazhai (rectangular box in <a href="#remotesensing-11-02854-f010" class="html-fig">Figure 10</a>). Seven pumping wells are identified. This area experienced large rebound deformation after artificial water injection.</p> "> Figure 13
<p>Recognition of pumping wells 1, 2, and 3 in <a href="#remotesensing-11-02854-f012" class="html-fig">Figure 12</a> from optical image (<b>A</b>–<b>C</b>), and by photo of the scene (<b>D</b>–<b>F</b>), respectively.</p> ">
Abstract
:1. Introduction
2. Methodology
2.1. Selection of Coherent Pixels
2.2. Sequential InSAR Time Series Estimation
3. Study Area and Data
3.1. Study Area
3.2. Data
4. Results
4.1. Deformation Rate Map
4.2. Land Subsidence
4.3. Uplift of Xi’an City Wall
4.4. Rebound of Yuhuazhai
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Amelung, F.; Galloway, D.L.; Bell, J.W.; Zebker, H.A.; Laczniak, R.J. Sensing the ups and downs of lasvegas: InSAR reveals structural control of land subsidence and aquifer-system deformation. Geology 1999, 27, 483. [Google Scholar] [CrossRef]
- Qu, F.; Lu, Z.; Zhang, Q.; Bawden, G.W.; Kim, J.; Zhao, C.; Qu, W. Mapping ground deformation over Houston–Galveston, Texas using multi-temporal InSAR. Remote Sens. Environ. 2015, 169, 290–306. [Google Scholar] [CrossRef]
- Cabral-Cano, E.; Dixon, T.H.; Miralles-Wilhelm, F.; Diaz-Molina, O.; Sanchez-Zamora, O.; Carande, R.E. Space geodetic imaging of rapid ground subsidence in Mexico city. Geol. Soci. Am. Bull. 2008, 120, 1556–1566. [Google Scholar] [CrossRef]
- Motagh, M.; Djamour, Y.; Walter, T.R.; Wetzel, H.U.; Arabi, S. Land subsidence in Mashhad Valley, northeast Iran: Results from InSAR, levelling and GPS. Geophys. J. Int. 2007, 168, 518–526. [Google Scholar] [CrossRef]
- Sideri, D.; Modis, K. Spatiotemporal estimation of land subsidence and ground water level decline in West Thessaly basin, Greece. Nat. Hazards 2014, 76, 1–16. [Google Scholar]
- Solari, L.; Ciampalini, A.; Raspini, F.; Bianchini, S.; Moretti, S. PSInSAR Analysis in the Pisa Urban Area (Italy): A Case Study of Subsidence Related to Stratigraphical Factors and Urbanization. Remote Sens. 2016, 8, 120. [Google Scholar] [CrossRef]
- Delgado Blasco, J.M.; Foumelis, M.; Stewart, C.; Hooper, A. Measuring Urban Subsidence in the Rome Metropolitan Area (Italy) with Sentinel-1 SNAP-StaMPS Persistent Scatterer Interferometry. Remote Sens. 2019, 11, 129. [Google Scholar] [CrossRef]
- Zhou, C.; Gong, H.; Zhang, Y.; Warner, T.A.; Wang, C. Spatiotemporal Evolution of Land Subsidence in the Beijing Plain 2003–2015 Using Persistent Scatterer Interferometry (PSI) with Multi-Source SAR Data. Remote Sens. 2018, 10, 552. [Google Scholar] [CrossRef]
- Zhang, T.; Shen, W.-B.; Wu, W.; Zhang, B.; Pan, Y. Recent Surface Deformation in the Tianjin Area Revealed by Sentinel-1A Data. Remote Sens. 2019, 11, 130. [Google Scholar] [CrossRef]
- Liu, Y.; Zhao, C.; Zhang, Q.; Yang, C.; Zhang, J. Land subsidence in Taiyuan, China, monitored by InSAR technique with multisensor SAR datasets from 1992 to 2015. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 1–11. [Google Scholar] [CrossRef]
- Yang, C.; Lu, Z.; Zhang, Q.; Liu, R.; Ji, L. Ground deformation and fissure activity in Datong basin, China 2007–2010 revealed by multi-track InSAR. Geomat. Nat. Hazards Risk 2019, 10, 465–482. [Google Scholar] [CrossRef]
- Zhang, J.M. The structural features and the genetic mechanism of the surface crack belt in Xi’an, Shaanxi Province. Geol. Shaanxi 1986, 4, 11–20. (In Chinese) [Google Scholar]
- Peng, J.B.; Fan, W.; Li, X.A.; Wang, Q.L.; Feng, X.J.; Zhang, J.; Li, X.S.; Lu, Q.Z.; Huang, Q.B.; Ma, R.Y. Some key questions in the formation of ground fissures in the Fen-Wei Basin. J. Eng. Geol. 2007, 15, 433–440. (In Chinese) [Google Scholar]
- Peng, J.B. Geohazards of Xi’an Ground Fissures; Science Press: Beijing, China, 2012; pp. 267–316. (In Chinese) [Google Scholar]
- Peng, J.B.; Sun, X.H.; Wang, W.; Sun, G.C. Characteristics of land subsidence, earth fissures and related disaster chain effects with respect to urban hazards in Xi’an, China. Environ. Earth Sci. 2016, 75, 1190. [Google Scholar] [CrossRef]
- Peng, J.; Qu, W.; Ren, J.; Zhang, Q.; Wang, F. Geological factors for the formation of Xi’an ground fractures. J. Earth Sci. 2018, 29, 468–478. [Google Scholar] [CrossRef]
- Wang, Y.Q.; Wang, Z.F.; Cheng, W.C. A review on land subsidence caused by groundwater withdrawal in Xi’an, China. Bull. Eng. Geol. Environ. 2018, 78, 2851–2863. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, J.; Xue, Y.; Wang, Z.; Yao, Y.; Yan, X. Land subsidence and uplift due to long-term groundwater extraction and artificial recharge in Shanghai, China. Hydrogeol. J. 2015, 23, 1851–1866. [Google Scholar] [CrossRef]
- Peng, M.; Zhao, C.; Zhang, Q.; Lu, Z.; Li, Z. Research on Spatiotemporal Land Deformation (2012–2018) over Xi’an, China, with Multi-Sensor SAR Datasets. Remote Sens. 2019, 11, 664. [Google Scholar] [CrossRef]
- Berardino, P.; Fornaro, G.; Lanari, R.; Sansosti, E. A New Algorithm for Surface Deformation Monitoring Based on Small Baseline Differential SAR Interferograms. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2375–2383. [Google Scholar] [CrossRef]
- Hooper, A.; Segall, P.; Zebker, H. Persistent scatterer interferometric synthetic aperture radar for crustal deformation analysis, with application to Volcán Alcedo, Galápagos. J. Geophys. Res. Solid Earth 2007, 112, 1978–2012. [Google Scholar] [CrossRef]
- Hooper, A. A multi-temporal InSAR method incorporating both persistent scatterer and small baseline approaches. Geophys. Res. Lett. 2008, 35, 96–106. [Google Scholar] [CrossRef]
- Hooper, A.; Zebker, H.A. Phase unwrapping in three dimensions with application to InSAR time series. J. Opt. Soc. Am. A 2007, 24, 2737–2747. [Google Scholar] [CrossRef] [PubMed]
- Pepe, A.; Lanari, R. On the extension of the minimum cost flow algorithm for phase unwrapping of multitemporal differential SAR interferograms. IEEE Trans. Geosci. Remote Sens. 2006, 44, 2374–2383. [Google Scholar] [CrossRef]
- Pepe, A.; Euillades, L.D.; Manunta, M.; Lanari, R. “New advances of the extended minimum cost flow phase unwrapping algorithm for SBAS-DInSAR analysis at full spatial resolution. ” EEE Trans. Geosci. Remote Sens. 2011, 49, 4062–4079. [Google Scholar] [CrossRef]
- Yang, Y. Robust Bayesian estimation. J. Geod. 1991, 65, 145–150. [Google Scholar]
- Huang, W.B. Modern Adjustment Theory and Its Application; PLA Press: China, Beijing, 1992. (In Chinese) [Google Scholar]
- Wang, B.H.; Zhao, C.Y.; Zhang, Q.; Lu, Z.; Li, Z.H.; Liu, Y.Y. Sequential Estimation of SBAS-InSAR Dynamic Deformation Parameters. IEEE Geosci. Remote Sens. Lett. 2019. [Google Scholar] [CrossRef]
- Dong, Y.; Zhang, M.S.; Liu, J.; Zhang, X.L.; Feng, L. Coupling Relationship between Groundwater and Ground Fissures of Land Subsidence in Xi’an City and Risk Prevention and Control Technology. J. Geol. Hazards Environ. Preserv. 2019, 2, 95–102. (In Chinese) [Google Scholar]
- Jun, Z.J.; Xin, Z.H.; Sheng, Z.M.; Yong, L.I.; Yin, D.; Gui, Z.Q. Preliminary study of land subsidence in the f4 ground fissure, Yuhuazhai area, Xi’an, China. J. Geol. Hazards Environ. Preserv. 2017, 4, 31–37. (In Chinese) [Google Scholar]
- Zhang, J.J.; Zhan, H.X.; Zhang, M.S.; Tao, H.; Dong, Y.; Xu, C.M. Study on the Seepage Deformation Induce Ground Fissures Caused and Land Subsidence in Xi’an. J. Eng. Geol. 2018, 26, 301–309. (In Chinese) [Google Scholar]
- Zhao, C.Y.; Zhang, Q.; Ding, X.L.; Lu, Z.; Yang, C.S.; Qi, X.M. Monitoring of land subsidence and ground fissures in Xi’an, China 2005–2006: Mapped by SAR interferometry. Environ. Geol. Berlin 2009, 58, 1533–1540. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhao, C.Y.; Ding, X.L. Research on recent characteristics of spatiotemporal evolution and mechanism of Xi’an land subsidence and ground fissure by using GPS and InSAR techniques. Chin. J. Geophys. 2009, 52, 1214–1222. (In Chinese) [Google Scholar]
- Qu, F.; Zhang, Q.; Lu, Z.; Zhao, C.; Yang, C.; Zhang, J. Land subsidence and ground fissures in Xi’an, China 2005–2012 revealed by multi-band InSAR time-series analysis. Remote Sens. Environ. 2015, 155, 366–376. [Google Scholar] [CrossRef]
- Li, M.; Ge, D.; Liu, B.; Zhang, L.; Wang, Y.; Guo, X. Research on development characteristics and failure mechanism of land subsidence and ground fissure in Xi’an, monitored by using time-series SAR interferometry. Geomat. Nat. Hazards Risk 2019, 10, 699–718. [Google Scholar] [CrossRef]
- Teatini, P.; Gambolati, G.; Ferronato, M.; Settari, A.; Walters, D. Land uplift due to subsurface fluid injection. J. Geodyn. 2011, 51, 1–16. [Google Scholar] [CrossRef]
- Gambolati, G.; Teatini, P. Geomechanics of subsurface water withdrawal and injection. Water Resour. Res. 2015, 51, 3922–3955. [Google Scholar] [CrossRef]
- Chinese Government Procurement Website. Available online: http://www.ccgp.gov.cn/cggg/dfgg/cjgg/201811/t20181108_11064072.htm (accessed on 8 November 2018).
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, B.; Zhao, C.; Zhang, Q.; Peng, M. Sequential InSAR Time Series Deformation Monitoring of Land Subsidence and Rebound in Xi’an, China. Remote Sens. 2019, 11, 2854. https://doi.org/10.3390/rs11232854
Wang B, Zhao C, Zhang Q, Peng M. Sequential InSAR Time Series Deformation Monitoring of Land Subsidence and Rebound in Xi’an, China. Remote Sensing. 2019; 11(23):2854. https://doi.org/10.3390/rs11232854
Chicago/Turabian StyleWang, Baohang, Chaoying Zhao, Qin Zhang, and Mimi Peng. 2019. "Sequential InSAR Time Series Deformation Monitoring of Land Subsidence and Rebound in Xi’an, China" Remote Sensing 11, no. 23: 2854. https://doi.org/10.3390/rs11232854
APA StyleWang, B., Zhao, C., Zhang, Q., & Peng, M. (2019). Sequential InSAR Time Series Deformation Monitoring of Land Subsidence and Rebound in Xi’an, China. Remote Sensing, 11(23), 2854. https://doi.org/10.3390/rs11232854