Effective Planar Cluster Detection in Point Clouds Using Histogram-Driven Kd-Like Partition and Shifted Mahalanobis Distance Based Regression
"> Figure 1
<p>Example of the vicinity of the edge points. A set of core points (green dots) and an estimated plane (dark grey plane) determined with the MCS or the FAST-MCD method.</p> "> Figure 2
<p>The architecture of the proposed algorithm.</p> "> Figure 3
<p>(<b>a</b>) Misaligned point cloud (<b>b</b>) aligned point cloud.</p> "> Figure 4
<p>Inlier- plane tolerance.</p> "> Figure 5
<p>An example of a histogram for the OZ axis.</p> "> Figure 6
<p>Cardinal directions of shifts (yellow lines) of the centroid (green cross) in 2D.</p> "> Figure 7
<p>Juxtaposition of tree spreadness (the number of all nodes in tree), final number of clusters, portion of preserved points, and times for benchmark space partition algorithms and the proposed hd-kd-tree.</p> "> Figure 8
<p>Preview of the results of the proposed method for seven exemplary validation sets.</p> "> Figure 9
<p>The curved bin over- segmented into the set of nearly planar fragments.</p> "> Figure 10
<p>Comparison of (<b>a</b>) FAST-MCD, (<b>b</b>) MCS, and (<b>c</b>) SMD methods of core points determination (core points marked with green) for exemplary, roughly planar points cluster (blue points) containing a fragment of other planar group (orange points). Fitted plane is depicted in dark gray.</p> "> Figure 10 Cont.
<p>Comparison of (<b>a</b>) FAST-MCD, (<b>b</b>) MCS, and (<b>c</b>) SMD methods of core points determination (core points marked with green) for exemplary, roughly planar points cluster (blue points) containing a fragment of other planar group (orange points). Fitted plane is depicted in dark gray.</p> ">
Abstract
:1. Introduction
2. Related Works
2.1. Space Organization
2.2. Plane Model Fitting
- All points are sampled from the same ideal plane (which means the absence of any outlying points), and
- Noise is symmetric so that its impact on the solution is minimised.
3. Proposed Method
- initial point cloud alignment (preprocessing);
- histogram-driven point cloud partition;
- planar patches robust refinement;
- refined planar patches aggregation and post division;
3.1. Initial Point Cloud Alignment (Preprocessing)
3.2. Histogram-Driven Point Cloud Partition
Algorithm 1 Histogram- driven partition algorithm |
|
3.3. Planar Patches Refinement
Algorithm 2 Shifted Mahalanobis Distance (SMD) based core points determination of a set |
3.4. Point Aggregation
4. Methodology
4.1. Datasets
4.2. Experiments
5. Results and Discussion
5.1. Space Partitioning Results
5.2. Planar Patches Extraction Results
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Hug, C. Extracting Artificial Surface Objects from Airborne Laser Scanner Data. In Automatic Extraction of Man-Made Objects from Aerial and Space Images (II); Gruen, A., Baltsavias, E.P., Henricsson, O., Eds.; Springer: Berlin/Heidelberg, Germany, 1997; pp. 203–212. [Google Scholar] [CrossRef]
- Kedzierski, M.; Fryskowska, A.; Wierzbicki, D.; Dabrowska, M.; Grochala, A. Impact of the method of registering Terrestrial Laser Scanning data on the quality of documenting cultural heritage structures. ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2015, XL-5/W7, 245–248. [Google Scholar] [CrossRef] [Green Version]
- Ramiya, A.M.; Nidamanuri, R.R.; Krishnan, R. Segmentation based building detection approach from LiDAR point cloud. Egypt. J. Remote Sens. Space Sci. 2017, 20, 71–77. [Google Scholar] [CrossRef] [Green Version]
- Forczmański, P.; Kutelski, K. Driver Drowsiness Estimation by Means of Face Depth Map Analysis. In International Multi-Conference on Advanced Computer Systems; Springer: Berlin/Heidelberg, Germany, 2018; pp. 396–407. [Google Scholar]
- Lipinski, P.; Lichy, K.; Santorek, J. Empirical research of autonomous robot control system. In Proceedings of the IEEE 13th CSIT 2018, Lviv, Ukraine, 11–14 September 2018; pp. 108–111. [Google Scholar]
- Ziolkowski, P.; Szulwic, J.; Miskiewicz, M. Deformation Analysis of a Composite Bridge during Proof Loading Using Point Cloud Processing. Sensors 2018, 18, 4332. [Google Scholar] [CrossRef]
- Chen, D.; Wang, R.; Peethambaran, J. Topologically Aware Building Rooftop Reconstruction From Airborne Laser Scanning Point Clouds. IEEE Trans. Geosci. Remote Sens. 2017, 55, 7032–7052. [Google Scholar] [CrossRef]
- Zhang, C.; He, Y.; Fraser, C.S. Spectral Clustering of Straight-Line Segments for Roof Plane Extraction From Airborne LiDAR Point Clouds. IEEE Geosci. Remote Sens. Lett. 2018, 15, 267–271. [Google Scholar] [CrossRef]
- Vaskevicius, N.; Birk, A.; Pathak, K.; Schwertfeger, S. Efficient Representation in Three-Dimensional Environment Modeling for Planetary Robotic Exploration. Adv. Robot. 2010, 24, 1169–1197. [Google Scholar] [CrossRef]
- Li, L.; Yang, F.; Zhu, H.; Li, D.; Li, Y.; Tang, L. An Improved RANSAC for 3D Point Cloud Plane Segmentation Based on Normal Distribution Transformation Cells. Remote Sens. 2017, 9, 433. [Google Scholar] [CrossRef]
- Xu, B.; Jiang, W.; Shan, J.; Zhang, J.; Li, L. Investigation on the Weighted RANSAC Approaches for Building Roof Plane Segmentation from LiDAR Point Clouds. Remote Sens. 2016, 8, 5. [Google Scholar] [CrossRef]
- Ni, H.; Lin, X.; Ning, X.; Zhang, J. Edge detection and feature line tracing in 3d-point clouds by analyzing geometric properties of neighborhoods. Remote Sens. 2016, 8, 710. [Google Scholar] [CrossRef]
- Eckart, B.; Kim, K.; Kautz, J. Fast and Accurate Point Cloud Registration using Trees of Gaussian Mixtures. arXiv 2018, arXiv:1807.02587. [Google Scholar]
- Kaiser, A.; Ybanez Zepeda, J.A.; Boubekeur, T. A survey of simple geometric primitives detection methods for captured 3d data. In Computer Graphics Forum; Wiley Online Library: Hoboken, NJ, USA, 2019; Volume 38, pp. 167–196. [Google Scholar]
- Lazarek, J.; Pryczek, M. A Review on Point Cloud Semantic Segmentation Methods. J. Appl. Comput. Sci. 2018, 26, 99–105. [Google Scholar]
- Xiao, J.; Zhang, J.; Adler, B.; Zhang, H.; Zhang, J. Three-dimensional Point Cloud Plane Segmentation in Both Structured and Unstructured Environments. Robot. Auton. Syst. 2013, 61, 1641–1652. [Google Scholar] [CrossRef]
- Douillard, B.; Underwood, J.; Kuntz, N.; Vlaskine, V.; Quadros, A.; Morton, P.; Frenkel, A. On the segmentation of 3D LIDAR point clouds. In Proceedings of the 2011 IEEE International Conference on Robotics and Automation, Shanghai, China, 9–13 May 2011; pp. 2798–2805. [Google Scholar] [CrossRef]
- Vo, A.V.; Truong-Hong, L.; Laefer, D.F.; Bertolotto, M. Octree-based region growing for point cloud segmentation. ISPRS J. Photogramm. Remote Sens. 2015, 104, 88–100. [Google Scholar] [CrossRef]
- Su, Y.T.; Bethel, J.; Hu, S. Octree-based segmentation for terrestrial LiDAR point cloud data in industrial applications. ISPRS J. Photogramm. Remote Sens. 2016, 113, 59–74. [Google Scholar] [CrossRef]
- Wang, M.; Tseng, Y.H. Automatic Segmentation of Lidar Data into Coplanar Point Clusters Using an Octree-Based Split-and-Merge Algorithm. Photogramm. Eng. Remote Sens. 2010, 76, 407–420. [Google Scholar] [CrossRef]
- Meagher, D. Geometric modeling using octree encoding. Comput. Graph. Image Process. 1982, 19, 129–147. [Google Scholar] [CrossRef]
- Dong, Z.; Yang, B.; Hu, P.; Scherer, S. An efficient global energy optimization approach for robust 3D plane segmentation of point clouds. ISPRS J. Photogramm. Remote Sens. 2018, 137, 112–133. [Google Scholar] [CrossRef]
- Bentley, J.L. Multidimensional Binary Search Trees Used for Associative Searching. Commun. ACM 1975, 18, 509–517. [Google Scholar] [CrossRef]
- Granger, S.; Pennec, X. Multi-scale EM-ICP: A fast and robust approach for surface registration. In Proceedings of the European Conference on Computer Vision, Copenhagen, Denmark, 28–31 May 2002; pp. 418–432. [Google Scholar]
- Phillips, J.M.; Liu, R.; Tomasi, C. Outlier robust ICP for minimizing fractional RMSD. In Proceedings of the Sixth International Conference on 3-D Digital Imaging and Modeling (3DIM 2007), Montreal, QC, Canada, 21–23 August 2007; pp. 427–434. [Google Scholar]
- Stoyanov, T.; Magnusson, M.; Andreasson, H.; Lilienthal, A.J. Fast and accurate scan registration through minimization of the distance between compact 3D NDT representations. Int. J. Robot. Res. 2012, 31, 1377–1393. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, X.; Cheng, S.; Nguyen, T.B. A Novel Algorithm for Planar Extracting of 3D Point Clouds. In Proceedings of the International Conference on Internet Multimedia Computing and Service, Xi’an, China, 19–21 August 2016; ACM: New York, NY, USA, 2016; pp. 142–145. [Google Scholar] [CrossRef]
- Hough, P.V.C. Method and Means for Recognizing Complex Patterns. U.S. Patent 3,069,654, 18 December 1962. [Google Scholar]
- Ballard, D.H. Generalizing the Hough transform to detect arbitrary shapes. Pattern Recognit. 1981, 13, 111–121. [Google Scholar] [CrossRef]
- Limberger, F.A.; Oliveira, M.M. Real-time detection of planar regions in unorganized point clouds. Pattern Recognit. 2015, 48, 2043–2053. [Google Scholar] [CrossRef] [Green Version]
- University of California, Merced. Introduction to Computer Vision Fitting and Alignment; University of California, Merced: Merced, CA, USA, 2015. [Google Scholar]
- Qian, X.; Ye, C. NCC-RANSAC: A fast plane extraction method for navigating a smart cane for the visually impaired. In Proceedings of the 2013 IEEE International Conference on Automation Science and Engineering (CASE), Madison, WI, USA, 17–21 August 2013; pp. 261–267. [Google Scholar] [CrossRef]
- Nurunnabi, A.; West, G.; Belton, D. Outlier detection and robust normal-curvature estimation in mobile laser scanning 3D point cloud data. Pattern Recognit. 2015, 48, 1404–1419. [Google Scholar] [CrossRef] [Green Version]
- Charles, B. 4.5—Image Noise Models. In Handbook of Image and Video Processing, 2nd ed.; Bovik, A., Ed.; Communications, Networking and Multimedia, Academic Press: Burlington, NJ, USA, 2005; pp. 397–409. [Google Scholar] [CrossRef]
- Hubert, M.; Rousseeuw, P.J.; Branden, K.V. ROBPCA: A New Approach to Robust Principal Component Analysis. Technometrics 2005, 47, 64–79. [Google Scholar] [CrossRef]
- Stahel, W. Robust Estimation: Infinitesimal Optimality and Covariance Matrix Estimators. Ph.D. Thesis, ETH, Zurich, Switzerland, 1981. [Google Scholar]
- Donoho, D.L. Breakdown Properties of Multivariate Location Estimators; Technical Report; Harvard University: Boston, MA, USA, 1982. [Google Scholar]
- Rousseeuw, P.J.; Driessen, K.V. A fast algorithm for the minimum covariance determinant estimator. Technometrics 1999, 41, 212–223. [Google Scholar] [CrossRef]
- Xu, Y.; Yao, W.; Hoegner, L.; Stilla, U. Segmentation of building roofs from airborne LiDAR point clouds using robust voxel-based region growing. Remote Sens. Lett. 2017, 8, 1062–1071. [Google Scholar] [CrossRef]
- Delong, A.; Osokin, A.; Isack, H.N.; Boykov, Y. Fast approximate energy minimization with label costs. Int. J. Comput. Vis. 2012, 96, 1–27. [Google Scholar] [CrossRef]
- Armeni, I.; Sener, O.; Zamir, A.R.; Jiang, H.; Brilakis, I.; Fischer, M.; Savarese, S. 3D Semantic Parsing of Large-Scale Indoor Spaces. In Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016. [Google Scholar]
- Markiewicz, J.S. The use of computer vision algorithms for automatic orientation of terrestrial laser scanning data. ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, XLI-B3, 315–322. [Google Scholar] [CrossRef]
- Walczak, J.; Wojciechowski, A. Clustering Quality Measures for Point Cloud Segmentation Tasks. In Proceedings of the International Conference on Computer Vision and Graphics, Warsaw, Poland, 14–16 September 2018; pp. 173–186. [Google Scholar] [CrossRef]
- Nelder, J.A.; Mead, R. A Simplex Method for Function Minimization. Comput. J. 1965, 7, 308–313. [Google Scholar] [CrossRef]
- Nurunnabi, A.; Belton, D.; West, G. Robust Segmentation for Large Volumes of Laser Scanning Three-Dimensional Point Cloud Data. IEEE Trans. Geosci. Remote Sens. 2016, 54, 4790–4805. [Google Scholar] [CrossRef]
- Blomley, R.; Weinmann, M.; Leitloff, J.; Jutzi, B. Shape distribution features for point cloud analysis – a geometric histogram approach on multiple scales. ISPRS Ann. 2014, II-3, 9–16. [Google Scholar] [CrossRef] [Green Version]
- Leys, C.; Klein, O.; Dominicy, Y.; Ley, C. Detecting multivariate outliers: Use a robust variant of the Mahalanobis distance. J. Exp. Soc. Psychol. 2018, 74, 150–156. [Google Scholar] [CrossRef]
- Hubert, M.; Rousseeuw, P.J.; Van Aelst, S. High-breakdown robust multivariate methods. Stat. Sci. 2008, 23, 92–119. [Google Scholar] [CrossRef]
- Weinmann, M.; Urban, S.; Hinz, S.; Jutzi, B.; Mallet, C. Distinctive 2D and 3D features for automated large-scale scene analysis in urban areas. Comput. Graph. 2015, 49, 47–57. [Google Scholar] [CrossRef]
- Bai, L.; Cheng, X.; Liang, J.; Shen, H.; Guo, Y. Fast density clustering strategies based on the k-means algorithm. Pattern Recognit. 2017, 71, 375–386. [Google Scholar] [CrossRef]
- Campello, R.J.G.B.; Moulavi, D.; Sander, J. Density-Based Clustering Based on Hierarchical Density Estimates. In Advances in Knowledge Discovery and Data Mining; Pei, J., Tseng, V.S., Cao, L., Motoda, H., Xu, G., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 160–172. [Google Scholar]
- Landrieu, L.; Martin, S. Large-scale Point Cloud Semantic Segmentation with Superpoint Graphs. In Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2018), Salt Lake City, UT, USA, 18–22 June 2018. [Google Scholar]
- Rooms UZH Irchel Dataset. Available online: http://www.ifi.uzh.ch/en/vmml/research/datasets.html (accessed on 6 March 2018).
- Department of Computer Science & Engineering in the University of Washington. Lecture 15: Principal Component Partition; University of Washington College of Engineering: Seattle, WA, USA, 1999. [Google Scholar]
Cardinal Point | Adapted Centroids |
---|---|
Point Cloud Name | Cardinality ( | Image |
---|---|---|
Room-1 | 11,050,391 | |
Area6/office-19 | 515,366 | |
Area1/office-19 | 848,534 | |
Area1/hallway-3 | 369,279 | |
Area4/conferenceRoom-2 | 1,653,935 | |
Area5/WC-1 | 719,348 | |
Area4/hallway-13 | 883,137 | |
Method | Cardinality Threshold () | Curvature Threshold () | Min r | Max r | |
---|---|---|---|---|---|
octree | 25 | 0.002 | - | - | - |
kd-tree | 25 | 0.002 | - | - | - |
pcp | 25 | 0.002 | - | - | - |
VCCS | 25 | 0.002 | |||
hd-kd-tree | 25 | 0.002 | - | - | - |
Method | Dataset | PP (%) | PR (%) | OSR (%) | USR (%) |
---|---|---|---|---|---|
SMD based | average S3DIS | 93.0 | 94.4 | 4.4 | 3.9 |
Dong et al. | average S3DIS | 90.4 | 91.4 | 7.6 | 8.2 |
Method | Dataset | PP (%) | PR (%) | OSR (%) | USR (%) |
---|---|---|---|---|---|
SMD based | Room-1 | 86.5 | 98.5 | 9.7 | 3.7 |
Li at al. | Room-1 | 85.0 | 98.3 | - | - |
Method | FAST-MCD | MCS | SMD |
---|---|---|---|
Time (ms) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Walczak, J.; Poreda, T.; Wojciechowski, A. Effective Planar Cluster Detection in Point Clouds Using Histogram-Driven Kd-Like Partition and Shifted Mahalanobis Distance Based Regression. Remote Sens. 2019, 11, 2465. https://doi.org/10.3390/rs11212465
Walczak J, Poreda T, Wojciechowski A. Effective Planar Cluster Detection in Point Clouds Using Histogram-Driven Kd-Like Partition and Shifted Mahalanobis Distance Based Regression. Remote Sensing. 2019; 11(21):2465. https://doi.org/10.3390/rs11212465
Chicago/Turabian StyleWalczak, Jakub, Tadeusz Poreda, and Adam Wojciechowski. 2019. "Effective Planar Cluster Detection in Point Clouds Using Histogram-Driven Kd-Like Partition and Shifted Mahalanobis Distance Based Regression" Remote Sensing 11, no. 21: 2465. https://doi.org/10.3390/rs11212465
APA StyleWalczak, J., Poreda, T., & Wojciechowski, A. (2019). Effective Planar Cluster Detection in Point Clouds Using Histogram-Driven Kd-Like Partition and Shifted Mahalanobis Distance Based Regression. Remote Sensing, 11(21), 2465. https://doi.org/10.3390/rs11212465