Planar Block Adjustment for China’s Land Regions with LuoJia1-01 Nighttime Light Imagery
<p>Geometry processing technology flow chart of Luojia1-01 nighttime light imagery.</p> "> Figure 2
<p>City lights of Wuhan by Luojia1-01. (<b>a</b>) Cloud-contaminated, (<b>b</b>) cloud-free.</p> "> Figure 3
<p>Planar block adjustment technical flowchart.</p> "> Figure 4
<p>Digital elevation model (DEM) elevation constraint.</p> "> Figure 5
<p>Nighttime light image distribution.</p> "> Figure 6
<p>Comparison of GCPs selection in Luojia1-01 and Google earth. The area is Beihai City, China. (<b>a</b>) The imaging time of Lujia1-01 nighttime light imagery is 2018.9.5, (<b>b</b>) the imaging time of optical image on Google Earth is 2018.6.8.</p> "> Figure 7
<p>Luojia1-01 nighttime light image matching effects. The red circles in (<b>a</b>) and (<b>b</b>) represent the global display of matching effects. The blue dots in (<b>c</b>) and (<b>d</b>) are details displayed for a pair of matching points.</p> "> Figure 8
<p>Ground control point (GCP) and independent checkpoint (ICP) distribution map of China’s test area.</p> "> Figure 9
<p>Reliable tie points (TPs) distribution map of China’s test area.</p> "> Figure 10
<p>Residual errors of free network adjustment.</p> "> Figure 11
<p>Residual errors of control network adjustment.</p> "> Figure 12
<p>Schematic diagram of joints of orthophotos. (<b>a</b>)The area is Suzhou, China, (<b>b</b>) the area is Shanghai, China, (<b>c</b>) the area is Tianjin, China, (<b>d</b>) the area is Pearl River Delta, China.</p> "> Figure 12 Cont.
<p>Schematic diagram of joints of orthophotos. (<b>a</b>)The area is Suzhou, China, (<b>b</b>) the area is Shanghai, China, (<b>c</b>) the area is Tianjin, China, (<b>d</b>) the area is Pearl River Delta, China.</p> "> Figure 13
<p>Nighttime light map of China using Luojia1-01 images. The yellow box in the lower right corner shows a schematic view of the South China Sea.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preprocessing
2.1.1. Image Selection
2.1.2. Removal of Stray Light
2.2. Nighttime Light Image Matching
2.2.1. Extract Feature Points
2.2.2. Acquisition of Matching Point Pairs
2.3. Planar Block Adjustment
2.3.1. Mathematical Model of Planar Block Adjustment
2.3.2. Solution of Large-Scale Adjustment Equation
3. Experiments and Analysis
3.1. Experimental Design
3.1.1. Test Area for TPs Matching of Nighttime Light Imagery
3.1.2. GCPs Selection for Nighttime Light Imagery
3.1.3. China’s Test Area Parameters
- Experiment 1: Free network adjustment. All the 58 points were selected as independent checkpoints (ICPs) and no GCPs. The planar block adjustment used SRTM-DEM 30 m grid as the elevation constraint.
- Experiment 2: Control network adjustment. Twenty-five points were selected as GCPs while 33 points were selected as ICPs. The planar block adjustment used SRTM-DEM 30 m grid as the elevation constraint.
3.2. Nighttime Light Image Matching Experiment
3.3. Planar Block Adjustment with Luojia 1-01 Nighttime Light Imagery
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Guo, H. Luojia1 Scientific experimental satellite. Satell. Appl. 2018, 7, 70. [Google Scholar]
- Elvidge, C.D.; Cinzano, P.; Pettit, D.R.; Arvesen, J.; Sutton, P.; Small, C.; Nemani, R.; Longcore, T.; Rich, C.; Safran, J.; et al. The Nightsat mission concept. Int. J. Remote Sens. 2007, 28, 2645–2670. [Google Scholar] [CrossRef]
- Zhang, L.; Peng, J.; Liu, Y.; Wu, J. Coupling ecosystem services supply and human ecological demand to identify landscape ecological security pattern: A case study in Beijing–Tianjin–Hebei region, china. Urban Ecosyst. 2017, 20, 701–714. [Google Scholar] [CrossRef]
- Liu, X.; Liang, X.; Li, X.; Xu, X.; Ou, J.; Chen, Y.; Li, S.; Wang, S.; Pei, F. A future land use simulation model (flus) for simulating multiple land use scenarios by coupling human and natural effects. Landsc. Urban Plan. 2017, 168, 94–116. [Google Scholar] [CrossRef]
- Inkoom, J.N.; Nyarko, B.K.; Antwi, K.B. Explicit modeling of spatial growth patterns in shama, ghana: An agent-based approach. J. Geovis. Spat. Anal. 2017, 1, 7. [Google Scholar] [CrossRef]
- Chen, Y.; Li, X.; Liu, X.; Ai, B.; Li, S. Capturing the varying effects of driving forces over time for the simulation of urban growth by using survival analysis and cellular automata. Landsc. Urban Plan. 2016, 152, 59–71. [Google Scholar] [CrossRef]
- Chen, Y.; Li, X.; Liu, X.; Ai, B. Modeling urban land-use dynamics in a fast developing city using the modified logistic cellular automaton with a patch-based simulation strategy. Int. J. Geogr. Inf. Sci. 2014, 28, 234–255. [Google Scholar] [CrossRef]
- Li, D.R.; Li, X. Use of night-time light remote sensing in humanitarian disaster evaluation. Chin. J. Nat. 2018, 3, 169–176. [Google Scholar]
- Li, X.; Chen, F.; Chen, X. Satellite-observed nighttime light variation as evidence for global armed conflicts. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 6, 2302–2315. [Google Scholar] [CrossRef]
- Li, X.; LI, D. Can night-time light images play a role in evaluating the Syrian Crisis? Int. J. Remote Sens. 2014, 35, 6648–6661. [Google Scholar] [CrossRef]
- Chen, X.; Nordhaus, W.D. Using luminosity data as a proxy for economic statistics. Proc. Natl. Acad. Sci. USA 2011, 108, 8589–8594. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Henderson, J.V.; Storeygard, A.; Weil, D.N. Measuring economic growth from outer space. Am. Econ. Rev. 2012, 102, 994–1028. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Chen, X.; Zhao, Y.; Xu, J.; Chen, F.; Li, H. Automatic intercalibration of nighttime light imagery using robust regression. Remote Sens. Lett. 2013, 4, 45–54. [Google Scholar] [CrossRef]
- Li, X.; Xu, H.; Chen, X.; Li, C. Potential of npp-viirs nighttime light imagery for modeling the regional economy of china. Remote Sens. 2013, 5, 3057–3081. [Google Scholar] [CrossRef]
- Xu, H.; Yang, H.; Li, X.; Jin, H.; Li, D. Multi-scale measurement of regional inequality in mainland china during 2005–2010 using dmsp/ols night light imagery and population density grid data. Sustainability 2015, 7, 13469–13499. [Google Scholar] [CrossRef]
- Li, D.R.; Yu, H.R.; Li, X. The Spatial-Temporal Pattern Analysis of City Development in Countries along the Belt and Road Initiative Based on Nighttime Light Data. Geomat. Inf. Sci. Wuhan Univ. 2017, 42, 711–720. [Google Scholar]
- Wang, T.Y.; Zhang, G.; Li, P.R.; Li, F.T.; Guo, X.Y. Analysis on the Driving Factors of Urban Expansion Policy Based on DMSP/OLS Remote Sensing Image. Acta Geod. Cartogr. Sin. 2018, 47, 1466–1473. [Google Scholar]
- Zhang, G.; Guo, X.; Li, D.; Jiang, B. Evaluating the Potential of LJ1-01 Nighttime Light Data for Modeling Socio-Economic Parameters. Sensors 2019, 19, 1465. [Google Scholar] [CrossRef]
- Li, D.R.; Li, X. Applications of Night-time Light Remote Sensing in Evaluating of Socioeconomic Development. J. Macro-Qual. Res. 2015, 3, 1–8. [Google Scholar]
- Falchi, F.; Cinzano, P.; Duriscoe, D.; Kyba, C.C.M.; Elvidge, C.D.; Baugh, K.; Portnov, B.A.; Rybnikova, N.A.; Furgoni, R. The new world atlas of artificial night sky brightness. Sci. Adv. 2016, 2, e1600377. [Google Scholar] [CrossRef]
- Kyba, C.C.M.; Kuester, T.; Miguel, A.S.D.; Baugh, K.; Jechow, A.; Hölker, F.; Bennie, J.; Elvidge, C.D.; Gaston, K.J.; Guanter, L. Artificially lit surface of Earth at night increasing in radiance and extent. Sci. Adv. 2017, 3, e1701528. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hänel, A.; Posch, T.; Ribas, S.J.; Aubé, M.; Duriscoe, D.; Jechow, A.; Kollath, Z.; Lolkema, D.E.; Moore, C.; Schmidt, N.; et al. Measuring night sky brightness: Methods and challenges. J. Quant. Spectrosc. Radiat. Transf. 2018, 205, 278–290. [Google Scholar] [CrossRef]
- Jiang, W.; He, G.; Long, T.; Guo, H.; Yin, R.; Leng, W.; Liu, H.; Wang, G. Potentiality of Using Luojia 1-01 Nighttime Light Imagery to Investigate Artificial Light Pollution. Sensors 2018, 18, 2900. [Google Scholar] [CrossRef] [PubMed]
- Shi, K.; Chen, Y.; Yu, B.; Xu, T.; Chen, Z.; Liu, R.; Li, L.; Wu, J. Modeling spatiotemporal CO2 (carbon dioxide) emission dynamics in China from DMSP-OLS nighttime stable light data using panel data analysis. Appl. Energy 2016, 168, 523–533. [Google Scholar] [CrossRef]
- Yu, B.; Tang, M.; Wu, Q.; Yang, C.; Deng, S.; Shi, K.; Peng, C.; Wu, J.; Chen, Z. Urban built-up area extraction from log-transformed npp-viirs nighttime light composite data. IEEE Geosci. Remote Sens. Lett. 2018, 15, 1279–1283. [Google Scholar] [CrossRef]
- Li, X.; Zhao, L.; Li, D.; Xu, H. Mapping Urban Extent Using Luojia1-01 Nighttime Light Imagery. Sensors 2018, 18, 3665. [Google Scholar] [CrossRef] [PubMed]
- Xue, X.; Yu, Z.; Zhu, S.; Zheng, Q.; Weston, M.; Wang, K.; Gan, M.; Xu, H. Delineating Urban Boundaries Using Landsat 8 Multispectral Data and VIIRS Nighttime Light Data. Remote Sens. 2018, 10, 799. [Google Scholar] [CrossRef]
- Liu, A.; Wei, Y.; Yu, B.; Song, W. Estimation of Cargo Handling Capacity of Coastal Ports in China Based on Panel Model and DMSP-OLS Nighttime Light Data. Remote Sens. 2019, 11, 582. [Google Scholar] [CrossRef]
- Zhang, G.; Wang, J.; Jiang, Y.; Zhou, P.; Zhao, Y.; Xu, Y. On-Orbit Geometric Calibration and Validation of Luojia 1-01 Night-Light Satellite. Remote Sens. 2019, 11, 264. [Google Scholar] [CrossRef]
- Zhang, G.; Li, L.; Jiang, Y.; Shen, X.; Li, D. On-Orbit Relative Radiometric Calibration of the Night-Time Sensor of the LuoJia1-01 Satellite. Sensors 2018, 18, 4225. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, J.X.; Chen, X.Y.; An, H. Block-Adjustment with SPOT-5 imagery and sparse GCPs based on RFM. Acta Geod. Cartogr. Sin. 2009, 38, 302–310. [Google Scholar]
- Pan, H.B.; Tao, C.; Zou, Z.R. Precise georeferencing using the rigorous sensor model and rational function model for ZiYuan-3 strip scenes with minimum control. ISPRS J. Photogramm. Remote Sens. 2016, 119, 259–266. [Google Scholar] [CrossRef]
- Pan, H.B. Geolocation error tracking of ZY-3 three line cameras. ISPRS J. Photogramm. Remote Sens. 2017, 123, 62–74. [Google Scholar] [CrossRef]
- Shen, X.; Liu, B.; Li, Q.Q. Correcting bias in the rational polynomial coefficients of satellite imagery using thin-plate smoothing splines. ISPRS J. Photogramm. Remote Sens. 2017, 125, 125–131. [Google Scholar] [CrossRef]
- Zhang, Y.; Zheng, M.; Xiong, J.; Lu, Y.; Xiong, X. On-Orbit Geometric Calibration of ZY-3 Three-Line Array Imagery with Multistrip Data Sets. IEEE Trans. Geosci. Remote Sens. 2014, 52, 224–234. [Google Scholar] [CrossRef]
- Taoyang, W.A.; Guo, Z.H.; Deren, L.I.; Wanshou, J.I.; Xinming, T.A.; Xue, L.I. Comparison between plane and stereo block adjustment for ZY-3 satellite images. Acta Geod. Cartogr. Sin. 2014, 43, 389–395. [Google Scholar]
- Yang, B.; Wang, M.; Xu, W.; Li, D.R.; Gong, J.Y.; Pi, Y.D. Large-scale block adjustment without use of ground control points based on the compensation of geometric calibration for ZY-3 images. ISPRS J. Photogramm. Remote Sens. 2017, 134, 1–14. [Google Scholar] [CrossRef]
- Elvidge, C.D.; Baugh, K.; Zhizhin, M.; Hsu, F.C.; Ghosh, T. VIIRS night-time lights. Int. J. Remote Sens. 2017, 38, 5860–5879. [Google Scholar] [CrossRef]
- Elvidge, C.D.; Baugh, K.E.; Kihn, E.A.; Kroehl, H.W.; Davis, E.R. Mapping city lights with nighttime data from the DMSP Operational Linescan System. Photogramm. Eng. Remote Sens. 1997, 63, 727–734. [Google Scholar]
- Zhong, X.; Su, Z.; Zhang, G.; Chen, Z.; Meng, Y.; Li, D.; Liu, Y. Analysis and Reduction of Solar Stray Light in the Nighttime Imaging Camera of Luojia-1 Satellite. Sensors 2019, 19, 1130. [Google Scholar] [CrossRef]
- Fischler, M.A.; Bolles, R.C. Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography. Commun. ACM Read. Comput. Vis. 1987, 24, 726–740. [Google Scholar]
- Li, D.R.; Zhang, G.; Jiang, W.S. SPOT-5 HRS Satellite Imagery Block Adjustment Without GCPS or with Single GCP. Geomat. Inf. Sci. Wuhan Univ. 2006, 31, 377–381. [Google Scholar]
- Zhang, G. Rectification for High Resolution Remote Sensing Image under Lack of Ground Control Points; Wuhan University: Wuhan, China, 2005. [Google Scholar]
Item | Parameter |
---|---|
Nominal resolution (m) | 130 |
Width of image (km) | 250 |
Number of orbits | 26 |
Number of images | 275 |
Number of GCPs/ICPs | 58 |
Test area (km2) | 9,634,057 |
Test Area | Images | TPs (num) | Max Errors of TPs (Pixel) | RMS Errors of TPs (Pixel) | ||||
---|---|---|---|---|---|---|---|---|
x | y | Planar | x | y | Planar | |||
Track 1 | 59 | 1095 | 2.910 | −2.797 | 2.911 | 0.679 | 0.603 | 0.909 |
Track 2 | 59 | 1896 | −2.193 | −2.746 | 3.514 | 0.645 | 0.517 | 0.827 |
Track 3 | 58 | 1991 | 2.211 | −2.141 | 2.211 | 0.604 | 0.693 | 0.919 |
Track 4 | 41 | 1863 | −2.712 | −2.604 | 2.840 | 0.577 | 0.639 | 0.861 |
Test Area | GCPs | ICPs | Max Errors of TPs (Pixel) | RMS Errors of TPs (Pixel) | ||||
---|---|---|---|---|---|---|---|---|
x | y | Planar | x | y | Planar | |||
China | 0 | 58 | 2.399 | 2.385 | 2.448 | 0.418 | 0.427 | 0.598 |
25 | 33 | 4.125 | 4.762 | 5.419 | 0.684 | 0.707 | 0.983 |
Test Area | GCPs | ICPs | Type of Error | Max Errors of ICPs | RMS Errors of ICPs | ||||
---|---|---|---|---|---|---|---|---|---|
x | y | Planar | x | y | Planar | ||||
China | 0 | 58 | Object (m) | 1043.391 | 1704.824 | 1939.699 | 395.503 | 558.723 | 683.386 |
25 | 33 | 247.713 | 285.730 | 310.087 | 130.063 | 145.946 | 195.491 | ||
0 | 58 | Image (pixel) | −14.151 | −10.522 | −17.634 | 4.593 | 3.865 | 6.003 | |
25 | 33 | −2.105 | 2.058 | −2.944 | 1.127 | 1.091 | 1.569 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Wang, T.; Zhang, G.; Jiang, B.; Jia, P.; Zhang, Z.; Zhao, Y. Planar Block Adjustment for China’s Land Regions with LuoJia1-01 Nighttime Light Imagery. Remote Sens. 2019, 11, 2097. https://doi.org/10.3390/rs11182097
Li X, Wang T, Zhang G, Jiang B, Jia P, Zhang Z, Zhao Y. Planar Block Adjustment for China’s Land Regions with LuoJia1-01 Nighttime Light Imagery. Remote Sensing. 2019; 11(18):2097. https://doi.org/10.3390/rs11182097
Chicago/Turabian StyleLi, Xin, Taoyang Wang, Guo Zhang, Boyang Jiang, Peng Jia, Zhuxi Zhang, and Yuan Zhao. 2019. "Planar Block Adjustment for China’s Land Regions with LuoJia1-01 Nighttime Light Imagery" Remote Sensing 11, no. 18: 2097. https://doi.org/10.3390/rs11182097