Remote Sensing Estimation of Lake Total Phosphorus Concentration Based on MODIS: A Case Study of Lake Hongze
"> Figure 1
<p>Location of the study site and sampling plots.</p> "> Figure 2
<p>The optimal algorithms obtained by the direct derivation method: (<b>a</b>) The relationship between the in situ measured TP and (B2–B5)/(B2+B5); (<b>b</b>) the validation of the MODIS-estimated TP with the in situ measured TP based on an independent dataset.</p> "> Figure 3
<p>The optimal algorithms obtained by the indirect derivation method: (<b>a</b>) The relationship between the in situ measured SPM and (B2−B5); (<b>b</b>) the validation of the MODIS-estimated SPM with the in situ measured SPM based on an independent dataset; (<b>c</b>) the relationship between the in situ measured TP and MODIS-estimated SPM; (<b>d</b>) the validation of the indirect derivation method-estimated TP with the in situ measured TP based on an independent dataset.</p> "> Figure 4
<p>The seasonal average of the TP concentration from 2016 to 2018 in Lake Hongze in each season: (<b>a</b>) Spring; (<b>b</b>) summer; (<b>c</b>) autumn; (<b>d</b>) winter.</p> "> Figure 5
<p>The correlation coefficients between the SPM, SPIM, SPOM, TP, and R<sub>rs</sub> measured in the sites.</p> "> Figure 6
<p>Algorithm accuracy change with different substance changes. (<b>a</b>) Chlorophyll-a (Chla); (<b>b</b>) SPM; (<b>c</b>) TP/SPM; (<b>d</b>) SPIM/SPM.</p> "> Figure 7
<p>Box-plot of the water quality attributes of the three lakes: (<b>a</b>) Chla; (<b>b</b>) TP; (<b>c</b>) SPM; (<b>d</b>) SPIM; (<b>e</b>) SPOM.</p> "> Figure 8
<p>(<b>a</b>) Scatter plot of the (B2−B5)/(B2+B5) and TP concentration in Lake Chaohu; (<b>b</b>) scatter plot of the (B2−B5)/(B2+B5) and TP concentration in Lake Nanyi; (<b>c</b>) scatter plot of the B1*B5 and TP concentration in Lake Chaohu; (<b>d</b>) scatter plot of the (B1−B2)/(B1+B2) and TP concentration in Lake Nanyi.</p> "> Figure 9
<p>(<b>a</b>) Scatter plot of the (B1–B2)/(B1+B2) and Chla concentration in Lake Nanyi; (<b>b</b>) scatter plot of the (B1–B2)/(B1+B2) and SPM concentration in Lake Nanyi; (<b>c</b>) scatter plot of the (B1–B2)/(B1+B2) and SPIM concentration in Lake Nanyi; (<b>d</b>) scatter plot of the (B1–B2)/(B1+B2) and SPOM concentration in Lake Nanyi.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Field Data and Laboratory Analysis
2.3. MODIS Data Processing
2.4. Modeling Method and Accuracy Assessment
3. Results
3.1. Determination of Key OAC
3.2. Development and Validation of Algorithm for TP Estimation
3.3. Temporal and Spatial Distribution of TP in Lake Hongze
4. Discussion
4.1. Why Direct Derivation Algorithms are Better than Indirect Derivation Algorithms in Lake Hongze?
4.2. Why the Algorithms can Estimate TP Concentration in Lake Hongze?
4.3. How other Substances Affect the Accuracy of the Algorithm?
4.4. Applicability of the Algorithm to other Lakes
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ma, R.H.; Duan, H.T.; Hu, C.M.; Feng, X.Z.; Li, A.N.; Ju, W.M.; Jiang, J.H.; Yang, G.S. A half-Century of changes in China’s lakes: Global warming or human influence? Geophys. Res. Lett. 2010, 37. [Google Scholar] [CrossRef]
- Lin, C.; Wu, Z.; Ma, R.; Su, Z. Detection of sensitive soil properties related to non-Point phosphorus pollution by integrated models of SEDD and PLOAD. Ecol. Indic. 2016, 60, 483–494. [Google Scholar] [CrossRef]
- Su, Z.H.; Lin, C.; Ma, R.H.; Luo, J.H.; Liang, Q.O. Effect of land use change on lake water quality in different buffer zones. Appl. Ecol. Environ. Res. 2015, 13, 639–653. [Google Scholar] [CrossRef]
- Ye, C.; Li, C.; Wang, B.; Zhang, J.; Zhang, L. Study on building scheme for a healthy aquatic ecosystem of Lake Hongze. J. Lake Sci. 2011, 23, 725–730. [Google Scholar] [CrossRef]
- Cao, Z.G.; Duan, H.T.; Feng, L.; Ma, R.H.; Xue, K. Climate-and human-Induced changes in suspended particulate matter over Lake Hongze on short and long timescales. Remote Sens. Environ. 2017, 192, 98–113. [Google Scholar] [CrossRef]
- Cao, Z.G.; Duan, H.T.; Shen, M.; Ma, R.H.; Xue, K.; Liu, D.; Xiao, Q.T. Using VIIRS/NPP and MODIS/Aqua data to provide a continuous record of suspended particulate matter in a highly turbid inland lake. Int. J. Appl. Earth Obs. 2018, 64, 256–265. [Google Scholar] [CrossRef]
- Paerl, H.W.; Xu, H.; Hall, N.S.; Rossignol, K.L.; Joyner, A.R.; Zhu, G.W.; Qin, B.Q. Nutrient limitation dynamics examined on a multi-Annual scale in Lake Taihu, China: Implications for controlling eutrophication and harmful algal blooms. J. Freshw. Ecol. 2015, 30, 5–24. [Google Scholar] [CrossRef]
- Paerl, H.W.; Xu, H.; Hall, N.S.; Zhu, G.W.; Qin, B.Q.; Wu, Y.L.; Rossignol, K.L.; Dong, L.H.; McCarthy, M.J.; Joyner, A.R. Controlling Cyanobacterial Blooms in Hypertrophic Lake Taihu, China: Will Nitrogen Reductions Cause Replacement of Non-N-2 Fixing by N-2 Fixing Taxa? PLoS ONE 2014, 9. [Google Scholar] [CrossRef]
- Xiong, J.; Lin, C.; Ma, R.; Wu, Z.; Min, M. Spectral identification of main control factors of soil phosphorus loss from typical agricultural land in Taihu Basin. Bull. Soil Water Conserv. 2017, 37, 137–141. [Google Scholar] [CrossRef]
- Chang, N.B.; Xuan, Z.M.; Yang, Y.J. Exploring spatiotemporal patterns of phosphorus concentrations in a coastal bay with MODIS images and machine learning models. Remote Sens. Environ. 2013, 134, 100–110. [Google Scholar] [CrossRef]
- Sun, D.; Qiu, Z.; Li, Y.; Shi, K.; Gong, S. Detection of total phosphorus concentrations of turbid inland waters using a remote sensing method. Water Air Soil Pollut. 2014, 225, 1–17. [Google Scholar] [CrossRef]
- Wu, C.F.; Wu, J.P.; Qi, J.G.; Zhang, L.S.; Huang, H.Q.; Lou, L.P.; Chen, Y.X. Empirical estimation of total phosphorus concentration in the mainstream of the Qiantang River in China using Landsat TM data. Int. J. Remote Sens. 2010, 31, 2309–2324. [Google Scholar] [CrossRef]
- Yu, L.; Kong, F.X.; Zhang, M.; Yang, Z.; Shi, X.L.; Du, M.Y. The dynamics of microcystis genotypes and microcystin production and associations with environmental factors during blooms in Lake Chaohu, China. Toxins 2014, 6, 3238–3257. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, Y.L.; Shi, K.; Zhu, G.W.; Zhou, Y.Q.; Zhang, Y.B.; Guo, Y.L. Monitoring spatiotemporal variations in nutrients in a large drinking water reservoir and their relationships with hydrological and meteorological conditions based on Landsat 8 imagery. Sci. Total Environ. 2017, 599, 1705–1717. [Google Scholar] [CrossRef]
- Song, K.S.; Li, L.; Wang, Z.M.; Liu, D.W.; Zhang, B.; Xu, J.P.; Du, J.; Li, L.H.; Li, S.; Wang, Y.D. Retrieval of total suspended matter (TSM) and chlorophyll-a (Chl-a) concentration from remote-Sensing data for drinking water resources. Environ. Monit. Assess. 2012, 184, 1449–1470. [Google Scholar] [CrossRef]
- Xue, K.; Zhang, Y.C.; Duan, H.T.; Ma, R.H. Variability of light absorption properties in optically complex inland waters of Lake Chaohu, China. J. Great Lakes Res. 2017, 43, 17–31. [Google Scholar] [CrossRef]
- Shen, M.; Duan, H.T.; Cao, Z.G.; Xue, K.; Loiselle, S.; Yesou, H. Determination of the downwelling diffuse attenuation coefficient of lake water with the Sentinel-3A OLCI. Remote Sens. 2017, 9, 1246. [Google Scholar] [CrossRef]
- Xue, K.; Zhang, Y.C.; Ma, R.H.; Duan, H.T. An approach to correct the effects of phytoplankton vertical nonuniform distribution on remote sensing reflectance of cyanobacterial bloom waters. Limnol. Oceanogr. 2017, 15, 302–319. [Google Scholar] [CrossRef]
- Gong, S.Q.; Huang, J.Z.; Li, Y.M.; Lu, W.N.; Wang, H.J.; Wang, G.X. Preliminary exploring of hyperspectral remote sensing experiment for nitrogen and phosphorus in water. Spectrosc. Spect. Anal. 2008, 28, 839–842. [Google Scholar] [CrossRef]
- Isenstein, E.M.; Park, M.H. Assessment of nutrient distributions in Lake Champlain using satellite remote sensing. J. Environ. Sci. 2014, 26, 1831–1836. [Google Scholar] [CrossRef]
- Kutser, T.; Arst, H.; Miller, T.; Kaarmann, L.; Milius, A. Telespectrometrical estimation of water transparency, chlorophyll-a and total phosphorus concentration of Lake Peipsi. Int. J. Remote Sens. 1995, 16, 3069–3085. [Google Scholar] [CrossRef]
- Li, J.; Zhang, Y.C.; Ma, R.H.; Duan, H.T.; Loiselle, S.; Xue, K.; Liang, Q.C. Satellite-Based estimation of column-integrated algal Biomass in nonalgae bloom conditions: A case study of Lake Chaohu, China. IEEE J. 2017, 10, 450–462. [Google Scholar] [CrossRef]
- Gao, Y.N.; Gao, J.F.; Yin, H.B.; Liu, C.S.; Xia, T.; Wang, J.; Huang, Q. Remote sensing estimation of the total phosphorus concentration in a large lake using band combinations and regional multivariate statistical modeling techniques. J. Environ. Manag. 2015, 151, 33–43. [Google Scholar] [CrossRef]
- El Saadi, A.M.; Yousry, M.M.; Jahin, H.S. Statistical estimation of Rosetta branch water quality using multi-Spectral data. Water Sci. 2014, 28, 18–30. [Google Scholar] [CrossRef]
- Hui, J.; Yao, L. Analysis and inversion of the nutritional status of China’s Poyang Lake using MODIS data. J. Indian Soc. Remote 2016, 44, 837–842. [Google Scholar] [CrossRef]
- Liu, Y.; Jiang, H. Retrieval of total phosphorus concentration in the surface waters of Poyang Lake based on remote sensing and analysis of its spatial-temporal characteristics. J. Nat. Resour. 2013, 28, 2169–2177. [Google Scholar] [CrossRef]
- Chen, J.; Quan, W.T. Using Landsat/TM imagery to estimate nitrogen and phosphorus concentration in Taihu Lake, China. IEEE J. 2012, 5, 273–280. [Google Scholar] [CrossRef]
- He, W.; Chen, S.; Liu, X.; Chen, J. Water quality monitoring in a slightly-Polluted inland water body through remote sensing—Case study of the Guanting Reservoir in Beijing, China. Front. Environ. Sci. Eng. China 2008, 2, 163–171. [Google Scholar] [CrossRef]
- Cai, Y.J.; Lu, Y.J.; Liu, J.S.; Dai, X.L.; Xu, H.; Lu, Y.; Gong, Z.J. Macrozoobenthic community structure in a large shallow lake: Disentangling the effect of eutrophication and wind-Wave disturbance. Limnologica 2016, 59, 1–9. [Google Scholar] [CrossRef]
- Cao, Z.G.; Duan, H.T.; Cui, H.S.; Ma, R.H. Remote estimation of suspended matters concentrations using VIIRS in Lake Hongze, China. J. Infrared Millim. 2016, 35, 462–469. [Google Scholar] [CrossRef]
- Lin, C.; Hu, W.P.; Xu, J.D.; Ma, R.H. Development of a visualization platform oriented to Lake water quality targets management—A case study of Lake Taihu. Ecol. Inform. 2017, 41, 40–53. [Google Scholar] [CrossRef]
- Min, M.; Lin, C.; Xiong, J.F.; Shen, C.Z.; Jin, Z.F.; Ma, R.; Xu, J. Research on spatio-Temporal pattern evolution of NPS particulate phosphorus load in hongze lake basin under different landuse patterns. Resour. Environ. Yangtze Basin 2017, 26, 606–614. [Google Scholar] [CrossRef]
- Zhou, D.; Zhang, Q.; Song, X.; Xie, X. Distribution of heavy metals and potential ecological risk in the surface sediment of Hongze Lake. J. Huaihai Inst. Technol. 2012, 21, 39–43. [Google Scholar] [CrossRef]
- Duan, H.T.; Cao, Z.G.; Shen, M.; Liu, D.; Xiao, Q.T. Detection of illicit sand mining and the associated environmental effects in China’s fourth largest freshwater lake using daytime and nighttime satellite images. Sci. Total Environ. 2019, 647, 606–618. [Google Scholar] [CrossRef]
- Soriano-Disla, J.M.; Speir, T.W.; Gomez, I.; Clucas, L.M.; McLaren, R.G.; Navarro-Pedreno, J. Evaluation of different extraction methods for the assessment of heavy metal bioavailability in various soils. Water Air Soil Pollut. 2010, 213, 471–483. [Google Scholar] [CrossRef]
- Sondergaard, M.; Jeppesen, E.; Lauridsen, T.L.; Skov, C.; Van Nes, E.H.; Roijackers, R.; Lammens, E.; Portielje, R. Lake restoration: Successes, failures and long-Term effects. J. Appl. Ecol. 2007, 44, 1095–1105. [Google Scholar] [CrossRef]
- Ma, R.; Tang, J.; Dai, J. Bio-Optical model with optimal parameter suitable for Taihu Lake in water colour remote sensing. Int. J. Remote Sens. 2006, 27, 4305–4328. [Google Scholar] [CrossRef]
- Xu, H.; Paerl, H.W.; Qin, B.Q.; Zhu, G.W.; Gao, G. Nitrogen and phosphorus inputs control phytoplankton growth in eutrophic Lake Taihu, China. Limnol. Oceanogr. 2010, 55, 420–432. [Google Scholar] [CrossRef]
- Duan, H.T.; Feng, L.; Ma, R.H.; Zhang, Y.C.; Loiselle, S.A. Variability of particulate organic carbon in inland waters observed from MODIS Aqua imagery. Environ. Res. Lett. 2014, 9. [Google Scholar] [CrossRef]
- Wu, J.H.; Duan, H.T.; Zhang, Y.C.; Ma, R.H. A novel algorithm to estimate POC concentrations in Chaohu Lake, China. J. Infrared Millim. 2015, 34, 750–756. [Google Scholar] [CrossRef]
- Hu, C.M.; Feng, L.; Lee, Z.; Davis, C.O.; Mannino, A.; McClain, C.R.; Franz, B.A. Dynamic range and sensitivity requirements of satellite ocean color sensors: Learning from the past. Appl. Opt. 2012, 51, 6045–6062. [Google Scholar] [CrossRef]
- Aurin, D.; Mannino, A.; Franz, B. Spatially resolving ocean color and sediment dispersion in river plumes, coastal systems, and continental shelf waters. Remote Sens. Environ. 2013, 137, 212–225. [Google Scholar] [CrossRef] [Green Version]
- Hu, C.M.; Chen, Z.Q.; Clayton, T.D.; Swarzenski, P.; Brock, J.C.; Muller-Karger, F.E. Assessment of estuarine water-Quality indicators using MODIS medium-Resolution bands: Initial results from Tampa Bay, FL. Remote Sens. Environ. 2004, 93, 423–441. [Google Scholar] [CrossRef]
- Feng, L.; Hu, C.M.; Chen, X.L.; Tian, L.Q.; Chen, L.Q. Human induced turbidity changes in Poyang Lake between 2000 and 2010: Observations from MODIS. J. Geophys. Res. 2012, 117. [Google Scholar] [CrossRef]
- Shi, K.; Zhang, Y.L.; Zhou, Y.Q.; Liu, X.H.; Zhu, G.W.; Qin, B.Q.; Gao, G. Long-Term MODIS observations of cyanobacterial dynamics in Lake Taihu: Responses to nutrient enrichment and meteorological factors. Sci. Rep. 2017, 7. [Google Scholar] [CrossRef]
- Cui, L.J.; Qiu, Y.; Fei, T.; Liu, Y.L.; Wu, G.F. Using remotely sensed suspended sediment concentration variation to improve management of Poyang Lake, China. Lake Reserv. Manag. 2013, 29, 47–60. [Google Scholar] [CrossRef] [Green Version]
- Shi, K.; Zhang, Y.L.; Zhu, G.W.; Liu, X.H.; Zhou, Y.Q.; Xu, H.; Qin, B.Q.; Liu, G.; Li, Y.M. Long-Term remote monitoring of total suspended matter concentration in Lake Taihu using 250 m MODIS-Aqua data. Remote Sens. Environ. 2015, 164, 43–56. [Google Scholar] [CrossRef]
- Wu, G.F.; Liu, L.J.; Chen, F.Y.; Fei, T. Developing MODIS-Based retrieval models of suspended particulate matter concentration in Dongting Lake, China. Int. J. Appl. Earth Obs. 2014, 32, 46–53. [Google Scholar] [CrossRef]
- Jiang, X.W.; Tang, J.W.; Zhang, M.W.; Ma, R.H.; Ding, J. Application of MODIS data in monitoring suspended sediment of Taihu Lake, China. Chin. J. Oceanol. Limnol. 2009, 27, 614–620. [Google Scholar] [CrossRef]
- Wang, J.J.; Lu, X.X. Estimation of suspended sediment concentrations using Terra MODIS: An example from the Lower Yangtze River, China. Sci. Total Environ. 2010, 408, 1131–1138. [Google Scholar] [CrossRef]
- Wang, J.J.; Lu, X.X.; Liew, S.C.; Zhou, Y. Remote sensing of suspended sediment concentrations of large rivers using multi-Temporal MODIS images: An example in the Middle and Lower Yangtze River, China. Int. J. Remote Sens. 2010, 31, 1103–1111. [Google Scholar] [CrossRef]
- Schindler, D. Evolution of phosphorus limitation in lakes. Science 1977, 195, 260–262. [Google Scholar] [CrossRef]
- Duan, H.; Zhang, B.; Song, K.; Huang, S.; Wang, Z.; Zhang, S. Hyperspectral monitoring model of eutrophication in Lake Nanhu, Changchun. J. Lake Sci. 2005, 3, 282–288. [Google Scholar] [CrossRef]
- Silio-Calzada, A.; Bricaud, A.; Uitz, J.; Gentili, B. Estimation of new primary production in the Benguela upwelling area, using ENVISAT satellite data and a model dependent on the phytoplankton community size structure. J. Geophys. Res. 2008, 113. [Google Scholar] [CrossRef]
- Fang, F.; Brezonik, P.L.; Mulla, D.J.; Hatch, L.K. Estimating runoff phosphorus losses from calcareous soils in the Minnesota River Basin. J. Environ. Qual. 2002, 31, 1918–1929. [Google Scholar] [CrossRef]
- Follmi, K.B. The phosphorus cycle, phosphogenesis and marine phosphate-Rich deposits. Earth-Sci. Rev. 1996, 40, 55–124. [Google Scholar] [CrossRef]
- Borggaard, O.K. The influence of iron-Oxides on phosphate adsorption by soil. J. Soil Sci. 1983, 34, 333–341. [Google Scholar] [CrossRef]
- Adhami, E.; Ronaghi, A.; Karimian, N.; Molavi, R. Transformation of phosphorus in highly calcareous soils under field capacity and waterlogged conditions. Soil Res. 2012, 50, 249–255. [Google Scholar] [CrossRef]
- Zhou, A.M.; Tang, H.X.; Wang, D.S. Phosphorus adsorption on natural sediments: Modeling and effects of pH and sediment composition. Water Res. 2005, 39, 1245–1254. [Google Scholar] [CrossRef]
- Shinohara, R.; Imai, A.; Kawasaki, N.; Komatsu, K.; Kohzu, A.; Miura, S.; Sano, T.; Satou, T.; Tomioka, N. Biogenic Phosphorus Compounds in Sediment and Suspended Particles in a Shallow Eutrophic Lake: A P-31-Nuclear Magnetic Resonance (P-31 NMR) Study. Environ. Sci. Technol. 2012, 46, 10572–10578. [Google Scholar] [CrossRef]
- Pan, G.; Krom, M.D.; Zhang, M.Y.; Zhang, X.W.; Wang, L.J.; Dai, L.C.; Sheng, Y.Q.; Mortimer, R.J.G. Impact of suspended inorganic particles on phosphorus cycling in the Yellow River (China). Environ. Sci. Technol. 2013, 47, 9685–9692. [Google Scholar] [CrossRef] [PubMed]
- Song, K.S.; Li, L.; Li, S.; Tedesco, L.; Hall, B.; Li, L.H. Hyperspectral remote sensing of total phosphorus (TP) in three central Indiana water supply reservoirs. Water Air Soil Pollut. 2012, 223, 1481–1502. [Google Scholar] [CrossRef]
- Shang, G.; Shang, J. Spatial and temporal variations of eutrophication in western Chaohu Lake, China. Environ. Monit. Assess. 2007, 130, 99–109. [Google Scholar] [CrossRef]
- Gurlin, D.; Gitelson, A.A.; Moses, W.J. Remote estimation of chl-a concentration in turbid productive waters - Return to a simple two-band NIR-red model? Remote Sens. Environ. 2011, 115, 3479–3490. [Google Scholar] [CrossRef]
- Sun, D.Y.; Li, Y.M.; Wang, Q.; Le, C.F.; Lv, H.; Huang, C.C.; Gong, S.Q. Specific inherent optical quantities of complex turbid inland waters, from the perspective of water classification. Photochem. Photobiol. Sci. 2012, 11, 1299–1312. [Google Scholar] [CrossRef]
- Ma, R.H.; Jiang, G.J.; Duan, H.T.; Bracchini, L.; Loiselle, S. Effective upwelling irradiance depths in turbid waters: A spectral analysis of origins and fate. Opt. Express 2011, 19, 7127–7138. [Google Scholar] [CrossRef]
- Hu, C.M.; Lee, Z.P.; Ma, R.H.; Yu, K.; Li, D.Q.; Shang, S.L. Moderate Resolution Imaging Spectroradiometer (MODIS) observations of cyanobacteria blooms in Taihu Lake, China. J. Geophys. Res. 2010, 115. [Google Scholar] [CrossRef] [Green Version]
- Shi, W.; Wang, M.H. An assessment of the black ocean pixel assumption for MODIS SWIR bands. Remote Sens. Environ. 2009, 113, 1587–1597. [Google Scholar] [CrossRef]
- Kutser, T.; Pierson, D.; Tranvik, L.; Reinart, A.; Sobek, S.; Kallio, K. Using satellite remote sensing to estimate the colored dissolved organic matter absorption coefficient in lakes. Ecosystems 2005, 8, 709–720. [Google Scholar] [CrossRef]
- Stramska, M.; Stramski, D. Variability of particulate organic carbon concentration in the north polar Atlantic based on ocean color observations with Sea-Viewing Wide Field-Of-View Sensor (SeaWiFS). J. Geophys. Res. 2005, 110. [Google Scholar] [CrossRef]
- Liu, G.; Li, Y.M.; Lyu, H.; Wang, S.; Du, C.G.; Huang, C.C. An improved land target-Based atmospheric correction method for Lake Taihu. IEEE J. 2016, 9, 793–803. [Google Scholar] [CrossRef]
- Gitelson, A. The peak near 700 nm on radiance spectra of algae and water: Relationships of Its magnitude and position with chlorophyll concentration. Int. J. Remote Sens. 1992, 13, 3367–3373. [Google Scholar] [CrossRef]
- Gilerson, A.A.; Gitelson, A.A.; Zhou, J.; Gurlin, D.; Moses, W.; Ioannou, I.; Ahmed, S.A. Algorithms for remote estimation of chlorophyll-a in coastal and inland waters using red and near infrared bands. Opt. Express 2010, 18, 24109–24125. [Google Scholar] [CrossRef] [Green Version]
- Sanyal, S.; De Datta, S. Chemistry of phosphorus transformations in soil. In Advances in Soil Science; Springer: New York, NY, USA, 1991. [Google Scholar]
- Scavia, D.; DePinto, J.V.; Bertani, I. A multi-Model approach to evaluating target phosphorus loads for Lake Erie. J. Great Lakes Res. 2016, 42, 1139–1150. [Google Scholar] [CrossRef]
- Liu, Q.; Wan, J.F.; Wang, J.; Li, S.Y.; Dagot, C.; Wang, Y. Recovery of phosphorus via harvesting phosphorus-Accumulating granular sludge in sequencing batch airlift reactor. Bioresour. Technol. 2017, 224, 87–93. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Wu, Y.H.; Jorg, P.; Bing, H.J.; Yu, D.; Sun, S.Q.; Luo, J.; Sun, H.Y. Changes of soil phosphorus speciation along a 120-Year soil chronosequence in the Hailuogou Glacier retreat area (Gongga Mountain, SW China). Geoderma 2013, 195, 251–259. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, R.H.; Zhang, Y.Q.; Cui, X.Q.; Tang, A.K.; Zhang, L.J. Transport of heavy metals in the Huanghe River estuary, China. Environ. Earth Sci. 2016, 75. [Google Scholar] [CrossRef]
- Wu, W.H.; Zheng, H.B.; Xu, S.J.; Yang, J.D.; Liu, W. Trace element geochemistry of riverbed and suspended sediments in the upper Yangtze River. J. Geochem. Explor. 2013, 124, 67–78. [Google Scholar] [CrossRef]
- Sun, G.F.; Jin, J.Y.; Shi, Y.L. Research advance on soil phosphorous forms and their availability to crops in soil. Soil Fertil. Sci. China 2011, 2, 1–9. [Google Scholar] [CrossRef]
- Zhou, Y.L.; Jin, J.L.; Liu, L.; Zhang, L.B.; He, J.; Wang, Z.S. Inference of reference conditions for nutrient concentrations of Chaohu Lake based on model extrapolation. Chin. Geogr. Sci. 2013, 23, 35–48. [Google Scholar] [CrossRef]
- Du, C.; Li, Y.; Wang, Q.; Zhu, L.; Lü, H. Inversion model and daily variation of total phosphorus concentrations in Taihu Lake based on GOCI data. Environ. Sci. 2016, 37, 862–872. [Google Scholar] [CrossRef]
- Albert Moses, S.; Janaki, L.; Joseph, S.; Kizhur Kandathil, R. Determining the spatial variation of phosphorus in a lake system using remote sensing techniques. Lakes Reserv. 2014, 19, 24–36. [Google Scholar] [CrossRef]
Date (Number) | Statistics | TP (mg/L) | SPM (mg/L) | SPIM (mg/L) | SPOM (mg/L) | Chla (μg/L) |
---|---|---|---|---|---|---|
201602 (N = 19) | Range | 0.06~0.13 | 26.00~69.00 | 14.00~58.00 | 2.00~16.00 | * |
Mean ± SD | 0.10 ± 0.02 | 37.95 ± 17.78 | 30.11 ± 16.31 | 7.84 ±3.27 | * | |
201607 (N = 7) | Range | 0.07~0.12 | 25.80~53.80 | 12.47~26.87 | 8.73~26.93 | 6.98~128.37 |
Mean ± SD | 0.09 ± 0.02 | 36.33 ± 8.36 | 21.43 ± 4.68 | 14.91 ± 6.53 | 47.37 ± 38.73 | |
201612 (N = 18) | Range | 0.04~0.28 | 21.00~96.00 | 14.00~83.00 | 3.00~16.00 | 1.38~7.94 |
Mean ± SD | 0.15 ± 0.06 | 58.47 ± 23.62 | 45.82 ± 21.25 | 12.65 ± 9.34 | 3.46 ± 1.70 | |
201808 (N = 13) | Range | 0.02~0.08 | 28.00~69.33 | 9.33~52.00 | 13.33~20.00 | 4.29~33.18 |
Mean ± SD | 0.03 ± 0.02 | 49.03 ± 14.70 | 32.21 ± 14.74 | 16.82 ± 1.78 | 12.77 ± 9.48 |
Location | Band | Algorithm | References |
---|---|---|---|
Lake Poyang Lake Taihu | Band 1 | SPM=a*exp(b*(B1)) | [46,47] |
Lake Dongting, Lake Poyang, Lake Hongze | Band 1, Band 5 | SPM=a*exp(b*(B1-B5)) | [5,44,48] |
Lake Taihu | Band 2 | log10(SPM)=a*ln(B2)+b | [49] |
Yangtze River | Band 2, Band 5 | SPM=a*exp(b*(B2−B5)) | [50] |
Yangtze River | Band 2, Band 5 | SPM=a*(B2−B5)+b | [51] |
Band/Band Combination | B1 | B2 | B5 | (B2−B5)/(B2+B5) | B2/B5 | B1/B5 |
---|---|---|---|---|---|---|
Correlation coefficient | 0.23 | 0.33 * | −0.53 ** | 0.84 ** | 0.83 ** | 0.79 ** |
TP | SPM | SPIM | SPOM | Chla | |
---|---|---|---|---|---|
TP | 0.53 ** | 0.61 ** | 0.25 | −0.14 | |
(B2−B5)/(B2+B5) | 0.84 ** | 0.54 ** | 0.64 ** | 0.20 | −0.21 |
B2−B5 | 0.54 ** | 0.64 ** | 0.53 ** | 0.09 | −0.17 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiong, J.; Lin, C.; Ma, R.; Cao, Z. Remote Sensing Estimation of Lake Total Phosphorus Concentration Based on MODIS: A Case Study of Lake Hongze. Remote Sens. 2019, 11, 2068. https://doi.org/10.3390/rs11172068
Xiong J, Lin C, Ma R, Cao Z. Remote Sensing Estimation of Lake Total Phosphorus Concentration Based on MODIS: A Case Study of Lake Hongze. Remote Sensing. 2019; 11(17):2068. https://doi.org/10.3390/rs11172068
Chicago/Turabian StyleXiong, Junfeng, Chen Lin, Ronghua Ma, and Zhigang Cao. 2019. "Remote Sensing Estimation of Lake Total Phosphorus Concentration Based on MODIS: A Case Study of Lake Hongze" Remote Sensing 11, no. 17: 2068. https://doi.org/10.3390/rs11172068