Effects of the Temporal Aggregation and Meteorological Conditions on the Parameter Robustness of OCO-2 SIF-Based and LUE-Based GPP Models for Croplands
"> Figure 1
<p>Effects of varying view zenith angle (VZA) on OCO-2 Glint SIF observations and the gross primary production (GPP)–SIF correlation at the mid-day timescale: (<b>a</b>) the differences between SIF with and without VZA restrictions: VZA ≤ <math display="inline"><semantics> <mrow> <msup> <mrow> <mn>20</mn> </mrow> <mo>∘</mo> </msup> </mrow> </semantics></math>; <math display="inline"><semantics> <mrow> <msup> <mrow> <mn>20</mn> </mrow> <mo>∘</mo> </msup> </mrow> </semantics></math> < VZA ≤ <math display="inline"><semantics> <mrow> <msup> <mrow> <mn>40</mn> </mrow> <mo>∘</mo> </msup> </mrow> </semantics></math>; and VZA > <math display="inline"><semantics> <mrow> <msup> <mrow> <mn>40</mn> </mrow> <mo>∘</mo> </msup> </mrow> </semantics></math>; (<b>b</b>) the relationships of ground GPP and SIF under various intervals of VZAs: VZA ≤ <math display="inline"><semantics> <mrow> <msup> <mrow> <mn>20</mn> </mrow> <mo>∘</mo> </msup> </mrow> </semantics></math>; <math display="inline"><semantics> <mrow> <msup> <mrow> <mn>20</mn> </mrow> <mo>∘</mo> </msup> </mrow> </semantics></math> < VZA ≤ <math display="inline"><semantics> <mrow> <msup> <mrow> <mn>40</mn> </mrow> <mo>∘</mo> </msup> </mrow> </semantics></math>; VZA > <math display="inline"><semantics> <mrow> <msup> <mrow> <mn>40</mn> </mrow> <mo>∘</mo> </msup> </mrow> </semantics></math>; and no restriction (<math display="inline"><semantics> <mrow> <msup> <mn>0</mn> <mo>∘</mo> </msup> </mrow> </semantics></math> < VZA ≤ <math display="inline"><semantics> <mrow> <msup> <mrow> <mn>50</mn> </mrow> <mo>∘</mo> </msup> </mrow> </semantics></math>). The data points are averages of the sounding for each point in the time referring to <a href="#remotesensing-11-01328-t001" class="html-table">Table 1</a> and the error bar represents ±1<math display="inline"><semantics> <mi mathvariant="sans-serif">σ</mi> </semantics></math> statistical uncertainty estimations of OCO-2 SIF.</p> "> Figure 2
<p>The consistency of OCO-2 SIF in Glint and Nadir observation modes with the tower derived SIF: (<b>a</b>) Seasonal dynamics of tower gross primary production (GPP), normalized difference vegetation index (NDVI<sub>BRDF</sub>), Vogelmann red edge index (VOG<sub>BRDF</sub>), tower sun-induced chlorophyll inflorescence (SIF), and OCO-2 SIF; (<b>b</b>) the relationship between OCO-2 SIF in Glint and Nadir modes and the tower SIF at the CN-YuC site over the 2015 growth period of summer maize. There are only six data points on Glint mode and seven data points on Nadir mode for both satellite overpassing and tower observing at the same time. The missing observations from 17 August 2015 to 1 September 2015 were due to an equipment failure.</p> "> Figure 3
<p>Fitting results of parameters for different models on different timescales in 2015. The columns from left to right show the mid-day, daily, and monthly timescales, respectively. The rows from top to bottom indicate the SIF model (<math display="inline"><semantics> <mrow> <mi>G</mi> <mi>P</mi> <mi>P</mi> <mo>≈</mo> <mrow> <mi>ε</mi> <mo>/</mo> <mrow> <mi>S</mi> <mi>I</mi> <msub> <mi>F</mi> <mrow> <mi>yield</mi> </mrow> </msub> </mrow> </mrow> <mo>×</mo> <mi>S</mi> <mi>I</mi> <mi>F</mi> </mrow> </semantics></math>), the one-leaf light-use efficiency (SL-LUE) model (<math display="inline"><semantics> <mrow> <mi>G</mi> <mi>P</mi> <mi>P</mi> <mo>=</mo> <msub> <mi>ε</mi> <mrow> <mi>max</mi> </mrow> </msub> <mo>×</mo> <mi>A</mi> <mi>P</mi> <mi>A</mi> <mi>R</mi> <mo>×</mo> <mi>f</mi> <mrow> <mo>(</mo> <mrow> <mi>V</mi> <mi>P</mi> <mi>D</mi> </mrow> <mo>)</mo> </mrow> <mo>×</mo> <mi>g</mi> <mrow> <mo>(</mo> <mrow> <msub> <mi>T</mi> <mi>a</mi> </msub> </mrow> <mo>)</mo> </mrow> </mrow> </semantics></math>), and the two-leaf LUE (TL-LUE) model (<math display="inline"><semantics> <mrow> <mi>G</mi> <mi>P</mi> <mi>P</mi> <mo>=</mo> <msub> <mi>ε</mi> <mrow> <mi>msu</mi> </mrow> </msub> <mo>×</mo> <mi>A</mi> <mi>P</mi> <mi>A</mi> <msub> <mi>R</mi> <mrow> <mi>su</mi> </mrow> </msub> <mo>×</mo> <mi>f</mi> <mrow> <mo>(</mo> <mrow> <mi>V</mi> <mi>P</mi> <mi>D</mi> </mrow> <mo>)</mo> </mrow> <mo>×</mo> <mi>g</mi> <mrow> <mo>(</mo> <mrow> <msub> <mi>T</mi> <mi mathvariant="normal">a</mi> </msub> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>ε</mi> <mrow> <mi>msh</mi> </mrow> </msub> <mo>×</mo> <mi>A</mi> <mi>P</mi> <mi>A</mi> <msub> <mi>R</mi> <mrow> <mi>sh</mi> </mrow> </msub> <mo>×</mo> <mi>f</mi> <mrow> <mo>(</mo> <mrow> <mi>V</mi> <mi>P</mi> <mi>D</mi> </mrow> <mo>)</mo> </mrow> <mo>×</mo> <mi>g</mi> <mrow> <mo>(</mo> <mrow> <msub> <mi>T</mi> <mi mathvariant="normal">a</mi> </msub> </mrow> <mo>)</mo> </mrow> </mrow> </semantics></math>), respectively. There are 39 data points for mid-day and daily time scales and 12 data points for monthly time scale. The unit of tower GPP is gC m<sup>−2</sup> day<sup>−1</sup>, the unit of OCO-2 SIF is W m<sup>−2</sup> <math display="inline"><semantics> <mi mathvariant="sans-serif">μ</mi> </semantics></math>m<sup>−1</sup> sr<sup>−1</sup>, and the unit of APAR × f(VPD) × g(T) is MJ m<sup>−2</sup> day<sup>−1</sup> (1 MJ = 10<sup>6</sup> J).</p> "> Figure 4
<p>Seasonal dynamics of normalized meteorological conditions (scaled within 0–1), including normalized meteorological condition index (ECI), air temperature, VPD, and APAR at the (<b>a</b>) mid-day timescale, (<b>b</b>) daily timescale, and (<b>c</b>) monthly timescale. The solid grey lines refer to the threshold value of ECI values. The whole canopies are prone to experiencing exposure to excess light when the ECI is greater than 0.8 compared with when the ECI is lower.</p> "> Figure 5
<p>The fluctuations in the parameters of the SIF model and the LUE models for a range of meteorological conditions, where 0.8 is the threshold value at which ECI values are fitted separately. The columns from left to right show the mid-day, daily, and monthly timescales, respectively. The rows from top to bottom indicate the SIF model (<math display="inline"><semantics> <mrow> <mi>G</mi> <mi>P</mi> <mi>P</mi> <mo>≈</mo> <mrow> <mi>ε</mi> <mo>/</mo> <mrow> <mi>S</mi> <mi>I</mi> <msub> <mi>F</mi> <mrow> <mi>yield</mi> </mrow> </msub> </mrow> </mrow> <mo>×</mo> <mi>S</mi> <mi>I</mi> <mi>F</mi> </mrow> </semantics></math>), SL-LUE model (<math display="inline"><semantics> <mrow> <mi>G</mi> <mi>P</mi> <mi>P</mi> <mo>=</mo> <msub> <mi>ε</mi> <mrow> <mi>max</mi> </mrow> </msub> <mo>×</mo> <mi>A</mi> <mi>P</mi> <mi>A</mi> <mi>R</mi> <mo>×</mo> <mi>f</mi> <mrow> <mo>(</mo> <mrow> <mi>V</mi> <mi>P</mi> <mi>D</mi> </mrow> <mo>)</mo> </mrow> <mo>×</mo> <mi>g</mi> <mrow> <mo>(</mo> <mrow> <msub> <mi>T</mi> <mi mathvariant="normal">a</mi> </msub> </mrow> <mo>)</mo> </mrow> </mrow> </semantics></math>), and TL-LUE model (<math display="inline"><semantics> <mrow> <mi>G</mi> <mi>P</mi> <mi>P</mi> <mo>=</mo> <msub> <mi>ε</mi> <mrow> <mi>msu</mi> </mrow> </msub> <mo>×</mo> <mi>A</mi> <mi>P</mi> <mi>A</mi> <msub> <mi>R</mi> <mrow> <mi>su</mi> </mrow> </msub> <mo>×</mo> <mi>f</mi> <mrow> <mo>(</mo> <mrow> <mi>V</mi> <mi>P</mi> <mi>D</mi> </mrow> <mo>)</mo> </mrow> <mo>×</mo> <mi>g</mi> <mrow> <mo>(</mo> <mrow> <msub> <mi>T</mi> <mi mathvariant="normal">a</mi> </msub> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>ε</mi> <mrow> <mi>msh</mi> </mrow> </msub> <mo>×</mo> <mi>A</mi> <mi>P</mi> <mi>A</mi> <msub> <mi>R</mi> <mrow> <mi>sh</mi> </mrow> </msub> <mo>×</mo> <mi>f</mi> <mrow> <mo>(</mo> <mrow> <mi>V</mi> <mi>P</mi> <mi>D</mi> </mrow> <mo>)</mo> </mrow> <mo>×</mo> <mi>g</mi> <mrow> <mo>(</mo> <mrow> <msub> <mi>T</mi> <mi mathvariant="normal">a</mi> </msub> </mrow> <mo>)</mo> </mrow> </mrow> </semantics></math>), respectively. The unit of tower GPP is gC m<sup>−2</sup> day<sup>−1</sup>, the unit of OCO-2 SIF is W m<sup>−2</sup> <math display="inline"><semantics> <mi mathvariant="sans-serif">μ</mi> </semantics></math>m<sup>−1</sup> sr<sup>−1</sup>, and the unit of APAR × f(VPD) × g(T) is MJ m<sup>−2</sup> day<sup>−1</sup> (1 MJ = 10<sup>6</sup> J).</p> "> Figure 6
<p>Validation of the SIF model, the SL-LUE model, and the TL-LUE model on the mid-day, daily, and monthly timescales in 2016, respectively. The panels (<b>a</b>–<b>c</b>): the seasonal variations of simulated and tower observed GPP. The panels (<b>d</b>–<b>f</b>): comparison of the GPP simulated by the SIF model (red lines), SL-LUE (green lines), and TL-LUE (blue lines).</p> "> Figure 7
<p>Relationship between SIF yield (SIF/APAR, <math display="inline"><semantics> <mrow> <mi>S</mi> <mi>I</mi> <msub> <mi>F</mi> <mrow> <mi>y</mi> <mi>i</mi> <mi>e</mi> <mi>l</mi> <mi>d</mi> </mrow> </msub> </mrow> </semantics></math>) and light-use efficiency (<math display="inline"><semantics> <mi>ε</mi> </semantics></math>) at the satellite overpass time throughout 2015 at the CN-YuC cropland site in northern China, where 0.8 is the threshold value at which ECI values are fit separately for the mid-day, daily, and monthly timescales, respectively. The whole canopies are prone to experiencing exposure to excess light when the ECI is greater than 0.8 compared with when the ECI is lower.</p> "> Figure 8
<p>Scatterplots of the solar-induced chlorophyll fluorescence (W m<sup>−2</sup> <math display="inline"><semantics> <mi mathvariant="sans-serif">μ</mi> </semantics></math>m<sup>−1</sup> sr<sup>−1</sup>) and sunlit/shaded/total leaf area index (LAI<sub>su</sub>, LAI<sub>sh</sub>, LAI, m<sup>2</sup>/m<sup>2</sup>) on the mid-day, daily, and monthly timescales, respectively.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Flux Tower Measurements
2.1.1. Experimental Site Description
2.1.2. Flux Tower Data Processing
2.2. Field Spectral Measurements
2.2.1. Spectral Measurements and Processing
2.2.2. SIF and Vegetation Index Retrieval from Ground Data
2.3. OCO-2 SIF Data and Processing
2.4. Leaf Area Index Data
2.5. Analysis
2.6. Accuracy Assessment of Models
3. Results
3.1. Effects of Viewing Zenith Angle in OCO-2 Glint Mode on SIF Observations
3.2. Comparison of Parameter Stability of the SIF and LUE Models across Multiple Temporal Aggregation Levels
3.3. Comparison of Parameter Sensitivity of the SIF and LUE Models under Multiple Meteorological Conditions
3.4. Validation of LUE-Based and SIF-Based Models
4. Discussion
4.1. Effects of Viewing Zenith Angle in OCO-2 Glint Mode
4.2. Temporal Scaling Effect on the SIF-Based and LUE-Based Models
4.3. Environmental Restrictions on the SIF-Based and LUE-Based Models
4.4. Estimation Performances of the SIF-Based and LUE-Based Models
4.5. Suggestions for Remote Sensing SIF Applications in LUE-Based Modeling
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Li, X.; Xiao, J.; He, B. Chlorophyll fluorescence observed by OCO-2 is strongly related to gross primary productivity estimated from flux towers in temperate forests. Remote Sens. Environ. 2018, 204, 659–671. [Google Scholar] [CrossRef]
- Odum, E.P.; Barrett, G.W.; Lu, J.J. Fundamentals of Ecology; Saunders: Philadelphia, PA, USA, 1971; Volume 5, pp. 87–88. [Google Scholar]
- Verma, M.; Schimel, D.; Evans, B.; Frankenberg, C.; Beringer, J.; Drewry, D.T.; Magney, T.; Marang, I.; Hutley, L.; Moore, C.; et al. Effect of meteorological conditions on the relationship between solar-induced fluorescence and gross primary productivity at an OzFlux grassland site. J. Geophys. Res. Biogeosci. 2017, 122, 716–733. [Google Scholar] [CrossRef]
- Cui, T.; Sun, R.; Qiao, C.; Zhang, Q.; Yu, T.; Liu, G.; Liu, Z. Estimating Diurnal Courses of Gross Primary Production for Maize: A Comparison of Sun-Induced Chlorophyll Fluorescence, Light-Use Efficiency and Process-Based Models. Remote Sens. 2017, 9, 1267. [Google Scholar] [CrossRef]
- Lin, X.; Chen, B.; Chen, J.; Zhang, H.; Sun, S.; Xu, G.; Guo, L.; Ge, M.; Qu, J.; Li, L.; et al. Seasonal fluctuations of photosynthetic parameters for light use efficiency models and the impacts on gross primary production estimation. Agric. For. Meteorol. 2017, 236, 22–35. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Xiao, X.; Jin, C.; Dong, J.; Zhou, S.; Wagle, P.; Joiner, J.; Guanter, L.; Zhang, Y.; Zhang, G.; et al. Consistency between sun-induced chlorophyll fluorescence and gross primary production of vegetation in North America. Remote Sens. Environ. 2016, 183, 154–169. [Google Scholar] [CrossRef] [Green Version]
- Frankenberg, C.; Fisher, J.B.; Worden, J.; Badgley, G.; Saatchi, S.S.; Lee, J.E.; Toon, G.C.; Butz, A.; Jung, M.; Kuze, A. New global observations of the terrestrial carbon cycle from GOSAT: Patterns of plant fluorescence with gross primary productivity. Geophys. Res. Lett. 2011, 38, L17706. [Google Scholar] [CrossRef]
- Frankenberg, C.; O’Dell, C.; Berry, J.; Guanter, L.; Joiner, J.; Köhler, P.; Pollock, R.; Taylor, T.E. Prospects for chlorophyll fluorescence remote sensing from the orbiting carbon observatory-2. Remote Sens. Environ. 2014, 147, 1–12. [Google Scholar] [CrossRef]
- Köhler, P.; Guanter, L.; Joiner, J. A linear method for the retrieval of sun-induced chlorophyll fluorescence from GOME-2 and SCIAMACHY data. Atmos. Meas. Tech. 2015, 8, 2589–2608. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Frankenberg, C.; Wood, J.D.; Schimel, D.S.; Jung, M.; Guanter, L.; Drewry, D.T.; Verma, M.; Porcar-Castell, A.; Griffis, T.J.; et al. OCO-2 advances photosynthesis observation from space via solar-induced chlorophyll fluorescence. Science 2017, 358, eaam5747. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Frankenberg, C.; Jung, M.; Joiner, J.; Guanter, L.; Köhler, P.; Magney, T. Overview of Solar-Induced chlorophyll Fluorescence (SIF) from the Orbiting Carbon Observatory-2: Retrieval, cross-mission comparison, and global monitoring for GPP. Remote Sens. Environ. 2018, 209, 808–823. [Google Scholar] [CrossRef]
- Joiner, J.; Yoshida, Y.; Vasilkov, A.P.; Middleton, E.M. First observations of global and seasonal terrestrial chlorophyll fluorescence from space. Biogeosciences 2011, 8, 637–651. [Google Scholar] [CrossRef] [Green Version]
- Guanter, L.; Frankenberg, C.; Dudhia, A.; Lewis, P.E.; Gómez-Dans, J.; Kuze, A.; Suto, H.; Grainger, R.G. Retrieval and global assessment of terrestrial chlorophyll fluorescence from GOSAT space measurements. Remote Sens. Environ. 2012, 121, 236–251. [Google Scholar] [CrossRef]
- Joiner, J.; Yoshida, Y.; Vasilkov, A.P.; Middleton, E.M.; Campbell, P.K.E.; Kuze, A. Filling-in of near-infrared solar lines by terrestrial fluorescence and other geophysical effects: Simulations and space-based observations from SCIAMACHY and GOSAT. Atmos. Meas. Tech. 2012, 5, 809–829. [Google Scholar] [CrossRef]
- Joiner, J.; Guanter, L.; Lindstrot, R.; Voigt, M.; Vasilkov, A.P.; Middleton, E.M.; Huemmrich, K.F.; Yoshida, Y.; Frankenberg, C. Global monitoring of terrestrial chlorophyll fluorescence from moderate-spectral-resolution near-infrared satellite measurements: Methodology, simulations, and application to GOME-2. Atmos. Meas. Tech. 2013, 6, 2803–2823. [Google Scholar] [CrossRef]
- Sanders, A.; Verstraeten, W.; Kooreman, M.; Van Leth, T.; Beringer, J.; Joiner, J. Spaceborne sun-induced vegetation fluorescence time series from 2007 to 2015 evaluated with Australian flux tower measurements. Remote Sens. 2016, 8, 895. [Google Scholar] [CrossRef]
- Joiner, J.; Yoshida, Y.; Guanter, L.; Middleton, E.M. New methods for the retrieval of chlorophyll red fluorescence from hyperspectral satellite instruments: Simulations and application to GOME-2 and SCIAMACHY. Atmos. Meas. Tech. 2016, 9, 3939–3967. [Google Scholar] [CrossRef]
- Wolanin, A.; Rozanov, V.V.; Dinter, T.; Noël, S.; Vountas, M.; Burrows, J.P.; Bracher, A. Global retrieval of marine and terrestrial chlorophyll fluorescence at its red peak using hyperspectral top of atmosphere radiance measurements: Feasibility study and first results. Remote Sens. Environ. 2015, 166, 243–261. [Google Scholar] [CrossRef] [Green Version]
- Jeong, S.J.; Schimel, D.; Frankenberg, C.; Drewry, D.T.; Fisher, J.B.; Verma, M.; Berry, J.A.; Lee, J.E.; Joiner, J. Application of satellite solar-induced chlorophyll fluorescence to understanding large-scale variations in vegetation phenology and function over northern high latitude forests. Remote Sens. Environ. 2017, 190, 178–187. [Google Scholar] [CrossRef]
- Luus, K.A.; Commane, R.; Parazoo, N.C.; Benmergui, J.; Euskirchen, E.S.; Frankenberg, C.; Joiner, J.; Lindaas, J.; Miller, C.E.; Oechel, W.C.; et al. Tundra photosynthesis captured by satellite-observed solar-induced chlorophyll fluorescence. Geophys. Res. Lett. 2017, 44, 1564–1573. [Google Scholar] [CrossRef]
- Guanter, L.; Zhang, Y.; Jung, M.; Joiner, J.; Voigt, M.; Berry, J.A.; Frankenberg, C.; Huete, A.R.; Zarco-Tejada, P.; Lee, J.E.; et al. Global and time-resolved monitoring of crop photosynthesis with chlorophyll fluorescence. Proc. Natl. Acad. Sci. USA 2014, 111, E1327–E1333. [Google Scholar] [CrossRef] [Green Version]
- Guan, K.; Berry, J.A.; Zhang, Y.; Joiner, J.; Guanter, L.; Badgley, G.; Lobell, D.B. Improving the monitoring of crop productivity using spaceborne solar-induced fluorescence. Glob. Chang. Biol. 2016, 22, 716–726. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.E.; Frankenberg, C.; van der Tol, C.; Berry, J.A.; Guanter, L.; Boyce, C.K.; Fisher, J.B.; Morrow, E.; Worden, J.R.; Asefi, S. Forest productivity and water stress in Amazonia: Observations from GOSAT chlorophyll fluorescence. Proc. R. Soc. B Biol. Sci. 2013, 280, 20130171. [Google Scholar] [CrossRef] [PubMed]
- Guan, K.; Pan, M.; Li, H.; Wolf, A.; Wu, J.; Medvigy, D.; Caylor, K.K.; Sheffield, J.; Wood, E.F.; Malhi, Y.; et al. Photosynthetic seasonality of global tropical forests constrained by hydroclimate. Nat. Geosci. 2015, 8, 284. [Google Scholar] [CrossRef]
- Wang, J.B.; Dong, J.W.; Liu, J.Y.; Huang, M.; Li, G.C.; Running, S.W.; Smith, W.K.; Harris, W.; Saigusa, N.; Kondo, H. Comparison of gross primary productivity derived from GIMMS NDVI3g, GIMMS, andMODIS in Southeast Asia. Remote Sens. 2014, 6, 2108–2133. [Google Scholar] [CrossRef]
- Hongji, Z.; Aiwen, L.; Lunche, W.; Yu, X.; Ling, Z. Evaluation of modis gross primary production across multiple biomes in china using eddy covariance flux data. Remote Sens. 2016, 8, 395. [Google Scholar] [CrossRef]
- Lunche, W.; Hongji, Z.; Aiwen, L.; Ling, Z.; Wenmin, Q.; Qiyong, D. Evaluation of the latest modis gpp products across multiple biomes using global eddy covariance flux data. Remote Sens. 2017, 9, 418. [Google Scholar] [CrossRef]
- He, M.; Ju, W.; Zhou, Y.; Chen, J.; He, H.; Wang, S.; Wang, H.; Guan, D.; Yan, J.; Li, Y.; et al. Development of a two-leaf light use efficiency model for improving the calculation of terrestrial gross primary productivity. Agric. For. Meteorol. 2013, 173, 28–39. [Google Scholar] [CrossRef]
- Schaefer, K.; Schwalm, C.R.; Williams, C.; Arain, M.A.; Barr, A.; Chen, J.M.; Davis, K.J.; Dimitrov, D.; Hilton, T.W.; Hollinger, D.Y. A model-data comparison of gross primary productivity: Results from the North American Carbon Program site synthesis. J. Geophys. Res. Biogeosci. 2012, 117, G03010. [Google Scholar] [CrossRef]
- Zhou, Y.; Wu, X.; Ju, W.; Chen, J.M.; Wang, S.; Wang, H.; Yuan, W.; Black, T.A.; Jassal, R.; Ibrom, A.; et al. Global parameterization and validation of a two-leaf light use efficiency model for predicting gross primary production across FLUXNET sites. J. Geophys. Res. Biogeosci. 2016, 121, 1045–1072. [Google Scholar] [CrossRef]
- Li, A.; Bian, J.; Lei, G.; Huang, C. Estimating the maximal light use efficiency for different vegetation through the CASA Model combined with time-series remote sensing data and ground measurements. Remote Sens. 2012, 4, 3857–3876. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, H.; Liu, Z.; Che, M.; Chen, B. Evaluating Parameter Adjustment in the MODIS Gross Primary Production Algorithm Based on Eddy Covariance Tower Measurements. Remote Sens. 2014, 6, 3321–3348. [Google Scholar] [CrossRef] [Green Version]
- Baldocchi, D.D. Must we incorporate soil moisture information when applying light use efficiency models with satellite remote sensing information? New Phytol. 2018, 218, 1293–1294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muramatsu, K.; Furumi, S.; Soyama, N.; Daigo, M. Estimating the seasonal maximum light use efficiency. In Proceedings of the SPIE Asia-Pacific Remote Sensing, Beijing, China, 8 November 2014. [Google Scholar]
- Damm, A.; Guanter, L.; Paul-Limoges, E.; Van der Tol, C.; Hueni, A.; Buchmann, N.; Eugster, W.; Ammann, C.; Schaepman, M.E. Far-red sun-induced chlorophyll fluorescence shows ecosystem-specific relationships to gross primary production: An assessment based on observational and modeling approaches. Remote Sens. Environ. 2015, 166, 91–105. [Google Scholar] [CrossRef]
- Yang, H.; Yang, X.; Zhang, Y.; Heskel, M.A.; Lu, X.; Munger, J.W.; Sun, S.; Tang, J. Chlorophyll fluorescence tracks seasonal variations of photosynthesis from leaf to canopy in a temperate forest. Glob. Chang. Biol. 2017, 23, 2874–2886. [Google Scholar] [CrossRef] [PubMed]
- Wood, J.D.; Griffis, T.J.; Baker, J.M.; Frankenberg, C.; Verma, M.; Yuen, K. Multiscale analyses of solar-induced florescence and gross primary production. Geophys. Res. Lett. 2017, 44, 533–541. [Google Scholar] [CrossRef]
- Zhang, Y.; Xiao, X.; Wolf, S.; Wu, J.; Wu, X.; Gioli, B.; Wohlfahrt, G.; Cescatti, A.; van der Tol, C.; Zhou, S.; et al. Spatio-Temporal Convergence of Maximum Daily Light-Use Efficiency Based on Radiation Absorption by Canopy Chlorophyll. Geophys. Res. Lett. 2018, 45, 3508–3519. [Google Scholar] [CrossRef]
- Bonan, G.B.; Lawrence, P.J.; Oleson, K.W.; Levis, S.; Jung, M.; Reichstein, M.; Lawrence, D.M.; Swenson, S.C. Improving canopy processes in the Community Land Model version 4 (CLM4) using global flux fields empirically inferred from fluxnet data. J. Geophys. Res. Biogeosci. 2011, 116, G02014. [Google Scholar] [CrossRef]
- Chen, H.; Dickinson, R.E.; Dai, Y.; Zhou, L. Sensitivity of simulated terrestrial carbon assimilation and canopy transpiration to different stomatal conductance and carbon assimilation schemes. Clim. Dyn. 2010, 36, 1037–1054. [Google Scholar] [CrossRef]
- Gamon, J.A. Reviews and syntheses: Optical sampling of the flux tower footprint. Biogeosciences 2015, 12, 4509–4523. [Google Scholar] [CrossRef]
- Jia, W.; Liu, M.; Wang, D.; He, H.; Shi, P.; Li, Y.; Wang, Y. Uncertainty in simulating regional gross primary productivity from satellite-based models over northern China grassland. Ecol. Indic. 2018, 88, 134–143. [Google Scholar] [CrossRef]
- Gamon, J.A.; Cheng, Y.; Claudio, H.; Mackinney, L.; Sims, D.A. A mobile tram system for systematic sampling of ecosystem optical properties. Remote Sens. Environ. 2006, 103, 246–254. [Google Scholar] [CrossRef]
- Wagle, P.; Zhang, Y.; Jin, C.; Xiao, X. Comparison of solar-induced chlorophyll fluorescence, light-use efficiency, and process-based GPP models in maize. Ecol. Appl. 2016, 26, 1211–1222. [Google Scholar] [CrossRef] [PubMed]
- Hilker, T.; Coops, N.C.; Nesic, Z.; Wulder, M.A.; Black, A.T. Instrumentation and approach for unattended year round tower based measurements of spectral reflectance. Comput. Electron. Agric. 2007, 56, 72–84. [Google Scholar] [CrossRef]
- Wanner, W.; Li, X.; Strahler, A.H. On the derivation of kernels for kernel driven models of bidirectional reflectance. J. Geophys. Res. 1995, 100, 21077–21089. [Google Scholar] [CrossRef]
- Lucht, W.; Schaaf, C.B.; Strahler, A.H. An algorithm for the retrieval of albedo from space using semiempirical BRDF models. IEEE Trans. Geosci. Remote Sens. 2000, 38, 977–998. [Google Scholar] [CrossRef] [Green Version]
- Maier, S.W.; Günther, K.P.; Stellmes, M. Sun-induced fluorescence: A new tool for precision farming. In Digital Imaging and Spectral Techniques: Applications to Precision Agriculture and Crop Physiology; The American Society of Agronomy: Madison, WI, USA, 2003; pp. 209–222. [Google Scholar]
- Wang, R.; Liu, Z.G.; Feng, H.K.; Yang, P.Q.; Wang, Q.S. Extraction and analysis of Solar—induced chlorophyl fluorescence of wheat with ground-based hyperspectral imaging system. Spectrosc. Spectr. Anal. 2013, 33, 2451–2454. [Google Scholar] [CrossRef]
- Plascyk, J.A. The MK II Fraunhofer Line Discriminator (FLD-II) for Airborne and Orbital Remote Sensing of Solar-Stimulated Luminescence. Opt. Eng. 1975, 14, 339–346. [Google Scholar] [CrossRef]
- Alonso, L.; Gomez-Chova, L.; Vila-Frances, J.; Amoros-Lopez, J.; Guanter, L.; Calpe, J.; Moreno, J. Improved Fraunhofer Line Discrimination Method for Vegetation Fluorescence Quantification. IEEE Geosci. Remote Sens. Lett. 2008, 5, 620–624. [Google Scholar] [CrossRef]
- Damm, A.; Erler, A.; Hillen, W.; Meroni, M.; Schaepman, M.E.; Verhoef, W.; Rascher, U. Modeling the impact of spectral sensor configurations on the FLD retrieval accuracy of sun-induced chlorophyll fluorescence. Remote Sens. Environ. 2011, 115, 1882–1892. [Google Scholar] [CrossRef]
- Liu, X.; Liu, L. Assessing band sensitivity to atmospheric radiation transfer for space-based retrieval of solar-induced chlorophyll fluorescence. Remote Sens. 2014, 6, 10656–10675. [Google Scholar] [CrossRef]
- Liu, X.; Liu, L.; Zhang, S.; Zhou, X. New spectral fitting method for full-spectrum solar-induced chlorophyll fluorescence retrieval based on principal components analysis. Remote Sens. 2015, 7, 10626–10645. [Google Scholar] [CrossRef]
- Liu, L.; Guan, L.; Liu, X. Directly estimating diurnal changes in GPP for C3 and C4 crops using far-red sun-induced chlorophyll fluorescence. Agric. For. Meteorol. 2017, 232, 1–9. [Google Scholar] [CrossRef]
- Carlson, T.N.; Ripley, D.A. On the relation between NDVI, fractional vegetation cover, and leaf area index. Remote Sens. Environ. 1997, 62, 241–252. [Google Scholar] [CrossRef]
- Vogelmann, J.E.; Rock, B.N.; Moss, D.M. Red edge spectral measurements from sugar maple leaves. Int. J. Remote Sens. 1993, 14, 1563–1575. [Google Scholar] [CrossRef]
- Chen, M.; Deng, F.; Chen, M. Locally adjusted cubic-spline capping for reconstructing seasonal trajectories of a satellite-derived surface parameter. IEEE Trans. Geosci. Remote 2006, 44, 2230–2238. [Google Scholar] [CrossRef]
- Monteith, J.L. Solar radiation and productivity in tropical ecosystems. J. Appl. Ecol. 1972, 9, 747–766. [Google Scholar] [CrossRef]
- Fournier, A.; Daumard, F.; Champagne, S.; Ounis, A.; Goulas, Y.; Moya, I. Effect of canopy structure on sun-induced chlorophyll fluorescence. ISPRS J. Photogramm. Remote Sens. 2012, 68, 112–120. [Google Scholar] [CrossRef]
- Chen, J.M.; Liu, J.; Cihlar, J.; Goulden, M.L. Daily canopy photosynthesis model through temporal and spatial scaling for remote sensing applications. Ecol. Model. 1999, 124, 99–119. [Google Scholar] [CrossRef] [Green Version]
- Tang, S.; Chen, J.M.; Zhu, Q.; Li, X.; Chen, M.; Sun, R.; Zhou, Y.; Deng, F.; Xie, D. LAI inversion algorithm based on directional reflectance kernels. J. Environ. Manag. 2007, 85, 638–648. [Google Scholar] [CrossRef]
- Bonett, D.G. Confidence interval for a coefficient of quartile variation. Comput. Stat. Data Anal. 2006, 50, 2953–2957. [Google Scholar] [CrossRef]
- Willmott, C.J.; Ackleson, S.G.; Davis, R.E.; Feddema, J.J.; Klink, K.M.; Legates, D.R.; Donnell, J.O.; Rowe, C.M. Statistics for the evaluation and comparison of models. J. Geophys. Res. Atmos. 1985, 90, 8995–9005. [Google Scholar] [CrossRef] [Green Version]
- Willmott, C.J.; Matsuura, K. Advantages of the mean absolute error (mae) over the root mean square error (rmse) in assessing average model performance. Clim. Res. 2005, 30, 79–82. [Google Scholar] [CrossRef]
- Yang, X.; Tang, J.; Mustard, J.F.; Lee, J.E.; Rossini, M.; Joiner, J.; Munger, J.W.; Kornfeld, A.; Richardson, A.D. Solar-induced chlorophyll fluorescence that correlates with canopy photosynthesis on diurnal and seasonal scales in a temperate deciduous forest. Geophys. Res. Lett. 2015, 42, 2977–2987. [Google Scholar] [CrossRef]
- Lee, J.E.; Berry, J.A.; van der Tol, C.; Yang, X.; Guanter, L.; Damm, A.; Baker, I.; Frankenberg, C. Simulations of chlorophyll fluorescence incorporated into the C ommunity L and M odel version 4. Glob. Chang. Biol. 2015, 21, 3469–3477. [Google Scholar] [CrossRef] [PubMed]
- Joiner, J.; Yoshida, Y.; Vasilkov, A.P.; Schaefer, K.; Jung, M.; Guanter, L.; Zhang, Y.; Garrity, S.; Middleton, E.M.; Huemmrich, K.F.; et al. The seasonal cycle of satellite chlorophyll fluorescence observations and its relationship to vegetation phenology and ecosystem atmosphere carbon exchange. Remote Sens. Environ. 2014, 152, 375–391. [Google Scholar] [CrossRef] [Green Version]
- Norman, J.M.; Arkebauer, T.J. Predicting canopy light-use efficiency from leaf characteristics. In Modeling Plant and Soil Systems; The American Society of Agronomy: Madison, WI, USA, 1991; pp. 125–143. [Google Scholar]
- Goerner, A.; Reichstein, M.; Rambal, S. Tracking seasonal drought effects on ecosystem light use efficiency with satellite-based PRI in a Mediterranean forest. Remote Sens. Environ. 2009, 113, 1101–1111. [Google Scholar] [CrossRef]
- Drolet, G.G.; Middleton, E.M.; Huemmrich, K.F.; Hall, F.G.; Amiro, B.D.; Barr, A.G.; Black, T.A.; McCaughey, J.H.; Margolis, H.A. Regional mapping of gross light-use efficiency using MODIS spectral indices. Remote Sens. Environ. 2008, 112, 3064–3078. [Google Scholar] [CrossRef]
- Boland, J.; Ridley, B. Models of Diffuse Solar Fraction. In Modeling Solar Radiation at the Earth’s Surface; Springer: Berlin/Heidelberg, Germany, 2008; pp. 193–219. [Google Scholar]
- Schreiber, U.; Hormann, H.; Neubauer, C.; Klughammer, C. Assessment of photosystem II photochemical quantum yield by chlorophyll fluorescence quenching analysis. Funct. Plant Biol. 1995, 22, 209–220. [Google Scholar] [CrossRef]
- Weis, E.; Berry, J.A. Quantum efficiency of photosystem II in relation to ‘energy’-dependent quenching of chlorophyll fluorescence. BBA Bioenerg. 1987, 894, 198–208. [Google Scholar] [CrossRef]
- Maxwell, K.; Johnson, G.N. Chlorophyll fluorescence—A practical guide. J. Exp. Bot. 2000, 51, 659–668. [Google Scholar] [CrossRef]
- Mohammed, G.H.; Goulas, Y.; Magnani, F.; Moreno, J.; Olejníčková, J.; Rascher, U.; van der Tol, C.; Verhoef, W.; Ač, A.; Daumard, F.; et al. 2012 FLEX/Sentinel-3 Tandem Mission Photosynthesis Study; Final Report. ESTEC contract no. 4000106396/12/NL/AF; P & M Technologies: Sault Ste. Marie, ON, Canada, 2014. [Google Scholar]
- Zhang, Y.; Guanter, L.; Berry, J.A.; van der Tol, C.; Joiner, J. Can we retrieve vegetation photosynthetic capacity paramter from solar-induced fluorescence? In Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016; pp. 1711–1713. [Google Scholar] [CrossRef]
- Koffi, E.N.; Rayner, P.J.; Norton, A.J.; Frankenberg, C.; Scholze, M. Investigating the usefulness of satellite-derived fluorescence data in inferring gross primary productivity within the carbon cycle data assimilation system. Biogeosciences 2015, 12, 4067–4084. [Google Scholar] [CrossRef] [Green Version]
- MacBean, N.; Maignan, F.; Bacour, C.; Lewis, P.; Peylin, P.; Guanter, L.; Köhler, P.; Gómez-Dans, J.; Disney, M. Strong constraint on modelled global carbon uptake using solar-induced chlorophyll fluorescence data. Sci. Rep. 2018, 8, 1973. [Google Scholar] [CrossRef] [PubMed]
No. | Year | Date | Day of Year | Count of Soundings | Cropland LC Percent (%) | Local Time of Overpass | Viewing Zenith Angle at Overpass (deg) |
---|---|---|---|---|---|---|---|
1 | 2015 | 30-Jun | 181 | 157 | 89.2 | 13:14:49 | 14.86 |
2 | 2016 | 07-Jul | 168 | 1114 | 97.0 | 13:20:55 | 14.99 |
3 | 2015 | 16-Jun | 188 | 982 | 93.1 | 13:14:03 | 14.99 |
4 | 2015 | 05-Jun | 156 | 1196 | 92.7 | 13:20:48 | 15.77 |
5 | 2016 | 18-Jul | 200 | 44 | 93.6 | 13:13:48 | 16.02 |
6 | 2015 | 29-May | 149 | 36 | 97.3 | 13:14:32 | 16.48 |
7 | 2016 | 25-Jul | 207 | 114 | 87.7 | 13:19:49 | 16.56 |
8 | 2016 | 22-May | 143 | 427 | 96.0 | 13:20:25 | 16.85 |
9 | 2015 | 01-Aug | 213 | 42 | 85.7 | 13:14:36 | 17.87 |
10 | 2016 | 15-May | 136 | 543 | 93.8 | 13:14:41 | 18.29 |
11 1 | 2015 | 08-Aug | 220 | 547 | 87.2 | 13:20:45 | 18.93 |
12 1 | 2015 | 08-Aug | 220 | 1 | 100.0 | 13:21:15 | 20.00 |
13 | 2015 | 18-Apr | 108 | 488 | 97.4 | 13:21:22 | 22.84 |
14 | 2016 | 20-Apr | 111 | 96 | 100.0 | 13:21:00 | 22.93 |
15 | 2016 | 26-Aug | 239 | 1231 | 97.1 | 13:20:06 | 23.38 |
16 | 2016 | 13-Apr | 104 | 1204 | 93.3 | 13:14:32 | 24.28 |
17 | 2015 | 02-Sep | 245 | 538 | 93.2 | 13:14:40 | 25.00 |
18 | 2015 | 11-Apr | 101 | 714 | 83.6 | 13:15:42 | 25.18 |
19 | 2016 | 19-Mar | 79 | 849 | 95.9 | 13:20:52 | 30.50 |
20 | 2016 | 20-Sep | 264 | 958 | 96.4 | 13:13:55 | 30.57 |
21 | 2015 | 17-Mar | 76 | 119 | 100.0 | 13:21:47 | 31.81 |
22 | 2015 | 27-Sep | 270 | 725 | 84.7 | 13:08:36 | 32.85 |
23 | 2015 | 10-Mar | 69 | 1260 | 95.5 | 13:15:40 | 33.57 |
24 | 2016 | 16-Feb | 47 | 519 | 97.4 | 13:20:53 | 38.96 |
25 1 | 2015 | 13-Feb | 44 | 331 | 93.5 | 13:21:41 | 39.54 |
26 1 | 2015 | 13-Feb | 44 | 8 | 100.0 | 13:21:49 | 40.04 |
27 | 2016 | 09-Feb | 40 | 1297 | 96.3 | 13:15:02 | 41.33 |
28 | 2016 | 02-Feb | 33 | 725 | 90.1 | 13:09:04 | 43.10 |
29 | 2016 | 16-Nov | 321 | 368 | 98.4 | 13:09:00 | 45.85 |
30 | 2015 | 14-Jan | 14 | 732 | 85.4 | 13:09:02 | 45.87 |
31 | 2016 | 23-Nov | 328 | 817 | 99.9 | 13:14:49 | 45.93 |
32 | 2016 | 08-Jan | 8 | 1303 | 95.7 | 13:15:20 | 46.89 |
33 | 2015 | 30-Nov | 334 | 555 | 98.4 | 13:09:19 | 47.50 |
34 | 2016 | 18-Dec | 353 | 1207 | 89.7 | 13:09:02 | 47.96 |
35 | 2016 | 01-Jan | 1 | 97 | 97.0 | 13:09:23 | 48.01 |
Models and Model Parameters | Mid-Day | Daily | Monthly | CV (%) | ||||
---|---|---|---|---|---|---|---|---|
Fitted Values | R2 | Fitted Values | R2 | Fitted Values | R2 | |||
OCO-2 SIF model | 26.31 (±3.89) | 0.67 | 29.70 (±2.70) | 0.83 | 28.43 (±2.60) | 0.89 | 6.1 | |
SL-LUE model | 2.51 (±0.47) | 0.51 | 2.33 (±0.21) | 0.81 | 2.50 (±0.32) | 0.80 | 4.1 | |
TL-LUE model | 2.70 (±0.99) | 0.70 | 2.15 (±0.51) | 0.90 | 1.88 (±1.07) | 0.93 | 18.6 | |
4.30 (±3.95) | 4.80 (±1.95) | 8.58 (±4.96) | 39.7 |
Time Scales | Parameters | ECI < 0.8 | ECI > 0.8 | CV (%) |
---|---|---|---|---|
mid-day | 23.09 (±4.67) | 29.28 (±7.6) | 16.7 | |
1.89 (±0.57) | 3.30 (±0.74) | 38.4 | ||
1.05 (±1.04) | 3.79 (±2.08) | 80.0 | ||
7.75 (±3.46) | 1.23 (±10.60) | 102.8 | ||
daily | 28.18 (±2.99) | 30.56 (±3.92) | 5.7 | |
2.11 (±0.34) | 2.48 (±0.30) | 11.5 | ||
1.64 (±0.95) | 2.28 (±0.73) | 23.0 | ||
5.70 (±3.22) | 4.63 (±2.91) | 14.7 | ||
monthly | 22.61 (±10.69) | 31.16 (±5.04) | 22.5 | |
1.26 (±0.49) | 1.97 (±0.84) | 31.0 | ||
1.09 (±2.33) | 0.75 (±0.88) | 26.6 | ||
5.11 (±10.68) | 9.39 (±4.20) | 41.8 |
Scale | Mid-Day | Daily | Monthly | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Models | R2 | RMSE | RRMSE | Bias | R2 | RMSE | NRMSE | Bias | R2 | RMSE | RRMSE | Bias | |
SIF model | 0.59 | 9.23 | 15.61 | 0.55 | 0.77 | 2.50 | 13.49 | 0.84 | 0.94 | 0.59 | 4.06 | 0.98 | |
SL-LUE | 0.42 | 11.32 | 19.15 | 0.31 | 0.71 | 2.82 | 15.21 | 0.63 | 0.84 | 1.10 | 7.57 | 0.63 | |
TL-LUE | 0.68 | 9.03 | 15.28 | 0.50 | 0.83 | 2.51 | 13.54 | 0.75 | 0.98 | 0.65 | 4.47 | 0.91 |
Ecosystem | Time Scale | Slope | R2 | CV of the Slope | |
---|---|---|---|---|---|
This study | maize–wheat rotation | Mid-day | 26.31 (±3.89) | 0.67 | 6.1 |
Daily | 29.70 (±2.70) | 0.83 | |||
monthly | 28.43 (±2.60) | 0.89 | |||
Wood et al. [37] | Corn | Mid-day | 23.2 (±2.8) | 0.81 | 9.0 |
Daily | 19.9 (±0.88) | 0.97 | |||
monthly | 23.5 (±1.15) | 0.98 | |||
Landscape | Mid-day | 15.6 (±2.1) | 0.79 | 5.8 | |
Daily | 14.8 (±1.81) | 0.82 | |||
monthly | 13.9 (±1.3) | 0.92 |
Ecosystem | Models | R2 | RMSE | |
---|---|---|---|---|
This study (maize–wheat rotation) | OCO-2 SIF model | Mid-day | 0.59 | 9.23 |
Daily | 0.77 | 2.50 | ||
monthly | 0.94 | 0.59 | ||
SL-LUE model | Mid-day | 0.42 | 11.32 | |
Daily | 0.71 | 2.82 | ||
monthly | 0.84 | 1.10 | ||
TL-LUE model | Mid-day | 0.68 | 9.03 | |
Daily | 0.83 | 2.51 | ||
monthly | 0.98 | 0.65 | ||
Cui et al. [4] (Maize) | GPP–SIF760 | Half-hour | 0.62 | 20.74 |
GPP–SIF686 | Half-hour | 0.46 | 31.10 | |
MuSyQ-GPP | Half-hour | 0.70 | 21.60 | |
BEPS model | Half-hour | 0.87 | 12.96 | |
Wagle et al. [44] (Maize) | GOME-2 SIF model | 8-day | 0.87 | 2.72 |
VPM model | 8-day | 0.91 | 2.27 | |
SCOPE model | 8-day | 0.95 | 1.58 | |
MOD17A2 | 8-day | 0.47 | 5.30 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, X.; Chen, B.; Zhang, H.; Wang, F.; Chen, J.; Guo, L.; Kong, Y. Effects of the Temporal Aggregation and Meteorological Conditions on the Parameter Robustness of OCO-2 SIF-Based and LUE-Based GPP Models for Croplands. Remote Sens. 2019, 11, 1328. https://doi.org/10.3390/rs11111328
Lin X, Chen B, Zhang H, Wang F, Chen J, Guo L, Kong Y. Effects of the Temporal Aggregation and Meteorological Conditions on the Parameter Robustness of OCO-2 SIF-Based and LUE-Based GPP Models for Croplands. Remote Sensing. 2019; 11(11):1328. https://doi.org/10.3390/rs11111328
Chicago/Turabian StyleLin, Xiaofeng, Baozhang Chen, Huifang Zhang, Fei Wang, Jing Chen, Lifeng Guo, and Yawen Kong. 2019. "Effects of the Temporal Aggregation and Meteorological Conditions on the Parameter Robustness of OCO-2 SIF-Based and LUE-Based GPP Models for Croplands" Remote Sensing 11, no. 11: 1328. https://doi.org/10.3390/rs11111328