Object-Based Time-Constrained Dynamic Time Warping Classification of Crops Using Sentinel-2
"> Figure 1
<p>Test area locations in California (first test area (TA1)) (<b>a</b>) and Texas (second test area (TA2)) (<b>b</b>). The false color composites for TA1 (1 May 2017) and TA2 (20 July 2017) are depicted in (<b>c</b>) and (<b>d</b>), respectively.</p> "> Figure 2
<p>Timeline of the two satellite image time series (SITS) used, composed of Sentinel-2A and 2B images with an irregular temporal distribution.</p> "> Figure 3
<p>Workflow of our object-based dynamic time warping (DTW) classifications using multiple vegetation indices extracted from Sentinel-2 SITS, as shown in <a href="#remotesensing-11-01257-t001" class="html-table">Table 1</a>.</p> "> Figure 4
<p>The temporal patterns of the classes analyzed for TA1, with values of five vegetation indices shown on the vertical axis. We analyzed a single agricultural year, the horizontal axis shows the day-of-the-time-series, namely from 23 September 2016 to 23 September 2017 (365 days). Two temporal patterns were identified for alfalfa (1 and 2). The vegetation indices are the Normalized Difference Vegetation Index (NDVI), Green Normalized Difference Vegetation Index (GNDVI), Normalized Difference Red-Edge (NDRE), Soil Adjusted Vegetation Index (SAVI), and Normalized Difference Water Index (NDWI), derived as shown in <a href="#remotesensing-11-01257-t001" class="html-table">Table 1</a>.</p> "> Figure 5
<p>The temporal patterns of the classes analyzed for TA2, with values of five vegetation indices shown on the vertical axis (NDVI, GNDVI, NDRE, SAVI, and NDWI). We analyzed a single agricultural year, the horizontal axis shows the day-of-the-time-series, namely from 18 October 2016 to 2 November 2017 (380 days). Two temporal patterns were identified for winter wheat (wheat 1 and 2).</p> "> Figure 6
<p>Comparison between two sequences: (<b>a</b>) while Euclidean distance is time-rigid, (<b>b</b>) the dynamic time warping (DTW) is time-flexible in dealing with possible time distortion between the sequences. This flexibility is desirable for crop mapping, to deal with the intra-class phenological discrepancies caused by different environmental conditions.</p> "> Figure 7
<p>Computing the alignment between two sequences of TA1 (<b>a</b>) and TA2 (<b>b</b>). The vertical and horizontal values represent the date of an image from SITS, starting from 1 to 365 for TA1 and from 1 to 380 for TA2. Indices <span class="html-italic">i</span> and <span class="html-italic">j</span> are used to parse the matrix by line and by column, respectively. In these two examples, a maximum time delay, <span class="html-italic">w</span>, of 45 days is depicted, meaning that only the elements of the matrix who fall within this condition (orange) are computed. With black dots is represented the main diagonal of the DTW matrix (resembling Euclidean distance). After computing the matrix from upper left to lower right, the last element of the matrix, <span class="html-italic">m[S,T]</span>, is returned, as a measure of DTW dissimilarity between the two compared sequences.</p> "> Figure 8
<p>Best classification results for single-band (<b>a</b>) and multi-band DTW (<b>b</b>) for TA1 using in both cases a time constraint of 30 days (DTW30). Best classification results for single-band (<b>c</b>) and multi-band DTW (<b>d</b>) for TA2 using 45- and 30-day time constraints, respectively (DTW45 and DTW 30). For clarity, the developed/low to medium intensity areas are masked with white.</p> "> Figure 9
<p>DTW dissimilarity values for single-band (<b>a</b>) and multi-band DTW (<b>b</b>) for TA1 using in both cases a time constraint of 30 days (DTW30). DTW dissimilarity values for single-band DTW45 (<b>c</b>) and multi-band DTW30 (<b>d</b>) for TA2 using 45- and 30-day time constraints, respectively. For clarity, the developed/low to medium intensity areas are masked with white.</p> "> Figure 10
<p>DTW dissimilarity values scatter plots computed for each class for the single-band DTW30 of California, with R<sup>2</sup> values in the upper left of the diagonal. Classes analyzed are wheat, alfalfa1, alfalfa2, other hay/non-alfalfa, sugarbeets, onions, sod/grass seed, fallow/idle cropland, vegetables, and water.</p> "> Figure 11
<p>DTW dissimilarity values scatter plots computed for each class for the single-band DTW45 of Texas, with R<sup>2</sup> values in the upper left of the diagonal. Classes analyzed are corn, cotton, winter wheat1, winter wheat2, alfalfa, fallow/idle cropland, grass/pasture, and double crop.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Areas and Datasets
2.1.1. Study Areas
2.1.2. Sentinel-2 Satellite Image Time Series
2.1.3. Vegetation Indices Extracted from Sentinel-2 Images
2.1.4. Reference and Validation Samples
2.1.5. Temporal Patterns of Reference Samples
2.2. Segmentation of Time Series
2.2.1. Multiresolution Segmentation of SITS
2.2.2. Segmentation Accuracy Assessment
2.3. Dynamic Time Warping
2.3.1. Theoretical Background
2.3.2. Time-Constrained DTW
Algorithm 1. Computation of time-constrained DTW matrix. | |
#compute difference in time between the ith and jth images | |
#maximum time delay for the warping path | |
#compute first element of the matrixh | |
#compute the rest of the first line of the matrix | |
#verify if the time difference falls within the allowed w | |
#compute the rest of the matrix, line by line, within w size | |
#return the last element of the matrix, as DTW dissimilarity |
2.3.3. Implementation of the Object-based DTW for SITS
2.3.4. Classification Accuracy
3. Results
3.1. Segmentation Results
3.2. Overall Classification Accuracies
3.3. User’s and Producer’s Accuracies
3.4. DTW Dissimilarity Results
3.5. Evaluation of Combined Uncertainties
4. Discussion
4.1. Segmentation of SITS
4.2. The Importance of Time Constraints in DTW for Crop Mapping
4.3. The Advantages of DTW
4.4. Single-band and Multi-band DTW
4.5. DTW Dissimilarity and Classification Accuracies
4.6. Limitations and Future Developments
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gibbs, H.K.; Ruesch, A.S.; Achard, F.; Clayton, M.K.; Holmgren, P.; Ramankutty, N.; Foley, J.A. Tropical Forests were the Primary Sources of New Agricultural Land in the 1980s and 1990s. Proc. Natl. Acad. Sci. USA 2010, 107, 16732–16737. [Google Scholar] [CrossRef] [PubMed]
- Deininger, K.; Byerlee, D. The Rise of Large Farms in Land Abundant Countries: Do they have a Future? Policy Research Working Papers; The World Bank: Washington, DC, USA, 2011. [Google Scholar]
- Alexandratos, N.; Bruinsma, J. World Agriculture towards 2030/2050: The 2012 Revision; ESA Working Paper; FAO: Rome, Italy, 2012. [Google Scholar]
- Foley, J.A.; Defries, R.; Asner, G.P.; Barford, C.; Bonan, G.; Carpenter, S.R.; Chapin, F.S.; Coe, M.T.; Daily, G.C.; Gibbs, H.K.; et al. Global Consequences of Land Use. Science 2005, 309, 570–574. [Google Scholar] [CrossRef] [Green Version]
- Atzberger, C. Advances in Remote Sensing of Agriculture: Context Description, Existing Operational Monitoring Systems and Major Information Needs. Remote Sens. 2013, 5, 949–981. [Google Scholar] [CrossRef] [Green Version]
- Bégué, A.; Arvor, D.; Bellon, B.; Betbeder, J.; De Abelleyra, D.; P. D. Ferraz, R.; Lebourgeois, V.; Lelong, C.; Simões, M.; R. Verón, S. Remote Sensing and Cropping Practices: A Review. Remote Sens. 2018, 10, 99. [Google Scholar]
- Justice, C.O.; Townshend, J.R.G.; Vermote, E.F.; Masuoka, E.; Wolfe, R.E.; Saleous, N.; Roy, D.P.; Morisette, J.T. An Overview of MODIS Land Data Processing and Product Status. Remote Sens. Environ. 2002, 83, 3–15. [Google Scholar] [CrossRef]
- Wulder, M.A.; White, J.C.; Loveland, T.R.; Woodcock, C.E.; Belward, A.S.; Cohen, W.B.; Fosnight, E.A.; Shaw, J.; Masek, J.G.; Roy, D.P. The Global Landsat Archive: Status, Consolidation, and Direction. Remote Sens. Environ. 2016, 185, 271–283. [Google Scholar] [CrossRef]
- Yan, L.; Roy, D.P. Automated Crop Field Extraction from Multi-temporal Web Enabled Landsat Data. Remote Sens. Environ. 2014, 144, 42–64. [Google Scholar] [CrossRef]
- Chen, J.; Dowman, I.; Li, S.; Li, Z.; Madden, M.; Mills, J.; Paparoditis, N.; Rottensteiner, F.; Sester, M.; Toth, C.; et al. Information from Imagery: ISPRS Scientific Vision and Research Agenda. ISPRS J. Photogramm. Remote Sens. 2016, 115, 3–21. [Google Scholar] [CrossRef]
- Petitjean, F.; Inglada, J.; Gancarski, P. Satellite Image Time Series Analysis Under Time Warping. IEEE Trans. Geosci. Remote Sens. 2012, 50, 3081–3095. [Google Scholar] [CrossRef]
- Verbesselt, J.; Hyndman, R.; Newnham, G.; Culvenor, D. Detecting Trend and Seasonal Changes in Satellite Image Time Series. Remote Sens. Environ. 2010, 114, 106–115. [Google Scholar] [CrossRef]
- Jönsson, P.; Eklundh, L. TIMESAT—A Program for Analyzing Time-Series of Satellite Sensor Data. Comput. Geosci. 2004, 30, 833–845. [Google Scholar] [CrossRef]
- Eerens, H.; Haesen, D.; Rembold, F.; Urbano, F.; Tote, C.; Bydekerke, L. Image Time Series Processing for Agriculture Monitoring. Environ. Model. Softw. 2014, 53, 154–162. [Google Scholar] [CrossRef]
- Jonsson, P.; Eklundh, L. Seasonality Extraction by Function Fitting to Time-Series of Satellite Sensor Data. IEEE Trans. Geosci. Remote Sens. 2002, 40, 1824–1832. [Google Scholar] [CrossRef]
- Verbesselt, J.; Hyndman, R.; Zeileis, A.; Culvenor, D. Phenological Change Detection while Accounting for Abrupt and Gradual Trends in Satellite Image Time Series. Remote Sens. Environ. 2010, 114, 2970–2980. [Google Scholar] [CrossRef]
- Roerink, G.J.; Menenti, M.; Verhoef, W. Reconstructing Cloudfree NDVI Composites using Fourier Analysis of Time Series. Int. J. Remote Sens. 2000, 21, 1911–1917. [Google Scholar] [CrossRef]
- Maus, V.; Câmara, G.; Cartaxo, R.; Sanchez, A.; Ramos, F.M.; de Queiroz, G.R. A Time–Weighted Dynamic Time Warping Method for Land Use and Land Cover Mapping. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 3729–3739. [Google Scholar] [CrossRef]
- Zhong, L.; Hu, L.; Yu, L.; Gong, P.; Biging, G.S. Automated Mapping of Soybean and Corn using Phenology. ISPRS J. Photogramm. Remote Sens. 2016, 119, 151–164. [Google Scholar] [CrossRef]
- Waldner, F.; Canto, G.S.; Defourny, P. Automated Annual Cropland Mapping using Knowledge based Temporal Features. ISPRS J. Photogramm. Remote Sens. 2015, 110, 1–13. [Google Scholar] [CrossRef]
- Arvor, D.; Meirelles, M.; Dubreuil, V.; Bégué, A.; Shimabukuro, Y.E. Analyzing the Agricultural Transition in Mato Grosso, Brazil, using Satellite derived Indices. Appl. Geogr. 2012, 32, 702–713. [Google Scholar] [CrossRef]
- Kennedy, R.E.; Yang, Z.; Cohen, W.B. Detecting Trends in Forest Disturbance and Recovery using Yearly Landsat Time Series: 1. LandTrendr—Temporal Segmentation Algorithms. Remote Sens. Environ. 2010, 114, 2897–2910. [Google Scholar] [CrossRef]
- Sakoe, H.; Chiba, S. Dynamic Programming Algorithm Optimization for Spoken Word Recognition. IEEE Trans. Acoust. 1978, 26, 43–49. [Google Scholar] [CrossRef]
- Petitjean, F.; Weber, J. Efficient Satellite Image Time Series Analysis Under Time Warping. IEEE Geosci. Remote Sens. Lett. 2014, 11, 1143–1147. [Google Scholar] [CrossRef]
- Maus, V.; Camara, G.; Appel, M.; Pebesma, E. dtwSat: Time-Weighted Dynamic Time Warping for Satellite Image Time Series Analysis in R. J. Stat. Softw. 2019, 88, 1–31. [Google Scholar] [CrossRef]
- Belgiu, M.; Csillik, O. Sentinel-2 Cropland Mapping using Pixel-based and Object-based Time-Weighted Dynamic Time Warping Analysis. Remote Sens. Environ. 2018, 204, 509–523. [Google Scholar] [CrossRef]
- Rabiner, L.R.; Juang, B.-H.; Rutledge, J.C. Fundamentals of Speech Recognition; PTR Prentice Hall Englewood Cliffs: Upper Saddle River, NJ, USA, 1993; Volume 14. [Google Scholar]
- Ratanamahatana, C.A.; Keogh, E. Everything You Know about Dynamic Time Warping is Wrong. In Proceedings of the Third Workshop on Mining Temporal and Sequential Data, Seattle, WA, USA, 22 August 2004; Citeseer: University Park, PA, USA, 2004; Volume 32. [Google Scholar]
- Petitjean, F.; Ketterlin, A.; Gançarski, P. A Global Averaging Method for Dynamic Time Warping, with Applications to Clustering. Pattern Recognit. 2011, 44, 678–693. [Google Scholar] [CrossRef]
- Esling, P.; Agon, C. Time-Series Data Mining. ACM Comput. Surv. 2012, 45, 12:1–12:34. [Google Scholar] [CrossRef]
- Baumann, M.; Ozdogan, M.; Richardson, A.D.; Radeloff, V.C. Phenology from Landsat when Data is Scarce: Using MODIS and Dynamic Time-Warping to Combine Multi-year Landsat Imagery to Derive Annual Phenology Curves. Int. J. Appl. Earth Obs. Geoinf. 2017, 54, 72–83. [Google Scholar] [CrossRef]
- Gómez, C.; White, J.C.; Wulder, M.A.; Alejandro, P. Integrated Object-Based Spatiotemporal Characterization of Forest Change from an Annual Time Series of Landsat Image Composites. Can. J. Remote Sens. 2015, 41, 271–292. [Google Scholar] [CrossRef]
- Xue, Z.; Du, P.; Feng, L. Phenology-Driven Land Cover Classification and Trend Analysis Based on Long-term Remote Sensing Image Series. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 1142–1156. [Google Scholar] [CrossRef]
- Guan, X.; Huang, C.; Liu, G.; Meng, X.; Liu, Q. Mapping Rice Cropping Systems in Vietnam Using an NDVI-Based Time-Series Similarity Measurement Based on DTW Distance. Remote Sens. 2016, 8, 19. [Google Scholar] [CrossRef]
- Camara, G.; Assis, L.F.; Ribeiro, G.; Ferreira, K.R.; Llapa, E.; Vinhas, L. Big Earth Observation Data Analytics: Matching Requirements to System Architectures. In Proceedings of the 5th ACM SIGSPATIAL International Workshop on Analytics for Big Geospatial Data, Burlingame, CA, USA, 31 October–3 November 2016; ACM: New York, NY, USA, 2016; pp. 1–6. [Google Scholar]
- Blaschke, T.; Hay, G.J.; Kelly, M.; Lang, S.; Hofmann, P.; Addink, E.; Feitosa, R.Q.; Van der Meer, F.; Van der Werff, H.; Van Coillie, F.; et al. Geographic Object-Based Image Analysis—Towards a New Paradigm. ISPRS J. Photogramm. Remote Sens. 2014, 87, 180–191. [Google Scholar] [CrossRef] [PubMed]
- Bunting, P.; Clewley, D.; Lucas, R.M.; Gillingham, S. The Remote Sensing and GIS Software Library (RSGISLib). Comput. Geosci. 2014, 62, 216–226. [Google Scholar] [CrossRef]
- Körting, T.S.; Garcia Fonseca, L.M.; Câmara, G. GeoDMA—Geographic Data Mining Analyst. Comput. Geosci. 2013, 57, 133–145. [Google Scholar] [CrossRef]
- Trimble, T. ECognition Developer 9.4 Reference Book; Trimble Germany GmbH: Munich, Germany, 2018. [Google Scholar]
- Messer, C.; Stock, C.; Averill, T. California Agricultural Statistics Review 2015–2016; California Department of Food and Agriculture: Sacramento, CA, USA, 2016.
- Boryan, C.; Yang, Z.; Mueller, R.; Craig, M. Monitoring US agriculture: The US Department of Agriculture, National Agricultural Statistics Service, Cropland Data Layer Program. Geocarto Int. 2011, 26, 341–358. [Google Scholar] [CrossRef]
- Han, W.; Yang, Z.; Di, L.; Mueller, R. CropScape: A Web Service based Application for Exploring and Disseminating US Conterminous Geospatial Cropland Data Products for Decision Support. Comput. Electron. Agric. 2012, 84, 111–123. [Google Scholar] [CrossRef]
- Muller-Wilm, U.; Louis, J.; Richter, R.; Gascon, F.; Niezette, M. Sentinel-2 Level 2A Prototype Processor: Architecture, Algorithms and First Results. In Proceedings of the ESA Living Planet Symposium, Edinburgh, UK, 9–13 September 2013; pp. 9–13. [Google Scholar]
- Louis, J.; Debaecker, V.; Pflug, B.; Main-Knorn, M.; Bieniarz, J.; Mueller-Wilm, U.; Cadau, E.; Gascon, F. Sentinel-2 Sen2Cor: L2A Processor for Users. In Proceedings of the Living Planet Symposium, Prague, Czech Republic, 9–13 May 2016; pp. 9–13. [Google Scholar]
- Tucker, C.J. Red and Photographic Infrared Linear Combinations for Monitoring Vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the Radiometric and Biophysical Performance of the MODIS Vegetation Indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Kaufman, Y.J.; Merzlyak, M.N. Use of a Green Channel in Remote Sensing of Global Vegetation from EOS-MODIS. Remote Sens. Environ. 1996, 58, 289–298. [Google Scholar] [CrossRef]
- Frampton, W.J.; Dash, J.; Watmough, G.; Milton, E.J. Evaluating the Capabilities of Sentinel-2 for Quantitative Estimation of Biophysical Variables in Vegetation. ISPRS J. Photogramm. Remote Sens. 2013, 82, 83–92. [Google Scholar] [CrossRef]
- Gitelson, A.; Merzlyak, M.N. Spectral Reflectance Changes Associated with Autumn Senescence of Aesculus hippocastanum L. and Acer platanoides L. Leaves. Spectral Features and Relation to Chlorophyll Estimation. J. Plant Physiol. 1994, 143, 286–292. [Google Scholar] [CrossRef]
- Sims, D.A.; Gamon, J.A. Relationships between Leaf Pigment Content and Spectral Reflectance across a Wide Range of Species, Leaf Structures and Developmental Stages. Remote Sens. Environ. 2002, 81, 337–354. [Google Scholar] [CrossRef]
- Huete, A.R. A Soil-Adjusted Vegetation Index (SAVI). Remote Sens. Environ. 1988, 25, 295–309. [Google Scholar] [CrossRef]
- Gao, B.-C. NDWI—A Normalized Difference Water Index for Remote Sensing of Vegetation Liquid Water from Space. Remote Sens. Environ. 1996, 58, 257–266. [Google Scholar] [CrossRef]
- Ferrant, S.; Selles, A.; Le Page, M.; Herrault, P.-A.; Pelletier, C.; Al-Bitar, A.; Mermoz, S.; Gascoin, S.; Bouvet, A.; Saqalli, M.; et al. Detection of Irrigated Crops from Sentinel-1 and Sentinel-2 Data to Estimate Seasonal Groundwater Use in South India. Remote Sens. 2017, 9, 1119. [Google Scholar] [CrossRef]
- Baatz, M.; Schäpe, A. Multiresolution Segmentation: An Optimization Approach for High Quality Multi-scale Image Segmentation. In Angewandte Geographische Informationsverarbeitung; Strobl, J., Blaschke, T., Griesebner, G., Eds.; Herbert Wichmann Verlag: Berlin, Germany, 2000; Volume 12, pp. 12–23. [Google Scholar]
- Drăguţ, L.; Csillik, O.; Eisank, C.; Tiede, D. Automated Parameterisation for Multi-scale Image Segmentation on Multiple Layers. ISPRS J. Photogramm. Remote Sens. 2014, 88, 119–127. [Google Scholar] [CrossRef]
- Drǎguţ, L.; Tiede, D.; Levick, S.R. ESP: A Tool to Estimate Scale Parameter for Multiresolution Image Segmentation of Remotely Sensed Data. Int. J. Geogr. Inf. Sci. 2010, 24, 859–871. [Google Scholar] [CrossRef]
- Woodcock, C.E.; Strahler, A.H. The Factor of Scale in Remote Sensing. Remote Sens. Environ. 1987, 21, 311–332. [Google Scholar] [CrossRef]
- Eisank, C.; Smith, M.; Hillier, J. Assessment of Multiresolution Segmentation for Delimiting Drumlins in Digital Elevation Models. Geomorphology 2014, 214, 452–464. [Google Scholar] [CrossRef] [PubMed]
- Whiteside, T.G.; Maier, S.W.; Boggs, G.S. Area-based and Location-based Validation of Classified Image Objects. Int. J. Appl. Earth Obs. Geoinf. 2014, 28, 117–130. [Google Scholar] [CrossRef]
- Lucieer, A.; Stein, A. Existential Uncertainty of Spatial Objects Segmented from Satellite Sensor Imagery. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2518–2521. [Google Scholar] [CrossRef]
- Clinton, N.; Holt, A.; Scarborough, J.; Yan, L.I.; Gong, P. Accuracy Assessment Measures for Object-Based Image Segmentation Goodness. Photogramm. Eng. Remote Sens. 2010, 76, 289–299. [Google Scholar] [CrossRef]
- Winter, S. Location Similarity of Regions. ISPRS J. Photogramm. Remote Sens. 2000, 55, 189–200. [Google Scholar] [CrossRef]
- Zhang, Z.; Tang, P.; Huo, L.; Zhou, Z. MODIS NDVI Time Series Clustering under Dynamic Time Warping. Int. J. Wavelets Multiresolution Inf. Process. 2014, 12, 1461011. [Google Scholar] [CrossRef]
- Lhermitte, S.; Verbesselt, J.; Verstraeten, W.W.; Coppin, P. A Comparison of Time Series Similarity Measures for Classification and Change Detection of Ecosystem Dynamics. Remote Sens. Environ. 2011, 115, 3129–3152. [Google Scholar] [CrossRef]
- Fu, A.W.-C.; Keogh, E.; Lau, L.Y.; Ratanamahatana, C.A.; Wong, R.C.-W. Scaling and Time Warping in Time Series Querying. VLDB J. 2008, 17, 899–921. [Google Scholar] [CrossRef]
- Itakura, F. Minimum Prediction Residual Principle Applied to Speech Recognition. IEEE Trans. Acoust. 1975, 23, 67–72. [Google Scholar] [CrossRef]
- Bennett, N.D.; Croke, B.F.W.; Guariso, G.; Guillaume, J.H.A.; Hamilton, S.H.; Jakeman, A.J.; Marsili-Libelli, S.; Newham, L.T.H.; Norton, J.P.; Perrin, C.; et al. Characterising Performance of Environmental Models. Environ. Model. Softw. 2013, 40, 1–20. [Google Scholar] [CrossRef]
- Congalton, R.G.; Green, K. Assessing the Accuracy of Remotely Sensed Data: Principles and Practices; CRC Press: Boca Raton, FL, USA, 2008. [Google Scholar]
- Congalton, R.G. A Review of Assessing the Accuracy of Classifications of Remotely Sensed Data. Remote Sens. Environ. 1991, 37, 35–46. [Google Scholar] [CrossRef]
- USDA. National Agricultural Statistics Service, Cropland Data Layer; USDA: Washington, DC, USA, 2017.
- Arvor, D.; Durieux, L.; Andrés, S.; Laporte, M.-A. Advances in Geographic Object-Based Image Analysis with Ontologies: A Review of Main Contributions and Limitations from a Remote Sensing Perspective. ISPRS J. Photogramm. Remote Sens. 2013, 82, 125–137. [Google Scholar] [CrossRef]
- Neubert, M.; Herold, H.; Meinel, G. Assessing Image Segmentation Quality—Concepts, Methods and Application. In Object-Based Image Analysis; Springer: Berlin/Heidelberg, Germany, 2008; pp. 769–784. [Google Scholar]
- Yan, L.; Roy, D.P. Conterminous United States Crop Field Size Quantification from Multi-Temporal Landsat Data. Remote Sens. Environ. 2016, 172, 67–86. [Google Scholar] [CrossRef]
- Csillik, O. Fast Segmentation and Classification of Very High Resolution Remote Sensing Data Using SLIC Superpixels. Remote Sens. 2017, 9, 243. [Google Scholar] [CrossRef]
- Heydari, S.S.; Mountrakis, G. Effect of Classifier Selection, Reference Sample Size, Reference Class Distribution and Scene Heterogeneity in Per-pixel Classification Accuracy using 26 Landsat Sites. Remote Sens. Environ. 2018, 204, 648–658. [Google Scholar] [CrossRef]
- Petitjean, F.; Kurtz, C.; Passat, N.; Gançarski, P. Spatio-Temporal Reasoning for the Classification of Satellite Image Time Series. Pattern Recognit. Lett. 2012, 33, 1805–1815. [Google Scholar] [CrossRef]
- Matton, N.; Canto, G.S.; Waldner, F.; Valero, S.; Morin, D.; Inglada, J.; Arias, M.; Bontemps, S.; Koetz, B.; Defourny, P. An Automated Method for Annual Cropland Mapping along the Season for Various Globally Distributed Agrosystems Using High Spatial and Temporal Resolution Time Series. Remote Sens. 2015, 7, 13208–13232. [Google Scholar] [CrossRef]
- Peña-Barragán, J.M.; Ngugi, M.K.; Plant, R.E.; Six, J. Object-Based Crop Identification using Multiple Vegetation Indices, Textural Features and Crop Phenology. Remote Sens. Environ. 2011, 115, 1301–1316. [Google Scholar] [CrossRef]
- Curran, P.J.; Dungan, J.L.; Gholz, H.L. Exploring the Relationship Between Reflectance Red Edge and Chlorophyll Content in Slash Pine. Tree Physiol. 1990, 7, 33–48. [Google Scholar] [CrossRef]
- Horler, D.N.H.; Dockray, M.; Barber, J. The Red Edge of Plant Leaf Reflectance. Int. J. Remote Sens. 1983, 4, 273–288. [Google Scholar] [CrossRef]
- Delegido, J.; Verrelst, J.; Alonso, L.; Moreno, J. Evaluation of Sentinel-2 Red-Edge Bands for Empirical Estimation of Green LAI and Chlorophyll Content. Sensors 2011, 11, 7063–7081. [Google Scholar] [CrossRef] [Green Version]
- Herrmann, I.; Pimstein, A.; Karnieli, A.; Cohen, Y.; Alchanatis, V.; Bonfil, D.J. LAI Assessment of Wheat and Potato Crops by VENμS and Sentinel-2 Bands. Remote Sens. Environ. 2011, 115, 2141–2151. [Google Scholar] [CrossRef]
- Clevers, J.G.P.W.; Gitelson, A.A. Remote Estimation of Crop and Grass Chlorophyll and Nitrogen Content using Red-Edge Bands on Sentinel-2 and -3. Int. J. Appl. Earth Obs. Geoinf. 2013, 23, 344–351. [Google Scholar] [CrossRef]
- Immitzer, M.; Vuolo, F.; Atzberger, C. First Experience with Sentinel-2 Data for Crop and Tree Species Classifications in Central Europe. Remote Sens. 2016, 8, 166. [Google Scholar] [CrossRef]
- Chrysafis, I.; Mallinis, G.; Siachalou, S.; Patias, P. Assessing the Relationships Between Growing Stock Volume and Sentinel-2 Imagery in a Mediterranean Forest Ecosystem. Remote Sens. Lett. 2017, 8, 508–517. [Google Scholar] [CrossRef]
- Foody, G.M. Status of Land Cover Classification Accuracy Assessment. Remote Sens. Environ. 2002, 80, 185–201. [Google Scholar] [CrossRef]
- Olofsson, P.; Foody, G.M.; Stehman, S.V.; Woodcock, C.E. Making Better Use of Accuracy Data in Land Change Studies: Estimating Accuracy and Area and Quantifying Uncertainty using Stratified Estimation. Remote Sens. Environ. 2013, 129, 122–131. [Google Scholar] [CrossRef]
- Zhao, Y.; Gong, P.; Yu, L.; Hu, L.; Li, X.; Li, C.; Zhang, H.; Zheng, Y.; Wang, J.; Zhao, Y.; et al. Towards a Common Validation Sample Set for Global Land-Cover Mapping. Int. J. Remote Sens. 2014, 35, 4795–4814. [Google Scholar] [CrossRef]
- Congalton, R.G.; Gu, J.; Yadav, K.; Thenkabail, P.; Ozdogan, M. Global Land Cover Mapping: A Review and Uncertainty Analysis. Remote Sens. 2014, 6, 12070–12093. [Google Scholar] [CrossRef] [Green Version]
- Lambert, M.-J.; Traoré, P.C.S.; Blaes, X.; Baret, P.; Defourny, P. Estimating Smallholder Crops Production at Village Level from Sentinel-2 Time Series in Mali’s Cotton Belt. Remote Sens. Environ. 2018, 216, 647–657. [Google Scholar] [CrossRef]
- Zhao, Y.; Lin, L.; Lu, W.; Meng, Y. Landsat Time Series Clustering under Modified Dynamic Time Warping. In Proceedings of the 2016 4th International Workshop on Earth Observation and Remote Sensing Applications (EORSA), Guangzhou, China, 4–6 July 2016; pp. 62–66. [Google Scholar]
- Salvador, S.; Chan, P. Toward Accurate Dynamic Time Warping in Linear Time and Space. Intell. Data Anal. 2007, 11, 561–580. [Google Scholar] [CrossRef]
- Keogh, E.; Ratanamahatana, C.A. Exact Indexing of Dynamic Time Warping. Knowl. Inf. Syst. 2005, 7, 358–386. [Google Scholar] [CrossRef]
- Sinclair, T.R.; Seligman, N. Criteria for Publishing Papers on Crop Modeling. Field Crops Res. 2000, 68, 165–172. [Google Scholar] [CrossRef]
- Li, Z.; Zhu, Q.; Gold, C. Digital Terrain Modeling: Principles and Methodology; CRC Press: Boca Raton, FL, USA, 2004. [Google Scholar]
Name | Description | Equation | Range |
---|---|---|---|
NDVI | Normalized Difference Vegetation Index | (B8 − B4) / (B8 + B4) | [−1, 1] |
GNDVI | Green Normalized Difference Vegetation Index | (B8 − B3) / (B8 + B3) | [−1, 1] |
NDRE | Normalized Difference Red-Edge | (B6 − B5) / (B6 + B5) | [−1, 1] |
SAVI | Soil Adjusted Vegetation Index | ((B8 − B4) / (B8 + B4 + 0.5)) × (1 + 0.5) | [−1, 1] |
NDWI | Normalized Difference Water Index | (B8A − B11) / (B8A + B11) | [−1, 1] |
California (TA1) | Texas (TA2) | ||||
---|---|---|---|---|---|
Class | Ref. | Valid. | Class | Ref. | Valid. |
Wheat | 3 | 48 | Corn | 3 | 287 |
Alfalfa | 3, 3 | 569 | Cotton | 3 | 122 |
Other hay/non-alfalfa | 3 | 116 | Winter wheat | 3, 3 | 171 |
Sugarbeets | 3 | 70 | Alfalfa | 3 | 34 |
Onions | 3 | 98 | Fallow/idle cropland | 3 | 41 |
Sod/grass seed | 3 | 82 | Grass/pasture | 3 | 129 |
Fallow/idle cropland | 3 | 76 | Double crop | 3 | 60 |
Vegetables | 3 | 47 | |||
Water | 3 | 30 | |||
Total | 30 | 1136 | Total | 24 | 844 |
Measure | Equation | Ideal Value | Range |
---|---|---|---|
Over-segmentation | 0 | [0, 1] | |
Under-segmentation | 0 | [0, 1] | |
Area fit index | 0 | OS: AFI > 0; US: AFI < 0 | |
Root mean square | 0 | [0, 1] | |
Quality rate | 1 | [0, 1] |
Test Area | SP | Objects | OS | US | AFI | D | QR |
---|---|---|---|---|---|---|---|
TA1 | 241 | 3492 | 0.05 | 0.04 | 0.01 | 0.05 | 0.91 |
TA2 | 307 | 1585 | 0.16 | 0.02 | 0.14 | 0.11 | 0.82 |
Test Area | DTW Type | DTW0 (%) | DTW15 (%) | DTW30 (%) | DTW45 (%) | DTW60 (%) | DTWFull (%) |
---|---|---|---|---|---|---|---|
TA1 | single-band | 75.2 | 77.7 | 79.5 | 79.5 | 76.6 | 72.3 |
multi-band | 76.1 | 80.3 | 85.6 | 85.6 | 84.3 | 82.3 | |
TA2 | single-band | 86.8 | 86.7 | 87.8 | 89.1 | 88.6 | 82.3 |
multi-band | 86.1 | 86.1 | 87.6 | 86.0 | 85.5 | 83.3 |
Crop | Single-Band DTW30 | Multi-Band DTW30 | ||
---|---|---|---|---|
UA | PA | UA | PA | |
Wheat | 56.5 | 81.3 | 82.0 | 85.4 |
Alfalfa | 98.2 | 77.7 | 98.8 | 85.4 |
Other hay/non-alfalfa | 65.9 | 78.4 | 74.4 | 75.0 |
Sugarbeets | 69.6 | 91.4 | 77.3 | 97.1 |
Onions | 88.4 | 85.7 | 91.8 | 90.8 |
Sod/grass seed | 82.4 | 51.2 | 77.9 | 64.6 |
Fallow/idle cropland | 86.4 | 100 | 92.7 | 100 |
Vegetables | 33.8 | 97.8 | 39.1 | 97.8 |
Water | 100 | 63.3 | 100 | 86.7 |
Crop | Single-Band DTW45 | Multi-Band DTW30 | ||
---|---|---|---|---|
UA | PA | UA | PA | |
Corn | 96.0 | 92.3 | 96.5 | 86.8 |
Cotton | 88.6 | 82.8 | 72.4 | 92.6 |
Wheat | 98.1 | 90.6 | 98.0 | 87.1 |
Alfalfa | 87.2 | 100 | 85.0 | 100 |
Fallow/idle cropland | 66.7 | 48.8 | 55.8 | 58.5 |
Grass/pasture | 77.3 | 97.7 | 84.0 | 97.7 |
Double crop | 79.7 | 85.0 | 97.8 | 73.3 |
CropScape | Single-band DTW30 | Multi-band DTW30 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Crop | UA* | PA* | UA | UA+ | PA | PA+ | UA | UA+ | PA | PA+ |
Wheat | 27.6 | 31.9 | 43.5 | 51.5 | 18.7 | 37.0 | 18.0 | 33.0 | 14.6 | 35.1 |
Alfalfa | 12.5 | 8.4 | 1.8 | 12.6 | 22.3 | 23.8 | 1.2 | 12.6 | 14.6 | 16.8 |
Other hay | 34.5 | 46.4 | 34.1 | 48.5 | 21.6 | 51.2 | 25.6 | 43.0 | 25.0 | 52.7 |
Sugarbeets | 14.0 | 53.3 | 30.4 | 33.5 | 8.6 | 54.0 | 22.7 | 26.7 | 2.9 | 53.4 |
Onions | 28.6 | 21.4 | 11.6 | 30.9 | 14.3 | 25.7 | 8.2 | 29.8 | 9.2 | 23.3 |
Sod | 34.7 | 52.8 | 17.6 | 38.9 | 48.8 | 71.9 | 22.1 | 41.1 | 35.4 | 63.6 |
Fallow | 19.5 | 19.2 | 13.6 | 23.8 | 0 | 19.2 | 7.3 | 20.8 | 0 | 19.2 |
Vegetables | 79.9 | 54.9 | 66.2 | 103.8 | 2.2 | 54.9 | 60.9 | 100.5 | 2.2 | 54.9 |
Water | 7 | 7.8 | 0 | 7.0 | 36.7 | 37.5 | 0 | 7.0 | 13.3 | 15.4 |
CropScape | Single-band DTW45 | Multi-band DTW30 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Crop | UA* | PA* | UA | UA+ | PA | PA+ | UA | UA+ | PA | PA+ |
Corn | 9.7 | 16.2 | 4.0 | 10.5 | 7.7 | 17.9 | 3.5 | 10.3 | 13.2 | 20.9 |
Cotton | 16.6 | 10.7 | 13.4 | 21.3 | 17.2 | 20.3 | 27.6 | 32.2 | 7.4 | 13.0 |
Wheat | 16.9 | 13.5 | 1.9 | 17.0 | 9.4 | 16.5 | 2.0 | 17.0 | 12.9 | 18.7 |
Alfalfa | 13.0 | 26.1 | 12.8 | 18.2 | 0 | 26.1 | 15.0 | 19.8 | 0 | 26.1 |
Fallow | 30.5 | 57.0 | 33.3 | 45.2 | 51.2 | 76.6 | 44.2 | 53.7 | 41.5 | 70.5 |
Grass | 30.7 | 17.1 | 22.7 | 38.2 | 2.3 | 17.3 | 16.0 | 34.6 | 2.3 | 17.3 |
Double | 75.2 | 83.9 | 20.3 | 77.9 | 15 | 85.2 | 2.2 | 75.2 | 26.7 | 88.0 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Csillik, O.; Belgiu, M.; Asner, G.P.; Kelly, M. Object-Based Time-Constrained Dynamic Time Warping Classification of Crops Using Sentinel-2. Remote Sens. 2019, 11, 1257. https://doi.org/10.3390/rs11101257
Csillik O, Belgiu M, Asner GP, Kelly M. Object-Based Time-Constrained Dynamic Time Warping Classification of Crops Using Sentinel-2. Remote Sensing. 2019; 11(10):1257. https://doi.org/10.3390/rs11101257
Chicago/Turabian StyleCsillik, Ovidiu, Mariana Belgiu, Gregory P. Asner, and Maggi Kelly. 2019. "Object-Based Time-Constrained Dynamic Time Warping Classification of Crops Using Sentinel-2" Remote Sensing 11, no. 10: 1257. https://doi.org/10.3390/rs11101257