Floating Xylene Spill Segmentation from Ultraviolet Images via Target Enhancement
"> Figure 1
<p>Workflow of the proposed method.</p> "> Figure 2
<p>An example of the grid cell analysis (GCA) process.</p> "> Figure 3
<p>An example of the pre-segmentation processing—(<b>a</b>) original image (4000 × 4000) and (<b>b</b>) processed image (500 × 500).</p> "> Figure 4
<p>Examples of chemical spill targets in UV images. (<b>a</b>) Image with shadow; (<b>b</b>) image with shadow, wave, and sun reflection; (<b>c</b>) image with shadow, wave, and sun reflection;Since a complex background is not conducive to the precise segmentation of the target, we propose a global background suppression (GBS) algorithm to subtract the redundant information from the background. The main idea of the algorithm is to estimate an adjustable threshold based on the intensity distribution, and then to filter the pixels that are less than the threshold in the images. The details are described as follows.</p> "> Figure 5
<p>An example of the result of global background suppression (GBS). (<b>a</b>) The original image; (<b>b</b>) the three candidate threshold values; and (<b>c</b>) the global background suppression result.</p> "> Figure 6
<p>An example of the result of adaptive target enhancement (ATE). (<b>a</b>) The original image; (<b>b</b>) the local entropy image; (<b>c</b>) the gradient image; and (<b>d</b>) the ATE result.</p> "> Figure 7
<p>A diagram of the peak heights, prominence value, and distance value within the histogram.</p> "> Figure 8
<p>Examples of segmentation results. (<b>a</b>) The original images; (<b>b</b>) the results after GBS, ATE, and LFTM; (<b>c</b>) the results using only local fuzzy thresholding methodology (LFTM) with 3 centroids; and (<b>d</b>) the results using only LFTM with 4 centroids.</p> "> Figure 9
<p>Segmentation result of a small target with shadows. (<b>a</b>) The original image (4000 × 4000); (<b>b</b>) the preprocessed image (500 × 500); (<b>c</b>) the result using GBS; (<b>d</b>) the result using ATE; (<b>e</b>) the segmentation result with LFTM; and (<b>f</b>) the final segmentation result.</p> "> Figure 10
<p>Segmentation result of a target with low contrast and waves. (<b>a</b>) The original image; (<b>b</b>) the preprocessed image; (<b>c</b>) the result using GBS; (<b>d</b>) the result using ATE; (<b>e</b>) the segmentation result with LFTM; and (<b>f</b>) the final segmentation result.</p> "> Figure 11
<p>Segmentation result of a target uneven illumination. (<b>a</b>) The original image; (<b>b</b>) the preprocessed image; (<b>c</b>) the result using GBS; (<b>d</b>) the result using ATE; (<b>e</b>) the segmentation result with LFTM; and (<b>f</b>) the final segmentation result.</p> "> Figure 12
<p>Comparison results. (<b>a</b>) Original image; (<b>b</b>) Otsu; (<b>c</b>) Max entropy; (<b>d</b>) LFTM with <span class="html-italic">N<sub>cluster</sub></span> = 3; (<b>e</b>) LFTM with <span class="html-italic">N<sub>cluster</sub></span> = 3; (<b>f</b>) Chan–Vese active contour model (CV model); (<b>g</b>) our method; and (<b>h</b>) ground-truth.</p> "> Figure 13
<p>Segmentation result of UV images containing interferents. (<b>a</b>) Original UV images and (<b>b</b>) results using our method.</p> ">
Abstract
:1. Introduction
2. Method
2.1. Pre-Segmentation Processing
2.1.1. Downsampling
2.1.2. Noise Removal
2.1.3. Edge Enhancement
2.2. Image Segmentation Algorithm
2.2.1. Global Background Suppression
2.2.2. Adaptive Target Enhancement
2.2.3. Histogram-Based Determination of the Optimal Number of Clusters
2.2.4. Local Fuzzy Thresholding Segmentation
2.3. Post-Segmentation Processing
3. Experimental Results and Discussion
3.1. Colorless Xylene Spill Image Acquisition
3.2. UV Image Processing Results
3.3. Comparison with Other Methods
3.4. The Effect of Parameter Setting
3.5. Performance on UV Images Containing Interferents
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Purnell, K. Are HNS spills more dangerous than oil spills. In Proceedings of the A white paper for the interspill conference & the 4th IMO R&D Forum, Marseille, France, May 2009; pp. 12–14. [Google Scholar]
- International Maritime Organization (IMO). Protocol on Preparedness, Response and Co-Operation to Pollution Incidents by Hazardous and Noxious Substances (OPRC-HNS Protocol); IMO: London, UK, 2000. [Google Scholar]
- Cunha, I.; Moreira, S.; Santos, M.M. Review on hazardous and noxious substances (HNS) involved in marine spill incidents-An online database. J. Hazard. Mater. 2015, 285, 509–516. [Google Scholar] [CrossRef] [PubMed]
- Cunha, I.; Oliveira, H.; Neuparth, T.; Torres, T.; Santos, M.M. Fate, behaviour and weathering of priority HNS in the marine environment: An online tool. Mar. Pollut. Bull. 2016, 111, 330–338. [Google Scholar] [CrossRef] [PubMed]
- Yim, U.H.; Kim, M.; Ha, S.Y.; Kim, S.; Shim, W.J. Oil Spill Environmental Forensics: The Hebei Spirit Oil Spill Case. Environ. Sci. Technol. 2012, 46, 6431–6437. [Google Scholar] [CrossRef] [PubMed]
- International Tanker Owners Pollution Federation Limited (ITOPF). TIP 17: Response to Marine Chemical Incidents, Technical Information Papers; ITOPF: Copenhagen, Denmark, 2014; pp. 3–4. [Google Scholar]
- Moriarty, J.; Schwartz, L.; Tuck, E. Unsteady spreading of thin liquid films with small surface tension. Phys. Fluids A Fluid Dyn. 1991, 3, 733–742. [Google Scholar] [CrossRef]
- Angelliaume, S.; Minchew, B.; Chataing, S.; Martineau, P.; Miegebielle, V. Multifrequency radar imagery and characterization of hazardous and noxious substances at sea. IEEE Trans. Geosci. Remote 2017, 55, 3051–3066. [Google Scholar] [CrossRef]
- Zhao, J.; Temimi, M.; Ghedira, H.; Hu, C. Exploring the potential of optical remote sensing for oil spill detection in shallow coastal waters-a case study in the Arabian Gulf. Opt. Express 2014, 22, 13755–13772. [Google Scholar] [CrossRef]
- Taravat, A.; Del Frate, F. Development of band ratioing algorithms and neural networks to detection of oil spills using Landsat ETM+ data. EURASIP J. Adv. Signal Process. 2012, 2012, 1687–6180. [Google Scholar] [CrossRef]
- Conmy, R.N.; Coble, P.G.; Farr, J.; Wood, A.M.; Lee, K.; Pegau, W.S.; Walsh, I.D.; Koch, C.R.; Abercrombie, M.I.; Miles, M.S. Submersible optical sensors exposed to chemically dispersed crude oil: Wave tank simulations for improved oil spill monitoring. Environ. Sci. Technol. 2014, 48, 1803–1810. [Google Scholar] [CrossRef] [PubMed]
- Fingas, M.; Brown, C.E. Oil spill remote sensing: A review. In Oil Spill Science and Technology; Elsevier: Amsterdam, The Netherlands, 2011; pp. 111–169. [Google Scholar]
- Martin, C.; Parkes, S.; Zhang, Q.; Zhang, X.; McCabe, M.F.; Duarte, C.M. Use of unmanned aerial vehicles for efficient beach litter monitoring. Mar. Pollut. Bull. 2018, 131, 662–673. [Google Scholar] [CrossRef] [PubMed]
- Turner, I.L.; Harley, M.D.; Drummond, C.D. UAVs for coastal surveying. Coast. Eng. 2016, 114, 19–24. [Google Scholar] [CrossRef]
- Papakonstantinou, A.; Topouzelis, K.; Pavlogeorgatos, G. Coastline zones identification and 3D coastal mapping using UAV spatial data. ISPRS Int. J. Geo-Inf. 2016, 5, 75. [Google Scholar] [CrossRef]
- Ma, X.; Cheng, Y.; Hao, S. Multi-stage classification method oriented to aerial image based on low-rank recovery and multi-feature fusion sparse representation. Appl. Opt. 2016, 55, 10038–10044. [Google Scholar] [CrossRef]
- Solberg, A.H.S.; Storvik, G.; Solberg, R.; Volden, E. Automatic detection of oil spills in ERS SAR images. IEEE Trans. Geosci. Remote 1999, 37, 1916–1924. [Google Scholar] [CrossRef]
- Karantzalos, K.; Argialas, D. Automatic detection and tracking of oil spills in SAR imagery with level set segmentation. Int. J. Remote Sens. 2008, 29, 6281–6296. [Google Scholar] [CrossRef]
- Jing, Y.; An, J.; Liu, Z. A novel edge detection algorithm based on global minimization active contour model for oil slick infrared aerial image. IEEE Trans. Geosci. Remote 2011, 49, 2005–2013. [Google Scholar] [CrossRef]
- Yang, M.; Song, W.; Mei, H. Efficient Retrieval of Massive Ocean Remote Sensing Images via a Cloud-Based Mean-Shift Algorithm. Sensors 2017, 17, 1693. [Google Scholar] [CrossRef]
- Dolenko, T.A.; Fadeev, V.V.; Gerdova, I.V.; Dolenko, S.A.; Reuter, R. Fluorescence diagnostics of oil pollution in coastal marine waters by use of artificial neural networks. Appl. Opt. 2002, 41, 5155–5166. [Google Scholar] [CrossRef]
- Wang, X.-F.; Min, H.; Zou, L.; Zhang, Y.-G. A novel level set method for image segmentation by incorporating local statistical analysis and global similarity measurement. Pattern Recogn. 2015, 48, 189–204. [Google Scholar] [CrossRef]
- Zhang, K.; Song, H.; Zhang, L. Active contours driven by local image fitting energy. Pattern Recogn. 2010, 43, 1199–1206. [Google Scholar] [CrossRef]
- Wang, P.; Lee, D.; Gray, A.; Rehg, J.M. Fast mean shift with accurate and stable convergence. In Proceedings of the Eleventh International Conference on Artificial Intelligence and Statistics, Palo Alto, CA, USA, 4–8 June 2007; pp. 604–611. [Google Scholar]
- Nieto-Hidalgo, M.; Gallego, A.-J.; Gil, P.; Pertusa, A. Two-stage convolutional neural network for ship and spill detection using SLAR images. IEEE Trans. Geosci. Remote 2018, 56, 5217–5230. [Google Scholar] [CrossRef]
- Xu, L.; Javad Shafiee, M.; Wong, A.; Li, F.; Wang, L.; Clausi, D. Oil spill candidate detection from SAR imagery using a thresholding-guided stochastic fully-connected conditional random field model. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Boston, MA, USA, 7–12 June 2015; pp. 79–86. [Google Scholar]
- Otsu, N. A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 1979, 9, 62–66. [Google Scholar] [CrossRef]
- Wong, A.K.; Sahoo, P.K. A gray-level threshold selection method based on maximum entropy principle. IEEE Trans. Syst. Man Cybern. 1989, 19, 866–871. [Google Scholar] [CrossRef]
- Pham, D.L.; Prince, J.L. An adaptive fuzzy C-means algorithm for image segmentation in the presence of intensity inhomogeneities. Pattern Recognit. Lett. 1999, 20, 57–68. [Google Scholar] [CrossRef]
- Bradley, D.; Roth, G. Adaptive thresholding using the integral image. J. Graph. Tools 2007, 12, 13–21. [Google Scholar] [CrossRef]
- Du, F.; Shi, W.; Chen, L.; Deng, Y.; Zhu, Z. Infrared image segmentation with 2-D maximum entropy method based on particle swarm optimization (PSO). Pattern Recognit. Lett. 2005, 26, 597–603. [Google Scholar]
- Chuang, K.-S.; Tzeng, H.-L.; Chen, S.; Wu, J.; Chen, T.-J. Fuzzy c-means clustering with spatial information for image segmentation. Comput. Med. Imaging Graph. 2006, 30, 9–15. [Google Scholar] [CrossRef]
- Aja-Fernández, S.; Curiale, A.H.; Vegas-Sánchez-Ferrero, G. A local fuzzy thresholding methodology for multiregion image segmentation. Knowl. Based Syst. 2015, 83, 1–12. [Google Scholar] [CrossRef]
- Huang, Y.; Xu, B. Automatic inspection of pavement cracking distress. J. Electron. Imaging 2006, 15, 13–17. [Google Scholar] [CrossRef]
- Tomasi, C.; Manduchi, R. Bilateral filtering for gray and color images. In Proceedings of the Sixth International Conference on Computer Vision, Bombay, India, 7 January 1998; pp. 839–846. [Google Scholar]
- Liu, C.; Freeman, W.T.; Szeliski, R.; Kang, S.B. Noise estimation from a single image. In Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, New York, NY, USA, 17–22 June 2016; pp. 901–908. [Google Scholar]
- Perona, P.; Malik, J. Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 1990, 12, 629–639. [Google Scholar] [CrossRef]
- General Office of the State Council. Regulation on the Safety Management of Hazardous Chemicals (2011 version); Order No.591 of the State Council; General Office of the State Council: Beijing, China, 2011.
- Chan, T.; Vese, L. An active contour model without edges. In Proceedings of the International Conference on Scale-Space Theories in Computer Vision, Corfu, Greece, 26–27 September 1999; pp. 141–151. [Google Scholar]
Method | AC | PR | RE | F1 | Average Time(s) |
---|---|---|---|---|---|
Otsu | 0.5493 | 0.2214 | 0.9957 | 0.3401 | 0.0044 |
Max entropy | 0.5879 | 0.2546 | 0.9736 | 0.3713 | 0.0073 |
LFTM with Ncluster = 3 | 0.8240 | 0.4624 | 0.9681 | 0.5700 | 0.9381 |
LFTM with Ncluster = 4 | 0.9203 | 0.6700 | 0.9098 | 0.7226 | 1.8395 |
CV model | 0.5826 | 0.2408 | 0.9952 | 0.3585 | 7.5594 |
Our method | 0.9679 | 0.9497 | 0.8112 | 0.8614 | 1.6609 |
Process | Parameter | Variation Settings a | F1 Score Result (Mean/SD) |
---|---|---|---|
GBS | constth | 90, 100, 110, 120, 130, 140, 150 | 0.8478/0.0172 |
ATE | th1 | 5, 10, 15, 20, 25, 30, 35 | 0.8601/0.0051 |
th2 | (0.45, 0.55, 0.65, 0.75, 0.85) × max(E) | 0.8481/0.00841 | |
η2 | 0.4, 0.6, 0.8, 0.9 | 0.8523/0.0079 | |
Automatic select clusters | th4 | 55, 65, 75, 85, 95 | 0.8613/0.0025 |
th5 | 4, 8, 16, 32 | 0.8394/0.0214 | |
Post-segmentation processing | area | – | – |
w/l | – | – | |
texture_std | 45, 55, 65, 75, 85 | 0.8404/0.0390 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhan, S.; Wang, C.; Liu, S.; Xia, K.; Huang, H.; Li, X.; Liu, C.; Xu, R. Floating Xylene Spill Segmentation from Ultraviolet Images via Target Enhancement. Remote Sens. 2019, 11, 1142. https://doi.org/10.3390/rs11091142
Zhan S, Wang C, Liu S, Xia K, Huang H, Li X, Liu C, Xu R. Floating Xylene Spill Segmentation from Ultraviolet Images via Target Enhancement. Remote Sensing. 2019; 11(9):1142. https://doi.org/10.3390/rs11091142
Chicago/Turabian StyleZhan, Shuyue, Chao Wang, Shuchang Liu, Kaibo Xia, Hui Huang, Xiaorun Li, Caicai Liu, and Ren Xu. 2019. "Floating Xylene Spill Segmentation from Ultraviolet Images via Target Enhancement" Remote Sensing 11, no. 9: 1142. https://doi.org/10.3390/rs11091142