Remote Sensing of Sea Surface Salinity: Comparison of Satellite and In Situ Observations and Impact of Retrieval Parameters
"> Figure 1
<p>Timeline of satellite sea surface salinity (SSS) products availability. The Soil Moisture and Ocean Salinity (SMOS) SSS is available starting Jan 2010 (onward). The Aquarius product is available from Aug 25, 2011 until June 7, 2015 when the spacecraft bus failed. The Soil Moisture Active Passive (SMAP) product is available starting April 2015 (onward).</p> "> Figure 2
<p>Map of long-term SSS patterns and variability derived from in situ Argo measurements. (<b>a</b>) Map of the average Argo SSS in 1° × 1° grid cells in latitude and longitude over the period Jan 2011–June 2018. (<b>b</b>) Standard deviation over time of monthly 1° × 1° average Argo SSS maps. The numbered red and black boxes report the limits for the regions of interest used to assess temporal variability of SSS (see text).</p> "> Figure 2 Cont.
<p>Map of long-term SSS patterns and variability derived from in situ Argo measurements. (<b>a</b>) Map of the average Argo SSS in 1° × 1° grid cells in latitude and longitude over the period Jan 2011–June 2018. (<b>b</b>) Standard deviation over time of monthly 1° × 1° average Argo SSS maps. The numbered red and black boxes report the limits for the regions of interest used to assess temporal variability of SSS (see text).</p> "> Figure 3
<p>Schematic of Aquarius empirical calibration and SSS retrieval algorithm. The first step (top left) is to calibrate the antenna temperatures (TA) measured by the sensor using the forward radiative transfer model that will also be used in the retrieval to compute expected TA (right hand side of the diagram). This step assumes a reference SSS (e.g., from a numerical model) and uses the same ancillary data (e.g., sea surface temperature, wind, atmospheric parameters, …) that are used in the retrieval step. Global averages over seven-day periods for TA are used in the calibration to mitigate the impact of uncertainty in the reference SSS and other errors. The retrieval steps are illustrated on the left side, starting with TA calibrated at the top, going down the chain to remove unwanted contributions and ultimately retrieve TB at the ocean surface corrected for surface roughness. The last step is retrieving the SSS from the roughness-corrected TB. Other SSS product algorithm will differ slightly. More details are given in <a href="#sec2dot3-remotesensing-11-00750" class="html-sec">Section 2.3</a>.</p> "> Figure 4
<p>Differences in TB and SSS due to differences between the dielectric constant model by Klein and Swift [<a href="#B39-remotesensing-11-00750" class="html-bibr">39</a>] and Meissner and Wentz [<a href="#B41-remotesensing-11-00750" class="html-bibr">41</a>]. (<b>a</b>) Differences in brightness temperature at L-band for a flat surface and an incidence angle of 38° (similar to Aquarius middle beam). (<b>b</b>) Differences in retrieved SSS when assuming KS the truth (i.e., used to compute TB from assumed SST<sub>0</sub> and SSS<sub>0</sub>) and using MW for retrieving SSS from TB and the same SST<sub>0</sub>. The shaded area reports unlikely combinations of SSS and SST (i.e., less than 5 Argo records over the last period 2000–2018).</p> "> Figure 5
<p>Differences in weekly average SST between OSTIA and National Oceanic and Atmospheric Administration (NOAA) OI V2 products. Difference maps are averaged weekly from daily products at 0.25° resolution in latitude/longitude during the period September 2011–August 2015. The top row (<b>a</b>,<b>b</b>) shows two examples of SST differences maps. The dates are chosen to show examples of (<b>a</b>) smaller (Feb 2012) and (<b>b</b>) larger (July 2012) differences in SST. Grey areas report sea ice fraction (from OSTIA) of 0.15 or above. The temporal evolution of SST differences is reported in panel (<b>c</b>) through several statistical indicators. The curves report the time series of (red) mean and (dashed-black) median difference in global weekly maps and the percentiles of the absolute value of the SST differences between 70% and 99% (see text in <a href="#sec3dot2-remotesensing-11-00750" class="html-sec">Section 3.2</a>). Panel (<b>d</b>) reports the histogram of SST difference for the map reported in (<b>b</b>) (y-axis unit is 1000 grid cells).</p> "> Figure 5 Cont.
<p>Differences in weekly average SST between OSTIA and National Oceanic and Atmospheric Administration (NOAA) OI V2 products. Difference maps are averaged weekly from daily products at 0.25° resolution in latitude/longitude during the period September 2011–August 2015. The top row (<b>a</b>,<b>b</b>) shows two examples of SST differences maps. The dates are chosen to show examples of (<b>a</b>) smaller (Feb 2012) and (<b>b</b>) larger (July 2012) differences in SST. Grey areas report sea ice fraction (from OSTIA) of 0.15 or above. The temporal evolution of SST differences is reported in panel (<b>c</b>) through several statistical indicators. The curves report the time series of (red) mean and (dashed-black) median difference in global weekly maps and the percentiles of the absolute value of the SST differences between 70% and 99% (see text in <a href="#sec3dot2-remotesensing-11-00750" class="html-sec">Section 3.2</a>). Panel (<b>d</b>) reports the histogram of SST difference for the map reported in (<b>b</b>) (y-axis unit is 1000 grid cells).</p> "> Figure 6
<p>Impact of SST differences on TB and retrieved SSS. (<b>a</b>) Map of SST differences (°C) between OSTIA and NOAA OI interpolated at the Aquarius ground tracks (same week as in (<b>b</b>) in <a href="#remotesensing-11-00750-f005" class="html-fig">Figure 5</a>, ascending orbits). (<b>b</b>) Differences in TB (K) for a flat surface due to the differences in SST in the left figure. (<b>c</b>) Differences in retrieved SSS (psu) due to differences in TB reported in the middle figure.</p> "> Figure 7
<p>Differences in Aquarius TB due to differences between OSTIA and NOAA OI versus time, for the middle beam in vertical polarization. The TB difference is (grey) for each Aquarius 1.44 s footprint and (red) averaged globally over seven days.</p> "> Figure 8
<p>Global map of SSS from satellite sensors and in situ measurements averaged over several years. On the left: (<b>a</b>) Argo SSS, (<b>c</b>) SMOS SSS, and (<b>e</b>) Aquarius SSS are averaged over the Aquarius era (i.e., Sept 2011–May 2015). On the right: (<b>b</b>) Argo SSS, (<b>d</b>) SMOS SSS, and (<b>f</b>) SMAP SSS are averaged over the period April 2015–June 2018. Grey color reports missing data.</p> "> Figure 8 Cont.
<p>Global map of SSS from satellite sensors and in situ measurements averaged over several years. On the left: (<b>a</b>) Argo SSS, (<b>c</b>) SMOS SSS, and (<b>e</b>) Aquarius SSS are averaged over the Aquarius era (i.e., Sept 2011–May 2015). On the right: (<b>b</b>) Argo SSS, (<b>d</b>) SMOS SSS, and (<b>f</b>) SMAP SSS are averaged over the period April 2015–June 2018. Grey color reports missing data.</p> "> Figure 9
<p>Map of SSS difference between satellite retrievals and in situ Argo observations for (<b>a</b>) SMOS, (<b>b</b>) Aquarius V5, and (<b>c</b>) SMAP V3. The maps are computed from long-term averages of monthly SSS maps over the Aquarius era (i.e., Sept 2011–May 2015) for SMOS and Aquarius, and the period April 2015–June 2018 for SMAP. The green dashed line between 60°S and 45°S marks the average location of the Antarctic convergence that parts cold and dense surface Antarctic waters and sub-Antarctic regions North of it.</p> "> Figure 10
<p>Maps of meridional gradients of (<b>a</b>) SSS in psu per degree of latitude and (<b>b</b>) SST in °C per degree of latitude computed from monthly Argo maps. The magenta line reports the approximate location of the Antarctic Convergence.</p> "> Figure 11
<p>Histogram of SSS from (red) Argo in situ measurements and satellite SSS measurements by (<b>a</b>) SMOS and Aquarius, and (<b>b</b>) SMAP. They are computed from global monthly maps at 1° × 1° resolution in latitude and longitude over the period (<b>a</b>) Sept 2011–May 2015 and (<b>b</b>) April 2015–June 2018. The x-axis sampling is 0.05 psu; the x-axis is cropped between 30 and 40 psu.</p> "> Figure 12
<p>Time series of SSS from (red) Argo, (green) SMOS, (blue) Aquarius and (black) SMAP for regions of interest 1–6 reported in <a href="#remotesensing-11-00750-f002" class="html-fig">Figure 2</a>.</p> "> Figure 12 Cont.
<p>Time series of SSS from (red) Argo, (green) SMOS, (blue) Aquarius and (black) SMAP for regions of interest 1–6 reported in <a href="#remotesensing-11-00750-f002" class="html-fig">Figure 2</a>.</p> "> Figure 13
<p>Time series of SSS from (red) Argo, (green) SMOS, (blue) Aquarius and (black) SMAP for regions of interest 7–12 reported in <a href="#remotesensing-11-00750-f002" class="html-fig">Figure 2</a>.</p> "> Figure 13 Cont.
<p>Time series of SSS from (red) Argo, (green) SMOS, (blue) Aquarius and (black) SMAP for regions of interest 7–12 reported in <a href="#remotesensing-11-00750-f002" class="html-fig">Figure 2</a>.</p> "> Figure 14
<p>SST dependence of SSS bias for various versions of SMAP and Aquarius products. Top row (<b>a</b>,<b>b</b>) reports maps of SSS difference between satellite and in situ for (<b>a</b>) Aquarius V3 and (<b>b</b>) SMAP V2 averaged over several years from monthly products. The bottom row (<b>c</b>,<b>d</b>) reports the SSS difference between satellite and in situ SSS as a function of SST for (<b>c</b>) Aquarius V3 (red), V4 (green) and V5 (blue) and (<b>d</b>) SMAP V2 (green) and V3 (blue). The vertical bars in the background report the statistical distribution of the samples as a function of SST (amplitude is normalized to the amplitude of SSS curves).</p> "> Figure 15
<p>SSS (<b>a</b>) bias and (<b>b</b>) variable difference between satellite retrievals and in situ Argo measurements as a function of SST for SMOS CPDC RE05, and the latest Aquarius (V5) and SMAP (V3) versions. SMOS includes filtering of land contamination by removing data closer than 1000 km from the coast. The vertical bars in the background report the statistical distribution of the samples as a function of SST. The magenta dashed curve in the right (<b>b</b>) panel reports the relative change in the inverse of the radiometric sensitivity to SSS as a function of SST, scaled to match SSS error curves at 18 °C.</p> "> Figure 16
<p>Comparison of SST-dependent bias between SMOS and Aquarius and impact of retrieval parameters. The plot reports the difference between satellite and in situ SSS binned as a function of SST and computed from monthly SSS maps over the period Sept 2011–May 2015. Satellite SSS are (Red) SMOS, and (Blue) Aquarius V3. The Aquarius V3 curves are for (plain) the nominal product, (dashed) V3 reprocessed using the KS dielectric constant model, (dotted) using KS model and OSTIA ancillary SST, and (plain and circles) using the KS model, the OSTIA SST and the adjusted atmospheric model from Aquarius V5.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Satellite Products
2.1.1. Aquarius
- Instrument is not in science mode (1);
- Observation time is during a reported mission event (such events include Moon interferences, spacecraft maneuvers) (1);
- Land fraction is larger than 0.01 (2) or ice fraction larger 0.001 (3) (both parameters are between 0 and 1 and represent the gain weighted fractions of land/ice in the antenna field of view);
- Antenna temperature, top of ionosphere temperature (TOI), or surface brightness temperature in V-pol or H-pol is unphysical (less than 0 K or larger than 300 K) (1);
- Expected antenna temperature computed with the forward radiative transfer model is unphysical (less than 0 K or larger than 300 K) (1);
- Retrieved SSS is less than 0 (4);
- Footprint center is in a region known for frequent radio frequency interference (RFI) contamination (5):
- ○
- 30°N ≤ latitude ≤ 60°N and 330° ≤ longitude ≤ 360° for ascending orbits
- ○
- 25°N ≤ latitude ≤ 50°N and 290° ≤ longitude ≤ 310° for descending orbits
- ○
- 15°N ≤ latitude ≤ 50°N and 120° ≤ longitude ≤ 160° for ascending orbits
- RFI correction applied to antenna temperature in V-pol or H-pol is larger than 1 K (6);
- Large brightness temperature of the celestial sky along the direction of the reflected beam at the surface (above 5.18 K) (7).
2.1.2. SMOS
2.1.3. SMAP
2.2. In Situ Products
2.3. Calibration and Retrieval Algorithm for Satellite SSS
2.3.1. Calibration
2.3.2. Salinity Retrieval Algorithm
2.4. Reprocessing of Aquarius SSS with Modified Model and Ancillary Data
3. Results
3.1. Brightness Temperature and SSS Differences Due to Differences in Dielectric Constant Models
3.2. Differences in Ancillary Sea Surface Temperature Products
3.3. Comparison of SSS Products
3.3.1. Spatial Patterns and Statistical Distribution
3.3.2. Temporal Variability
3.3.3. SST-Dependent Bias
3.3.4. Impact of the Dielectric Constant Model and Ancillary Temperature on SSS Differences
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Font, J.; Camps, A.; Borges, A.; Martin-Neira, M.; Boutin, J.; Reul, N.; Kerr, Y.H.; Hahne, A.; Mecklenburg, S. SMOS: The challenging sea surface salinity measurement from space. Proc. IEEE 2010, 98, 649–665. [Google Scholar] [CrossRef]
- Kerr, Y.H.; Waldteufel, P.; Wigneron, J.-P.; Delwart, S.; Cabot, F.; Boutin, J.; Escorihuela, M.-J.; Font, J.; Reul, N.; Gruhier, C.; et al. The SMOS Mission: New Tool for Monitoring Key Elements of the Global Water Cycle. Proc. IEEE 2010, 98, 666–687. [Google Scholar] [CrossRef]
- Lagerloef, G.; Colomb, F.R.; Le Vine, D.; Wentz, F.; Yueh, S.; Ruf, C.; Lilly, J.; Gunn, J.; Chao, Y.; deCharon, A.; et al. The Aquarius/SAC-D Mission: Designed to Meet the Salinity Remote-Sensing Challenge. Oceanography 2008, 21, 68–81. [Google Scholar] [CrossRef] [Green Version]
- Le Vine, D.M.; Lagerloef, G.S.E.; Torrusio, S.E. Aquarius and remote sensing of sea surface salinity from space. Proc. IEEE 2010, 98, 688–703. [Google Scholar] [CrossRef]
- Le Vine, D.M.; Dinnat, E.P.; Meissner, T.; Yueh, S.H.; Wentz, F.J.; Torrusio, S.E.; Lagerloef, G. Status of Aquarius/SAC-D and Aquarius Salinity Retrievals. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 5401–5415. [Google Scholar] [CrossRef]
- Grodsky, S.A.; Reul, N.; Lagerloef, G.; Reverdin, G.; Carton, J.A.; Chapron, B.; Quilfen, Y.; Kudryavtsev, V.N.; Kao, H.Y. Haline hurricane wake in the Amazon/Orinoco plume: AQUARIUS/SACD and SMOS observations. Geophys. Res. Lett. 2012, 39, 4–11. [Google Scholar] [CrossRef]
- Grodsky, S.A.; Reverdin, G.; Carton, J.A.; Coles, V.J. Year-to-year salinity changes in the Amazon plume: Contrasting 2011 and 2012 Aquarius/SACD and SMOS satellite data. Remote Sens. Environ. 2014, 140, 14–22. [Google Scholar] [CrossRef]
- Gierach, M.M.; Vazquez-Cuervo, J.; Lee, T.; Tsontos, V.M. Aquarius and SMOS detect effects of an extreme Mississippi River flooding event in the Gulf of Mexico. Geophys. Res. Lett. 2013, 40, 5188–5193. [Google Scholar] [CrossRef] [Green Version]
- Hernandez, O.; Boutin, J.; Kolodziejczyk, N.; Reverdin, G.; Martin, N.; Gaillard, F.; Reul, N.; Vergely, J.L. SMOS salinity in the subtropical North Atlantic salinity maximum: 1. Comparison with Aquarius and in situ salinity. J. Geophys. Res. C Ocean. 2014, 119, 8878–8896. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Eidell, C.; Comiso, J.C.; Dinnat, E.; Brucker, L. Satellite observed salinity distributions at high latitudes in the Northern Hemisphere: A comparison of four products. J. Geophys. Res. Ocean. 2017, 122, 7717–7736. [Google Scholar] [CrossRef]
- Ebuchi, N.; Abe, H. Evaluation of sea surface salinity observed by Aquarius and SMOS. In Proceedings of the International Geoscience and Remote Sensing Symposium (IGARSS), Melbourne, Australia, 21–26 July 2013; pp. 656–659. [Google Scholar]
- Dinnat, E.; Boutin, J.; Le Vine, D.; Yin, X. Inter-Comparison of Aquarius and SMOS Calibration and Impact on Sea Surface Salinity Products. In Proceedings of the American Geophysical Union, Fall meeting, San Francisco, CA, USA, 15–19 December 2014. [Google Scholar]
- Pablos, M.; Piles, M.; Gonzalez-Gambau, V.; Vall-Llossera, M.; Camps, A.; Martinez, J. SMOS and Aquarius radiometers: Inter-comparison over selected targets. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 3833–3844. [Google Scholar] [CrossRef]
- Yueh, S.H.; West, R.; Wilson, W.J.; Li, F.K.; Njoku, E.G.; Rahmat-Samii, Y. Error sources and feasibility for microwave remote sensing of ocean surface salinity. IEEE Trans. Geosci. Remote Sens. 2001, 39, 1049–1060. [Google Scholar] [CrossRef]
- Dinnat, E.P.; Boutin, J.; Caudal, G.; Etcheto, J.; Waldteufel, P. Influence of sea surface emissivity model parameters at L-band for the estimation of salinity. Int. J. Remote Sens. 2002, 23, 5117–5122. [Google Scholar] [CrossRef]
- Dinnat, E.P.; Boutin, J.; Caudal, G.; Etcheto, J. Issues concerning the sea emissivity modeling at L band for retrieving surface salinity. Radio Sci. 2003, 38. [Google Scholar] [CrossRef] [Green Version]
- Boutin, J.; Waldteufel, P.; Martin, N.; Caudal, G.; Dinnat, E. Surface salinity retrieved from SMOS measurements over the global ocean: Imprecisions due to sea surface roughness and temperature uncertainties. J. Atmos. Ocean. Technol. 2004, 21, 1432–1447. [Google Scholar] [CrossRef]
- Waldteufel, P.; Floury, N.; Dinnat, E.P.; Caudal, G. Ionospheric effects for L-band 2-D interferometric radiometry. IEEE Trans. Geosci. Remote Sens. 2004, 42, 105–118. [Google Scholar] [CrossRef]
- Meissner, T.; Wentz, F.J.; Le Vine, D.M. Aquarius Salinity Retrieval Algorithm Algorithm Theoretical Basis Document (ATBD) End of Mission Version. RSS Technical Report 120117; Remote Sensing Systems: Santa Rosa, CA, USA, 2017; p. 104. [Google Scholar]
- Le Vine, D.M.; Dinnat, E.P.; Meissner, T.; Wentz, F.J.; Kao, H.Y.; Lagerloef, G.; Lee, T. Status of Aquarius and salinity continuity. Remote Sens. 2018, 10, 1585. [Google Scholar] [CrossRef]
- Yueh, S.; Tang, W.; Fore, A.; Hayashi, A.; Song, Y.; Lagerloef, G. Aquarius geophysical model function and combined active passive algorithm for ocean surface salinity and wind retrieval. J. Geophys. Res. Ocean. 2014, 119, 5360–5379. [Google Scholar] [CrossRef] [Green Version]
- Tang, W.; Yueh, S.; Fore, A.; Neumann, G.; Hayashi, A.; Lagerloef, G. The rain effect on Aquarius’ L-band sea surface brightness temperature and radar backscatter. Remote Sens. Environ. 2013, 137, 147–157. [Google Scholar] [CrossRef]
- Chassignet, E.; Hurlburt, H.; Metzger, E.J.; Smedstad, O.; Cummings, J.; Halliwell, G.; Bleck, R.; Baraille, R.; Wallcraft, A.; Lozano, C.; et al. US GODAE: Global ocean prediction with the HYbrid Coordinate Ocean Model (HYCOM). Oceanography 2009, 22, 64–75. [Google Scholar] [CrossRef]
- Boutin, J. CATDS Ocean Salinity Level 3 products–Differences & Pros/Cons. Available online: http://www.catds.fr/content/download/68781/file/OS_L3_products_Differences_and_ProsCons.pdf (accessed on 26 March 2019).
- Kolodziejczyk, N.; Boutin, J.; Vergely, J.L.; Marchand, S.; Martin, N.; Reverdin, G. Mitigation of systematic errors in SMOS sea surface salinity. Remote Sens. Environ. 2016, 180, 164–177. [Google Scholar] [CrossRef]
- Boutin, J.; Vergely, J.L.; Marchand, S.; D’Amico, F.; Hasson, A.; Kolodziejczyk, N.; Reul, N.; Reverdin, G.; Vialard, J. New SMOS Sea Surface Salinity with reduced systematic errors and improved variability. Remote Sens. Environ. 2018, 214, 115–134. [Google Scholar] [CrossRef]
- Olmedo, E.; Martínez, J.; Turiel, A.; Ballabrera-Poy, J.; Portabella, M. Debiased non-Bayesian retrieval: A novel approach to SMOS Sea Surface Salinity. Remote Sens. Environ. 2017, 193, 103–126. [Google Scholar] [CrossRef]
- Carval, T.; Keeley, R.; Takatsuki, Y.; Yoshida, T.; Loch, S.; Schmid, C.; Goldsmith, R.; Wong, A.; McCreadie, R.; Thresher, A.; et al. Argo User ’s Manual; Ifremer: Brest, France, 2017. [Google Scholar]
- Piepmeier, J.; Brown, S.; Gales, J.; Hong, L.; Lagerloef, G.; Le Vine, D.; de Matthaeis, P.; Meissner, T.; Bindlish, R.; Jackson, T.; et al. Aquarius Radiometer Post-Launch Calibration for Product Version 2; National Aeronautics and Space Administration: Washington, DC, USA, 2013.
- Dinnat, E.P.; Le Vine, D.M.; Piepmeier, J.R.; Brown, S.T.; Hong, L. Aquarius L-band Radiometers Calibration Using Cold Sky Observations. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 5433–5449. [Google Scholar] [CrossRef]
- Martín-Neira, M.; Oliva, R.; Corbella, I.; Torres, F.; Duffo, N.; Durán, I.; Kainulainen, J.; Closa, J.; Zurita, A.; Cabot, F.; et al. SMOS instrument performance and calibration after six years in orbit. Remote Sens. Environ. 2016, 180, 19–39. [Google Scholar] [CrossRef] [Green Version]
- Peng, J.; Misra, S.; Piepmeier, J.R.; Dinnat, E.P.; Hudson, D.; Le Vine, D.M.; De Amici, G.; Mohammed, P.N.; Bindlish, R.; Yueh, S.H.; et al. Soil Moisture Active/Passive L-Band Microwave Radiometer Postlaunch Calibration. IEEE Trans. Geosci. Remote Sens. 2017, 55, 5339–5354. [Google Scholar] [CrossRef]
- Zine, S.; Boutin, J.; Font, J.; Reul, N.; Waldteufel, P.; Gabarro, C.; Tenerelli, J.; Petitcolin, F.; Vergely, J.L.; Talone, M.; et al. Overview of the SMOS sea surface salinity prototype processor. IEEE Trans. Geosci. Remote Sens. 2008, 46, 621–644. [Google Scholar] [CrossRef]
- Meissner, T.; Wentz, F.J.; Ricciardulli, L. The emission and scattering of L-band microwave radiation from rough ocean surfaces and wind speed measurements from the Aquarius sensor. J. Geophys. Res. C Ocean. 2014, 119, 6499–6522. [Google Scholar] [CrossRef] [Green Version]
- Piepmeier, J.R.; Hong, L.; Pellerano, F.A. Aquarius L-Band Microwave Radiometer: 3 Years of Radiometric Performance and Systematic Effects. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 5416–5423. [Google Scholar] [CrossRef]
- Lagerloef, G.; Kao, H.-Y.; Meissner, T.; Vazquez, J. Aquarius Salinity Validation Analysis; Data Version 4.0; National Aeronautics and Space Administration: Washington, DC, USA, 2015.
- Yin, X.; Boutin, J.; Spurgeon, P. First assessment of SMOS data over open ocean: Part I-pacific ocean. IEEE Trans. Geosci. Remote Sens. 2012, 50, 1648–1661. [Google Scholar] [CrossRef]
- Meissner, T.; Wentz, F.J.; Le Vine, D.M. The salinity retrieval algorithms for the NASA Aquarius version 5 and SMAP version 3 releases. Remote Sens. 2018, 10, 1121. [Google Scholar] [CrossRef]
- Klein, L.A.; Swift, C.T. An improved model for the dielectric constant of sea water at microwave frequencies. IEEE J. Ocean. Eng. 1977, AP-25, 104–111. [Google Scholar] [CrossRef]
- Meissner, T.; Wentz, F.J. The complex dielectric constant of pure and sea water from microwave satellite observations. IEEE Trans. Geosci. Remote Sens. 2004, 42, 1836–1849. [Google Scholar] [CrossRef] [Green Version]
- Meissner, T.; Wentz, F.J. The Emissivity of the Ocean Surface Between 6 and 90 GHz Over a Large Range of Wind Speeds and Earth Incidence Angles. IEEE Trans. Geosci. Remote Sens. 2012, 50, 3004–3026. [Google Scholar] [CrossRef]
- Donlon, C.J.; Martin, M.; Stark, J.; Roberts-Jones, J.; Fiedler, E.; Wimmer, W. The Operational Sea Surface Temperature and Sea Ice Analysis (OSTIA) system. Remote Sens. Environ. 2012, 116, 140–158. [Google Scholar] [CrossRef]
- Reynolds, R.W.; Smith, T.M.; Liu, C.; Chelton, D.B.; Casey, K.S.; Schlax, M.G. Daily high-resolution-blended analyses for sea surface temperature. J. Clim. 2007, 20, 5473–5496. [Google Scholar] [CrossRef]
- Liebe, H.J.; Rosenkranz, P.W.; Hufford, G.A. Atmospheric 60-GHz oxygen spectrum: New laboratory measurements and line parameters. J. Quant. Spectrosc. Radiat. Transf. 1992, 48, 629–643. [Google Scholar] [CrossRef]
- Wentz, F.J.; Meissner, T. Atmospheric absorption model for dry air and water vapor at microwave frequencies below 100GHz derived from spaceborne radiometer observations. Radio Sci. 2016, 51, 381–391. [Google Scholar] [CrossRef]
- Meissner, T.; Wentz, F.J.; Scott, J.; Vazquez-Cuervo, J. Sensitivity of Ocean Surface Salinity Measurements From Spaceborne L-Band Radiometers to Ancillary Sea Surface Temperature. IEEE Trans. Geosci. Remote Sens. 2016, 54, 7105–7111. [Google Scholar] [CrossRef]
- Dinnat, E.P.; Brucker, L. Improved Sea Ice Fraction Characterization for L-Band Observations by the Aquarius Radiometers. IEEE Trans. Geosci. Remote Sens. 2017, 55, 1285–1304. [Google Scholar] [CrossRef]
- Tian-Kunze, X.; Kaleschke, L.; Maaß, N.; Mäkynen, M.; Serra, N.; Drusch, M.; Krumpen, T. SMOS-derived thin sea ice thickness: Algorithm baseline, product specifications and initial verification. Cryosphere 2014, 8, 997–1018. [Google Scholar] [CrossRef]
- Maaß, N.; Kaleschke, L.; Tian-Kunze, X.; Drusch, M. Snow thickness retrieval over thick Arctic sea ice using SMOS satellite data. Cryosphere 2013, 7, 1971–1989. [Google Scholar] [CrossRef] [Green Version]
- Boutin, J.; Chao, Y.; Asher, W.E.; Delcroix, T.; Drucker, R.; Drushka, K.; Kolodziejczyk, N.; Lee, T.; Reul, N.; Reverdin, G.; et al. Satellite and In Situ Salinity: Understanding Near-surface Stratification and Sub-footprint Variability. Bull. Am. Meteorol. Soc. 2016, 97, 1391–1408. [Google Scholar] [CrossRef]
- Hasson, A.; Puy, M.; Boutin, J.; Guilyardi, E.; Morrow, R. Northward Pathway Across the Tropical North Pacific Ocean Revealed by Surface Salinity: How do El Niño Anomalies Reach Hawaii? J. Geophys. Res. Ocean. 2018, 123, 2697–2715. [Google Scholar] [CrossRef]
- Chaigneau, A.; Morrow, R. Surface temperature and salinity variations between Tasmania and Antartica, 1993–1999. J. Geophys. Res. 2002, 107, 22–27. [Google Scholar] [CrossRef]
- Yin, X.; Boutin, J.; Spurgeon, P. Biases between measured and simulated SMOS brightness temperatures over ocean: Influence of sun. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 6, 1341–1350. [Google Scholar] [CrossRef]
- Zhou, Y.; Lang, R.H.; Dinnat, E.P.; Le Vine, D.M. L-Band Model Function of the Dielectric Constant of Seawater. IEEE Trans. Geosci. Remote Sens. 2017, 55, 6964–6974. [Google Scholar] [CrossRef]
- Shibata, A. Description of GCOM-W1 AMSR2 Sea Surface Temperature Algorithm. In Descriptions of GCOM-W1 AMSR2 Level 1R and Level 2 Algorithms; Japan Aerospace Exploration Agency: Tokyo, Japan, 2013; p. 119. [Google Scholar]
- Shibata, A. A change of microwave radiation from the ocean surface induced by air-sea temperature difference. Radio Sci. 2003, 38. [Google Scholar] [CrossRef]
- Lang, R.; Zhou, Y.; Utku, C.; Le Vine, D. Accurate measurements of the dielectric constant of seawater at L band. Radio Sci. 2016, 51, 2–24. [Google Scholar] [CrossRef] [Green Version]
QC Flag | Data Reduction |
---|---|
(1) Non science mode, event, anomalous TA, TOI TB or surface TB | 1.92% |
(2) Land contamination | 13.50% |
(3) Sea ice contamination | 24.62% |
(4) SSS less than 0 | 24.51% |
(5) Regions of severe radio frequency interference (RFI) | 2.67% |
(6) Large RFI correction applied | 2.72% |
(7) Celestial Sky Contamination | 5.94% |
(8) All flags | 39.69% |
KS | OSTIA SST | KS and OSTIA | ||||
---|---|---|---|---|---|---|
V-pol | H-pol | V-pol | H-pol | V-pol | H-pol | |
Beam 1 | −0.113 | −0.095 | −0.009 | −0.007 | −0.121 | −0.102 |
Beam 2 | −0.120 | −0.089 | −0.010 | −0.007 | −0.128 | −0.094 |
Beam 3 | −0.130 | −0.083 | −0.010 | −0.006 | −0.138 | −0.088 |
Median | 2.50% | 16% | 84% | 97.50% | |
---|---|---|---|---|---|
Argo | 34.90 | 32.75 | 33.92 | 35.74 | 36.85 |
SMOS CPDC (filtered land) | 34.82 | 33.23 | 33.99 | 35.76 | 36.90 |
Aquarius V5 | 34.85 | 32.71 | 33.97 | 35.69 | 36.85 |
Argo (SMAP period) | 34.83 | 32.65 | 33.90 | 35.84 | 37.00 |
SMAP V3 | 34.78 | 32.61 | 33.85 | 35.85 | 37.00 |
SMAP V2 | 34.78 | 32.41 | 33.78 | 35.86 | 37.23 |
SMOS CPDC | Aquarius V3 | Aquarius V5 | SMAP V2 | SMAP V3 | |
---|---|---|---|---|---|
Start Date | Jan-2011 | Sep-2011 | Sep-2011 | Apr-2015 | Apr-2015 |
End Date | Mar-2017 | Apr-2015 | May-2015 | Feb-2018 | Jun-2018 |
Region name | Long. West | Long. East | Lat. North | Lat. South |
---|---|---|---|---|
North Atlantic Gyre | −42.5 | −28 | 24 | 28 |
South Atlantic Gyre | −16.8 | −10.5 | −24.7 | −17.3 |
Amazon Plume | −46.5 | −43 | 4 | 11 |
Equatorial Pacific | −132.8 | −93.4 | −2.6 | 2.6 |
South Pacific Gyre | −146.3 | −108.6 | −23.4 | −16.6 |
North Pacific Gyre | −165.1 | −134.8 | 23.7 | 31.8 |
North Pacific High latitudes | −180.2 | −144.1 | 46 | 50 |
South Indian Ocean Gyre | 75.2 | 99.2 | −33.1 | −26.7 |
South Pacific High latitudes | −172 | −140 | −51.5 | −46.8 |
Tropical Indian Ocean | 68 | 84 | −11.5 | −4.5 |
South Atlantic High latitudes | −20 | 8 | −50 | −45 |
ROI # | Region Name | Median SSS (psu) | STD SSS (psu) | Median SST (°C) | STD SST (°C) |
---|---|---|---|---|---|
1 | North Atlantic Gyre | 37.42 | 0.09 | 23.96 | 1.77 |
2 | South Atlantic Gyre | 36.70 | 0.13 | 23.23 | 1.67 |
3 | Amazon Plume | 35.82 | 0.63 | 27.87 | 0.94 |
4 | Equatorial Pacific | 34.78 | 0.19 | 25.07 | 1.77 |
5 | South Pacific Gyre | 36.37 | 0.08 | 25.90 | 1.29 |
6 | North Pacific Gyre | 35.26 | 0.11 | 22.53 | 1.73 |
7 | North Pacific High latitudes | 32.64 | 0.10 | 7.41 | 2.82 |
8 | South Indian Ocean Gyre | 35.85 | 0.07 | 20.89 | 1.77 |
9 | South Pacific High latitudes | 34.48 | 0.05 | 9.97 | 1.30 |
10 | Tropical Indian Ocean | 34.61 | 0.39 | 28.51 | 0.85 |
11 | South Atlantic High latitudes | 33.83 | 0.05 | 5.39 | 1.19 |
12 | South Indian Ocean High latitudes | 33.91 | 0.13 | 7.19 | 1.35 |
ROI# | Region Name | SMOS CPDC | Aquarius V5 | SMAP V2 | SMAP V3 |
---|---|---|---|---|---|
1 | North Atlantic Gyre | −0.14 | −0.03 | 0.06 | 0.01 |
2 | South Atlantic Gyre | 0.04 | −0.02 | 0.05 | 0.02 |
3 | Amazon Plume | −0.31 | −0.01 | 0.13 | −0.06 |
4 | Equatorial Pacific | 0.10 | −0.03 | 0.12 | 0.04 |
5 | South Pacific Gyre | −0.04 | −0.08 | 0.07 | 0.00 |
6 | North Pacific Gyre | −0.10 | 0.02 | −0.08 | 0.02 |
7 | North Pacific High latitudes | −0.16 | 0.11 | −0.10 | 0.02 |
8 | South Indian Ocean Gyre | 0.01 | −0.09 | −0.12 | 0.03 |
9 | South Pacific High latitudes | −0.04 | −0.09 | −0.14 | −0.12 |
10 | Tropical Indian Ocean | −0.07 | −0.02 | 0.11 | −0.03 |
11 | South Atlantic High latitudes | 0.12 | 0.22 | −0.14 | 0.07 |
12 | South Indian Ocean High latitudes | 0.07 | 0.22 | −0.14 | 0.03 |
ROI# | Region Name | SMOS CPDC | Aquarius V5 | SMAP V2 | SMAP V3 |
---|---|---|---|---|---|
1 | North Atlantic Gyre | 0.134 | 0.062 | 0.082 | 0.065 |
2 | South Atlantic Gyre | 0.097 | 0.086 | 0.062 | 0.078 |
3 | Amazon Plume | 0.400 | 0.317 | 0.357 | 0.367 |
4 | Equatorial Pacific | 0.129 | 0.069 | 0.078 | 0.075 |
5 | South Pacific Gyre | 0.074 | 0.069 | 0.095 | 0.077 |
6 | North Pacific Gyre | 0.118 | 0.045 | 0.060 | 0.047 |
7 | North Pacific High latitudes | 0.212 | 0.111 | 0.142 | 0.119 |
8 | South Indian Ocean Gyre | 0.079 | 0.046 | 0.081 | 0.053 |
9 | South Pacific High latitudes | 0.116 | 0.104 | 0.098 | 0.092 |
10 | Tropical Indian Ocean | 0.117 | 0.093 | 0.106 | 0.073 |
11 | South Atlantic High latitudes | 0.171 | 0.155 | 0.120 | 0.116 |
12 | South Indian Ocean High latitudes | 0.170 | 0.134 | 0.107 | 0.100 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dinnat, E.P.; Le Vine, D.M.; Boutin, J.; Meissner, T.; Lagerloef, G. Remote Sensing of Sea Surface Salinity: Comparison of Satellite and In Situ Observations and Impact of Retrieval Parameters. Remote Sens. 2019, 11, 750. https://doi.org/10.3390/rs11070750
Dinnat EP, Le Vine DM, Boutin J, Meissner T, Lagerloef G. Remote Sensing of Sea Surface Salinity: Comparison of Satellite and In Situ Observations and Impact of Retrieval Parameters. Remote Sensing. 2019; 11(7):750. https://doi.org/10.3390/rs11070750
Chicago/Turabian StyleDinnat, Emmanuel P., David M. Le Vine, Jacqueline Boutin, Thomas Meissner, and Gary Lagerloef. 2019. "Remote Sensing of Sea Surface Salinity: Comparison of Satellite and In Situ Observations and Impact of Retrieval Parameters" Remote Sensing 11, no. 7: 750. https://doi.org/10.3390/rs11070750