SAR Backscatter and InSAR Coherence for Monitoring Wetland Extent, Flood Pulse and Vegetation: A Study of the Amazon Lowland
"> Figure 1
<p>Study area (R,G,B: Jul 31, Nov 28, Apr 02, 2014 RADARSAT-2).</p> "> Figure 2
<p>Flow diagram shows the outline of the study methodology.</p> "> Figure 3
<p>Radar-derived surface water maps (open water is in blue and flooded vegetation in red) from April 2014 to August 2016. These images were produced using an intensity thresholding approach and captured the dynamic changes in surface water extent.</p> "> Figure 3 Cont.
<p>Radar-derived surface water maps (open water is in blue and flooded vegetation in red) from April 2014 to August 2016. These images were produced using an intensity thresholding approach and captured the dynamic changes in surface water extent.</p> "> Figure 4
<p>(<b>a</b>) Selected cross section area of the river valley, (<b>b</b>) Hypsographic curve showing the relationship between the elevation and the area less than the particular elevation.</p> "> Figure 5
<p>(<b>a</b>) Temporal pattern (annual flood pulse) of the estimated water level from surface water maps derived from SAR and observed hourly water level measurement acquired form Santarém station. (<b>b</b>) Correlation and deviation between estimated and observed water levels. (<b>c</b>) Correlation between the estimated and observed water level at rising and recession limbs.</p> "> Figure 6
<p>Hydroperiod of the study area.</p> "> Figure 7
<p>(<b>a</b>) Inundation extent and duration (<b>b</b>) Statistics of wetland vegetation based on the Ferreira’s zonation.</p> "> Figure 8
<p>(<b>a</b>) Twenty-one coherence products from 22 RADARSAT-2 scenes (<b>b</b>) Coherence of 23 November and 17 December 2015 scenes.</p> "> Figure 9
<p>R,G,B: Maximum coherence, standard deviation of intensity, and skewness of intensity derived from RADARSAT-2 intensity and coherent stacks. The color deference in the lower part is due to the missing coverage of a few acquisitions that altered the data used for the statistical products.</p> "> Figure 10
<p>Wetland classification from six statistical parameters derived from multi-temporal RADARSAT-2 intensity and coherence stacks.</p> ">
Abstract
:1. Introduction
2. Study Area Characteristics
Study Area Description
3. Data and Methods
3.1. RADARSAT-2 Data
3.2. SAR and InSAR Processing
3.3. Open Water and Flooded Vegetation Extraction
3.4. Multi-Temporal SAR Classification
4. Results and Discussion
4.1. Inundation Extent
4.2. Flood Pulse
4.3. Hydroperiod
4.4. Wetland Vegetation
- Minimum intensity—information on open water area
- Maximum intensity—information on flooded vegetation
- Mean intensity—information on land surface
- Standard deviation of intensity—information on change
- Skewness of intensity—information on pattern of change
- Maximum coherence—coherent for a certain period
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Junk, W.J.; Piedade, M.T.F.; Lourival, R.; Wittmann, F.; Kandus, P.; Lacerda, L.D.; Bozelli, R.L.; Esteves, F.A.; Nunes Da Cunha, C.; Maltchik, L.; et al. Brazilian wetlands: Their definition, delineation, and classification for research, sustainable management, and protection. Aquatic Con. Marian Fres. Ecos. 2014, 24, 5–22. [Google Scholar] [CrossRef]
- Castello, L.; Isaac, V.J.; Thapa, R. Flood pulse effects on multi species fishery yields in the Lower Amazon. R. Soc. Open sci. 2015, 2, 150299. [Google Scholar] [CrossRef]
- IPCC (Intergovernmental Panel on Climate Change). Climate Change and Water; Intergovernmental Panel on Climate Change. Available online: https://www.ipcc.ch/site/assets/uploads/2018/03/climate-change-water-en.pdf (accessed on 26 March 2019).
- SCBD (Secretariat of the Convention on Biodiversity). Global Biodiversity Outlook 3. Secretariat of the Convention on Biodiversity: Montreal, Canada. Available online: https://www.cbd.int/doc/publications/gbo/gbo3-final-en.pdf (accessed on 26 March 2019).
- Brisco, B.; Short, N.; Van der Sanden, J.; Landry, R.; Raymond, D. A semi-automated tool for surface water mapping with RADARSAT-1. Can. J. Remote Sens. 2009, 35, 336–344. [Google Scholar] [CrossRef]
- Martinez, J.M.; Le Toan, T. Mapping of flood dynamics and spatial distribution of vegetation in the Amazon floodplain using multi-temporal SAR data. Remote Sens. Environ. 2007, 108, 209–223. [Google Scholar] [CrossRef]
- Matgen, P.; Hostache, R.; Schumann, G.; Pfister, L.; Hoffmann, L.; Savenije, H.H.G. Towards an automated SAR-based flood monitoring system: Lessons learned from two case studies. Phys. Chem. Earth. 2011, 36, 241–252. [Google Scholar] [CrossRef]
- Wendleder, A.; Wessel, B.; Roth, A.; Breunig, M.; Martin, K.; Wagenbrenner, S. TanDEM-X Water Indication Mask: Generation and First Evaluation Results. IEEE J. Selec. Top. Appl. Earth Obs. Remote Sens. 2012, 6, 1–9. [Google Scholar] [CrossRef]
- Martinis, S.; Rieke, C. Backscatter Analysis Using Multi-Temporal and Multi-Frequency SAR Data in the Context of Flood Mapping at River Saale, Germany. Remote Sens. 2015, 7. [Google Scholar] [CrossRef]
- Hess, L.L.; Melack, J.; Simonett, D. Radar detection of flooding beneath the forest canopy: A review. Int. J. Remote Sens. 1990, 11, 1313–1325. [Google Scholar] [CrossRef]
- Kasischke, E.S.; Bourgeau-Chavez, L.L. Monitoring South Florida wetlands using ERS-1 SAR imagery. Photogramm. Eng. Remote Sens. 1997, 63, 281–291. [Google Scholar]
- Pope, K.O.; Rejmankova, E.; Paris, J.F.; Woodruff, R. Detecting seasonal flooding cycles in marshes of the Yucatan Peninsula with SIR-C polarimetric radar imagery. Remote Sens. Environ. 1997, 59, 157–166. [Google Scholar] [CrossRef]
- Townsend, P.A. Relationship between forest structure and the detection of flood inundation in forested wetlands using C-band SAR. Remote Sens. Environ. 2002, 23, 443–460. [Google Scholar] [CrossRef]
- Kasischke, E.S.; Smith, K.B.; Bourgeau-Chavez, L.L.; Romanowicz, E.A.; Brunzell, S.M.; Richardson, C.J. Effects of seasonal hydrologic patterns in south Florida wetlands on radar backscatter measured from ERS-2 SAR imagery. Remote Sens. Environ. 2003, 88, 423–441. [Google Scholar] [CrossRef]
- White, L.; Brisco, B.; Dabboor, M.; Schmitt, A.; Pratt, A. A Collection of SAR Methodologies for Monitoring Wetlands. Remote Sens. 2015, 7. [Google Scholar] [CrossRef]
- Horritt, M.S.; Mason, D.C.; Cobby, D.M.; Davenport, I.J.; Bates, P.D. Waterline mapping in flooded vegetation from airborne SAR imagery. Remote Sens. Environ. 2003, 85, 271–281. [Google Scholar] [CrossRef]
- Chapman, B.; McDonald, K.; Shimada, M.; Rosenqvist, A.; Schroeder, R.; Hess, L. Mapping Regional Inundation with Spaceborne L-Band SAR. Remote Sens. 2015, 7, 5440–5470. [Google Scholar] [Green Version]
- Plank, S.; Jüssi, M.; Martinis, S.; Twele, A. Mapping of flooded vegetation by means of polarimetric Sentinel-1 and ALOS-2/PALSAR-2 imagery. Int. J. Remote Sens. 2018, 38. [Google Scholar] [CrossRef]
- Tsyganskaya, V.; Martinis, S.; Marzahn, P.; Ludwig, R. SAR-based detection of flooded vegetation—A review of characteristics and approaches. Int. J. Remote Sens. 2018, 39, 2255–2293. [Google Scholar] [CrossRef]
- Alsdorf, D.; Smith, L.; Melack, J. Amazon floodplain water level changes measured with interferometric SIR-C radar. IEEE Trans. Geosci. Remote Sens. 2001, 39, 423–431. [Google Scholar] [CrossRef]
- Lu, Z.; Kwoun, O.I. Radarsat-1 and ERS InSAR analysis over southeastern coastal Louisiana: Implications for mapping water-level changes beneath swamp forests. IEEE Trans. Geosci. Remote Sens. 2008, 46, 2167–2184. [Google Scholar] [CrossRef]
- Wdowinski, S.; Kim, S.W. Space based detection of wetlands’ surface water level changes from L band SAR interferometry. Remote Sens. Environ. 2008, 112, 681–696. [Google Scholar] [CrossRef]
- Kim, S.W.; Lu, Z.; Lee, H.; Shum, C.K.; Swarzenski, C.M.; Doyle, T.W.; Baek, S.H. Integrated analysis of PALSAR/Radarsat-1 InSAR and ENVISAT altimeter data for mapping of absolute water level changes in Louisiana wetlands. Remote Sens. Environ. 2009, 113, 2356–2365. [Google Scholar] [CrossRef]
- Hong, S.H.; Wdowinski, S.; Kim, S.W.; Won, J.S. Multi-temporal monitoring of wetland water levels in the Florida Everglades using interferometric synthetic aperture radar (INSAR). Remote Sens. Environ. 2010, 114, 2436–2447. [Google Scholar] [CrossRef]
- Lee, H.; Yuan, T.; Jung, H.C.; Beighley, E. Mapping wetland water depths over the central Congo Basin using PALSAR ScanSAR, Envisat altimetry, and MODIS VCF data. Remote Sens. Environ. 2015, 159, 70–79. [Google Scholar] [CrossRef]
- Yuan, T.; Lee, H.; Jung, H.C. Toward estimating wetland water level changes based on hydrological sensitivity analysis of PALSAR backscattering coefficients over different vegetation fields. Remote Sens. 2015, 7, 3153–3183. [Google Scholar] [CrossRef]
- Kim, D.; Lee, H.; Laraque, A.; Tshimanga, R.M.; Yuan, T.; Jung, H.C.; Beighley, E.; Chang, C.-H. Mapping spatio-temporal water level variations over the central Congo River using PALSAR ScanSAR and Envisat altimetry data. Int. J. Remote Sens. 2017, 38, 7021–7040. [Google Scholar] [CrossRef]
- Yuan, T.; Lee, H.; Jung, H.C.; Aierken, A.; Beighley, E.; Alsdorf, D.; Tshimanga, R.; Kim, D. Absolute water storages in the Congo River floodplains from integration of InSAR and satellite radar altimetry. Remote Sens. Environ. 2017, 201, 57–72. [Google Scholar] [CrossRef]
- Cao, N.; Lee, H.; Jung, H.C.; Yu, H. Estimation of water level changes of large-scale Amazon wetlands using ALOS2 ScanSAR differential interferometry. Remote Sens. 2018, 10, 966. [Google Scholar] [CrossRef]
- Abril, G.; Martinez, J.M.; Artigas, L.F.; Moreira-Turcq, P.; Benedetti, M.F.; Vidal, L.; Meziane, T.; Kim, J.H.; Bernardes, M.C.; Savoye, N.; et al. Amazon River carbon dioxide outgassing fuelled by wetlands. Nature 2014, 505, 395–398. [Google Scholar] [CrossRef] [PubMed]
- Hagberg, J.O.; Ulander, L.M.; Askne, J. Repeat-pass SAR interferometry over forested terrain. IEEE Trans. Geosci. Remote Sens. 1995, 33, 331–340. [Google Scholar] [CrossRef]
- Canisius, F.; Kiyoshi, H.; Tokunaga, M. Updating geomorphic features of watersheds and their boundaries in hazardous areas using satellite synthetic aperture radar. Int. J. Remote Sens. 2009, 30, 5919–5933. [Google Scholar] [CrossRef]
- Olesk, A.; Antropov, O.; Zalite, K.; Arumäe, T.; Voormansik, K. Interferometric SAR coherence models for characterization of hemiboreal forests using TanDEM-X Data. Remote Sens. 2016, 8, 1–23. [Google Scholar] [CrossRef]
- Brisco, B.; Ahern, F.; Murnaghan, K.; White, L.; Canisius, F.; Lancaster, P. Seasonal Change in Wetland Coherence as an Aid to Wetland Monitoring. Remote Sens. 2017, 9. [Google Scholar] [CrossRef]
- Canisius, F.; Shang, J.; Liu, J.; Huang, X.; Ma, B.; Jiao, X.; Geng, X.; Kovacs, J.; Walters, D. Tracking crop phenological development using multi-temporal polarimetric Radarsat-2 data. Remote Sens. Environ. 2017, 10. [Google Scholar] [CrossRef]
- Furtado, L.; Silva, T.; Novo, E. Dual-season and full-polarimetric C band SAR assessment for vegetation mapping in the Amazon várzea wetlands. Remote Sens. Environ. 2016, 174, 212–222. [Google Scholar] [CrossRef]
- Ferreira, C.S.; Piedade, M.T.F.; de Oliveira Wittmann, A.; Franco, A.C. Plant reproduction in the Central Amazonian floodplains: Challenges and adaptations. AoB plants 2010. [Google Scholar] [CrossRef] [PubMed]
- Paiva, R.C.D.; Buarque, D.C.; Collischonn, W.; Bonnet, M.-P.; Frappart, F.; Calmant, S.; Mendes, C.A.B. Largescale hydrologic and hydrodynamic modeling of the Amazon River basin. Water Resour. Res. 2013, 49, 1226–1243. [Google Scholar] [CrossRef]
- Junk, W.J.; Wantzen, K. Flood Pulsing and the Development and Maintenance of Biodiversity in Floodplains. Ecol. Freshw. Estuar. Wetl. 2007. [Google Scholar] [CrossRef]
- Keddy, P.; Fraser, L.; Solomeshch, A.; Junk, W.J.; Campbell, D.; Kalin, M.; Alho, C. Wet and Wonderful: The World’s Largest Wetlands Are Conservation Priorities. BioScience 2009, 59, 39–51. [Google Scholar] [CrossRef]
- Brisco, B.; Murnaghan, K.; Wdowinski, S.; Hong, S.-H. Evaluation of RADARSAT-2 Acquisition Modes for Wetland Monitoring Applications. Can. J. Remote Sens. 2015, 41, 431–439. [Google Scholar] [CrossRef]
- Nghiem, S.V.; Zuffada, C.; Shah, R.; Chew, C.; Lowe, S.T.; Mannucci, A.J.; Cardellach, E.; Brakenridge, G.R.; Geller, G.; Rosenqvist, A. Wetland monitoring with Global Navigation Satellite System reflectometry. Earth Space Sci. 2017, 4, 16–39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rudorff, C.; Melack, J.; Bates, D.P. Flooding dynamics on the lower Amazon floodplain: 2. Seasonal and interannual hydrological variability. Water Resour. Res. 2014, 50, 635–649. [Google Scholar] [CrossRef] [Green Version]
- Hess, L.; Melack, J.; Novo, E.; Barbosa, C.; Gastil, G. Dual-season mapping of wetland inundation and vegetation for the central Amazon basin. Remote Sens. Environ. 2003, 87, 404–428. [Google Scholar] [CrossRef]
- Behnamian, A.; Banks, S.N.; White, L.; Brisco, B.; Millard, K.; Pasher, J.; Chen, Z.; Duffe, J.; Bourgeau-Chavez, L.L.; Battaglia, M. Semi-Automated Surface Water Detection with Synthetic Aperture Radar Data: A Wetland Case Study. Remote Sens. 2017, 9, 1209. [Google Scholar] [CrossRef]
- Cohen, J.; Riihimäki, H.; Pulliainen, J.; Lemmetyinen, J.; Heilimo, J. Implications of boreal forest stand characteristics for X-band SAR flood mapping accuracy. Remote Sens. Environ. 2016, 186, 47–63. [Google Scholar] [CrossRef]
- Zhuang, Q.; Zhu, X.; He, Y.; Prigent, C.; Melillo, J.M.; McGuire, A.D.; Prinn, R.G.; Kicklighter, D.W. Influence of changes in wetland inundation extent on net fluxes of carbon dioxide and methane in northern high latitudes from 1993 to 2004. Environ. Res. Lett. 2015, 10, 095009. [Google Scholar] [CrossRef] [Green Version]
- Bonnema, M.; Sikder, S.; Miao, Y.; Chen, X.; Hossain, F.; Ara Pervin, I.; Mahbubur Rahman, S.M.; Lee, H. Understanding satellite-based monthly-to-seasonal reservoir outflow estimation as a function of hydrologic controls. Water Resour. Res. 2016, 52. [Google Scholar] [CrossRef]
- Kneitel, J. Inundation timing, more than duration, affects the community structure of California vernal pool mesocosms. Hydrobiologia 2014, 732. [Google Scholar] [CrossRef]
- Jung, H.C.; Alsdorf, D. Repeat-pass multi-temporal interferometric SAR coherence variations with Amazon floodplain and lake habitats. Int. J. Remote Sens. 2010, 4, 881–901. [Google Scholar] [CrossRef]
- Debabrata, S.; Goutam, S. Statistical approach for classification of SAR images. Int. J. Soft Comput. Eng. 2012, 2, 2231–2307. [Google Scholar]
Season/Flood Pulse | Month | 2014 | 2015 | 2016 |
---|---|---|---|---|
High water stage | March | 04 | ||
April | 02, 26 | 21 | 15 | |
May | 15 | |||
June | 13 | 08 | 02 | |
July | 31 | |||
August | 19 | 13 | ||
Low water stage | September | 17 | ||
October | 11 | 06 | ||
November | 04, 28 | 23 | ||
December | 22 | 17 | ||
January | ||||
February | 03, 27 |
Reference | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Classification | Water | Primary forest | Degraded forest | Floodplain forest | Floodplain shrub | Floodplain herbaceous | Aquatic herbaceous | Agriculture or grassland | Settlement | Total | Users accuracy | |
Water | 43 | 43 | 100 | |||||||||
Primary forest | 46 | 1 | 3 | 1 | 51 | 90 | ||||||
Degraded forest | 1 | 10 | 11 | 91 | ||||||||
Floodplain forest | 11 | 11 | 100 | |||||||||
Floodplain shrub | 1 | 1 | 8 | 2 | 1 | 13 | 62 | |||||
Floodplain herbaceous | 1 | 1 | 2 | 17 | 2 | 1 | 24 | 71 | ||||
Aquatic herbaceous | 1 | 2 | 9 | 12 | 75 | |||||||
Agriculture or grassland | 3 | 2 | 1 | 25 | 1 | 32 | 78 | |||||
Settlement | 3 | 3 | 100 | |||||||||
Total | 44 | 49 | 15 | 15 | 13 | 21 | 12 | 27 | 4 | 200 | ||
Producers accuracy | 98 | 94 | 67 | 73 | 62 | 81 | 75 | 93 | 75 | 86 |
Class Name | Reference Totals | Classified Totals | Number Correct | Omission Error (%) | Commission Error (%) | Kappa |
---|---|---|---|---|---|---|
Water | 44 | 43 | 43 | 2 | 0 | 1.00 |
Primary forest | 49 | 51 | 46 | 6 | 10 | 0.87 |
Degraded forest | 15 | 11 | 10 | 33 | 9 | 0.90 |
Floodplain forest | 15 | 11 | 11 | 27 | 0 | 1.00 |
Floodplain shrub | 13 | 13 | 8 | 38 | 38 | 0.59 |
Floodplain herbaceous | 21 | 24 | 17 | 19 | 29 | 0.67 |
Aquatic herbaceous | 12 | 12 | 9 | 25 | 25 | 0.73 |
Agriculture or grassland | 27 | 32 | 25 | 7 | 22 | 0.75 |
Settlement | 4 | 3 | 3 | 25 | 0 | 1.00 |
Total | 200 | 200 | 172 | |||
Overall accuracy: 86 %; Kappa coefficient: 0.83 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Canisius, F.; Brisco, B.; Murnaghan, K.; Van Der Kooij, M.; Keizer, E. SAR Backscatter and InSAR Coherence for Monitoring Wetland Extent, Flood Pulse and Vegetation: A Study of the Amazon Lowland. Remote Sens. 2019, 11, 720. https://doi.org/10.3390/rs11060720
Canisius F, Brisco B, Murnaghan K, Van Der Kooij M, Keizer E. SAR Backscatter and InSAR Coherence for Monitoring Wetland Extent, Flood Pulse and Vegetation: A Study of the Amazon Lowland. Remote Sensing. 2019; 11(6):720. https://doi.org/10.3390/rs11060720
Chicago/Turabian StyleCanisius, Francis, Brian Brisco, Kevin Murnaghan, Marco Van Der Kooij, and Edwin Keizer. 2019. "SAR Backscatter and InSAR Coherence for Monitoring Wetland Extent, Flood Pulse and Vegetation: A Study of the Amazon Lowland" Remote Sensing 11, no. 6: 720. https://doi.org/10.3390/rs11060720
APA StyleCanisius, F., Brisco, B., Murnaghan, K., Van Der Kooij, M., & Keizer, E. (2019). SAR Backscatter and InSAR Coherence for Monitoring Wetland Extent, Flood Pulse and Vegetation: A Study of the Amazon Lowland. Remote Sensing, 11(6), 720. https://doi.org/10.3390/rs11060720