Seeking Optimal GNSS Radio Occultation Constellations Using Evolutionary Algorithms
"> Figure 1
<p>The simulated 24 h Global Navigation Satellite System (GNSS) radio occultation events (ROEs), observed by COSMIC using the real orbits (<b>a</b>) and the simulated orbits (<b>b</b>).</p> "> Figure 2
<p>The optimization algorithm flowchart of the LEO constellation with certain number of satellites and certain constellation pattern.</p> "> Figure 3
<p>Fitness values of the optimal configurations for 2D-lattice flower constellation (2D-LFC) and 3D-LFC composed of 6-12 satellites based on Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) algorithms.</p> "> Figure 4
<p>The numbers of ROEs observed in one day by the final optimal LEO constellations with 2D-LFC and 3D-LFC patterns composed of 6–12 satellites.</p> "> Figure 5
<p>The distribution of ROEs observed within each three hours of one day by the final optimal LEO constellations with 2D-LFC pattern composed of 6 (<b>a</b>) and 12 satellites (<b>b</b>).</p> ">
Abstract
:1. Introduction
2. Principles and Methods
2.1. LEO Constellation Patterns
2.1.1. 2D-LFC
2.1.2. 3D-LFC
2.2. An Overview of the Evolutionary Algorithms
2.2.1. Genetic Algorithm (GA)
2.2.2. Particle Swarm Optimization (PSO) Algorithm
2.3. Fitness Function
2.4. Simulation Scenario
2.5. The Criteria to Evaluate the Performance of the ROE Distributions
3. Results
3.1. Comparison of Evolutionary Algorithms
3.2. The Optimal Constellations
3.3. Performance Evaluation of the Optimal Constellations
3.4. Comparison with the COSMIC Constellation
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Arnas, D.; Casanova, D.; Tresaco, E. 2D necklace flower constellations. Acta Astronaut. 2018, 142, 18–28. [Google Scholar] [CrossRef]
- Kliore, A.; Cain, D.L.; Levy, G.S.; Eshleman, V.R.; Fjeldbo, G.; Drake, F.D. Occultation experiment: Results of the first direct measurement of Mars’s atmosphere and ionosphere. Science 1965, 149, 1243–1248. [Google Scholar] [CrossRef] [PubMed]
- Bevis, M.; Businger, S.; Chiswell, S.; Herring, T.A.; Anthes, R.A.; Rocken, C.; Ware, R.H. GPS Meteorology: Mapping zenith wet delays onto Precipitable water. J. Appl. Meteorol. 1994, 33, 379–386. [Google Scholar] [CrossRef]
- Ware, R.; Exner, M.; Feng, D.; Gorbunov, M.; Hardy, K.; Herman, B.; Kuo, Y.; Meehan, T.; Melbourne, W.; Rocken, C.; et al. GPS sounding of the atmosphere from low Earth orbit: Preliminary results. Bull. Am. Meteorol. Soc. 1996, 77, 19–40. [Google Scholar] [CrossRef]
- Wickert, J.; Reigber, C.; Beyerle, G.; König, R.; Marquardt, C.; Schmidt, T.; Grunwaldt, L.; Galas, R.; Meehan, T.K.; Melbourne, W.G.; et al. Atmosphere sounding by GPS radio occultation: First results from CHAMP. Geophys. Res. Lett. 2001, 28, 3263–3266. [Google Scholar] [CrossRef] [Green Version]
- Anthes, R.A. Exploring Earth’s atmosphere with radio occultation: Contributions to weather, climate and space weather. Atmos. Meas. Tech. 2011, 4, 1077–1103. [Google Scholar] [CrossRef]
- Bartalis, Z.; Wagner, W.; Naeimi, V.; Hasenauer, S.; Scipal, K.; Bonekamp, H.; Figa, J.; Anderson, C. Initial soil moisture retrievals from the METOP-A Advanced Scatterometer (ASCAT). Geophys. Res. Lett. 2007, 34, 20. [Google Scholar] [CrossRef]
- Klaes, K.D.; Montagner, F.; Larigauderie, C. Metop-B, the second satellite of the EUMETSAT polar system, in orbit. Earth Observing Systems XVIII. Int. Soc. Opt. Photonics 2013, 8866, 886613. [Google Scholar]
- Bi, Y.; Yang, Z.; Zhang, P.; Sun, Y.; Bai, W.; Du, Q.; Yang, G.; Chen, J.; Liao, M. An introduction to China FY3 radio occultation mission and its measurement simulation. Adv. Space Res. 2012, 49, 1191–1197. [Google Scholar] [CrossRef]
- Schreiner, W.; Rocken, C.; Sokolovskiy, S.; Syndergaard, S.; Hunt, D. Estimates of the precision of GPS radio occultations from the COSMIC/FORMOSAT-3 mission. Geophys. Res. Lett. 2007, 34. [Google Scholar] [CrossRef] [Green Version]
- Wickert, J.; Michalak, G.; Schmidt, T.; Beyerle, G.; Cheng, C.Z.; Healy, S.B.; Heise, S.; Huang, C.Y.; Jakowski, N.; Köhler, W.; et al. GPS radio occultation: Results from CHAMP, GRACE and FORMOSAT-3/COSMIC. Terr. Atmos. Ocean. Sci. 2009, 20, 35–50. [Google Scholar] [CrossRef]
- Cucurull, L. Improvement in the use of an operational constellation of GPS radio occultation receivers in weather forecasting. Weather Forecast. 2010, 25, 749–767. [Google Scholar] [CrossRef]
- Steiner, A.K.; Lackner, B.C.; Ladstädter, F.; Scherllin-Pirscher, B.; Foelsche, U.; Kirchengast, G. GPS radio occultation for climate monitoring and change detection. Radio Sci. 2011, 46, 1–17. [Google Scholar] [CrossRef]
- Lei, J.; Syndergaard, S.; Burns, A.G.; Solomon, S.C.; Wang, W.; Zeng, Z.; Roble, R.G.; Wu, Q.; Kuo, Y.H.; Holt, J.M.; et al. Comparison of COSMIC ionospheric measurements with ground-based observations and model predictions: Preliminary results. J. Geophys. Res. Space Phys. 2007, 112. [Google Scholar] [CrossRef] [Green Version]
- Hsu, C.T.; Matsuo, T.; Yue, X.; Fang, T.W.; Fuller-Rowell, T.; Ide, K.; Liu, J.Y. Assessment of the Impact of FORMOSAT-7/COSMIC-2 GNSS RO Observations on Midlatitude and Low-Latitude Ionosphere Specification: Observing System Simulation Experiments Using Ensemble Square Root Filter. J. Geophys. Res. Space Phys. 2018, 123, 2296–2314. [Google Scholar] [CrossRef]
- Jakowski, N.; Wilken, V.; Schlueter, S.; Stankov, S.M.; Heise, S. Ionospheric space weather effects monitored by simultaneous ground and space based GNSS signals. J. Atmos. Sol. Terr. Phys. 2005, 67, 1074–1084. [Google Scholar] [CrossRef]
- Tseng, T.P.; Chen, S.Y.; Chen, K.L.; Huang, C.Y.; Yeh, W.H. Determination of near real-time GNSS satellite clocks for the FORMOSAT-7/COSMIC-2 satellite mission. GPS Solut. 2018, 22, 47. [Google Scholar] [CrossRef]
- Bai, W.H.; Sun, Y.Q.; Du, Q.; Yang, G.L.; Yang, Z.D.; Zhang, P.; Bi, Y.M.; Wang, X.Y.; Cheng, C.; Han, Y. An introduction to the fy3 gnos instrument and mountain-top tests. Atmos. Meas. Tech. 2014, 7, 1817–1823. [Google Scholar] [CrossRef]
- Liao, M.; Zhang, P.; Yang, G.L.; Bi, Y.M.; Liu, Y.; Bai, W.H.; Meng, X.G.; Du, Q.F.; Sun, Y.Q. Preliminary validation of the refractivity from the new radio occultation sounder GNOS/FY-3C. Atmos. Meas. Tech. 2016, 9, 781–792. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Liu, C.; Du, Q.; Wang, X.; Bai, W.; Kirchengast, G.; Xia, J.; Meng, X.; Wang, D.; Cai, Y.; et al. Global Navigation Satellite System Occultation Sounder II (GNOS II). In Proceedings of the 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Fort Worth, TX, USA, 23–28 July 2017; pp. 1189–1192. [Google Scholar]
- Mousa, A.; Aoyama, Y.; Tsuda, T. A simulation analysis to optimize orbits for a tropical GPS radio occultation mission. Earth Planets Space 2006, 58, 919–925. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.; Li, Z.; Luo, J. Simulation of the impacts of single LEO satellite orbit parameters on the distribution and number of occultation events. Geo-Spat. Inf. Sci. 2006, 9, 13–17. [Google Scholar] [CrossRef] [Green Version]
- Chern, R.J.S.; Huang, C.M. Effect of orbit inclination on the performance of FORMOSAT-3/-7 type constellations. Acta Astronaut. 2013, 82, 47–53. [Google Scholar] [CrossRef]
- Juang, J.C.; Tsai, Y.F.; Chu, C.H. On constellation design of multi-GNSS radio occultation mission. Acta Astronaut. 2013, 82, 88–94. [Google Scholar] [CrossRef]
- Lee, S.; Mortari, D. 2-D Lattice Flower Constellations for Radio Occultation Missions. Front. Aerosp. Eng. 2013, 2, 79–90. [Google Scholar]
- Asgarimehr, M.; Hossainali, M.M. GPS radio occultation constellation design with the optimal performance in Asia Pacific region. J. Geod. 2015, 89, 519–536. [Google Scholar] [CrossRef]
- Casanova, D.; Avendaño, M.; Mortari, D. Seeking GDOP-optimal Flower Constellations for global coverage problems through evolutionary algorithms. Aerosp. Sci. Technol. 2014, 39, 331–337. [Google Scholar] [CrossRef]
- Zhu, X.; Gao, Y. Comparison of Intelligent Algorithms to Design Satellite Constellations for Enhanced Coverage Capability. In Proceedings of the 2017 10th International Symposium on Computational Intelligence and Design, Hangzhou, China, 9–10 December 2017; pp. 223–226. [Google Scholar] [CrossRef]
- Fossa, C.E.; Raines, R.A.; Gunsch, G.H.; Temple, M.A. An overview of the IRIDIUM (R) low Earth orbit (LEO) satellite system. In Proceedings of the IEEE 1998 National Aerospace and Electronics Conference, Dayton, OH, USA, 17 July 1998; pp. 152–159. [Google Scholar]
- Dietrich, F.J.; Metzen, P.; Monte, P. The Globalstar cellular satellite system. IEEE Trans. Antennas Propag. 1998, 46, 935–942. [Google Scholar] [CrossRef]
- Avendaño, M.E.; Davis, J.J.; Mortari, D. The 2-D lattice theory of flower constellations. Celest. Mech. Dyn. Astron. 2013, 116, 325–337. [Google Scholar] [CrossRef]
- Davis, J.J.; Avendaño, M.E.; Mortari, D. The 3-D lattice theory of flower constellations. Celest. Mech. Dyn. Astron. 2013, 116, 339–356. [Google Scholar] [CrossRef]
- Speckman, L.; Lang, T.; Boyce, W. An analysis of the line of sight vector between two satellites in common altitude circular orbits. In Proceedings of the Astrodynamics Conference, Portland, OR, USA, 20–22 August 1990; p. 2988. [Google Scholar] [CrossRef]
- Asvial, M.; Tafazolli, R.; Evans, B.G. Satellite constellation design and radio resource management using genetic algorithm. IEE Proc. Commun. 2004, 151, 204–209. [Google Scholar] [CrossRef]
- Fonseca, C.M.; Fleming, P.J. Genetic Algorithms for Multiobjective Optimization: Formulation Discussion and Generalization. Icga 1993, 93, 416–423. [Google Scholar]
- Goldber, D.E.; Holland, J.H. Genetic algorithms and machine learning. Mach. Learn. 1988, 3, 95–99. [Google Scholar] [CrossRef]
- Eberhart, R.; Shi, Y. Particle swarm optimization: Developments, applications and resources. In Proceedings of the 2001 Congress on Evolutionary Computation, Seoul, Korea, 27–30 May 2001; Volume 1, pp. 81–86. [Google Scholar] [CrossRef]
- Cox, D.R.; Isham, V. Point Processes; Chapman and Hall: London, UK, 1980; pp. 159–166. [Google Scholar]
- Gabriel, E.; Rowlingson, B.; Diggle, P. stpp: An R package for plotting, simulating and analyzing Spatio-Temporal Point Patterns. J. Stat. Softw. 2013, 53, 1–29. [Google Scholar] [CrossRef]
- CSNO. BeiDou Navigation Satellite System Signal in Space Interface Control Document; Version 1.0; China Satellite Navigation Office: Beijing, China, 2018.
- DOD SPS, Department of Defense USA. Global Positioning System Standard Positioning Service Performance Standard, 4th ed. 2008. Available online: http://www.gps.gov/technical/ps/2008-SPS-performancestandard (accessed on 6 January 2012).
- GLONASS Interface Control Document ICD. Navigational Radiosignal in Bands L1, L2, 5.1th ed.; Russian Institute of Space Device Engineering: Moscow, Russia, 2008. [Google Scholar]
- OS-SIS-ICD. European GNSS (Galileo) Open Service Signal in Space Interface Control Document, SISICD-2006; European Space Agency: Paris, France, 2010. [Google Scholar]
- Jaxa. Quasi-Zenith Satellite System Navigation Service Interface Specification for QZSS (IS-QZSS) version 1.4; Japan Aerospace Exploration Agency: Tokyo, Japan, 2012. [Google Scholar]
- Hoots, F.R.; Roehrich, R.L. Models for Propagation of NORAD Element Sets. Aerospace Defense Command Peterson Afb Co Office of Astrodynamics. 1980. Available online: http://large.stanford.edu/courses/2017/ph241/summerville2/docs/a093554.pdf (accessed on 28 March 2017).
- Romero, V.; Burkardt, J.; Gunzburger, M.; Peterson, J. Initial evaluation of pure and ‘‘latinized’’ centroidal Voronoi tessellation for non-uniform statistical sampling. In Proceedings of the Sensitivity Analysis of Model Output Conference, Santa Fe, NM, USA, 8–11 March 2004. [Google Scholar]
- Gunzburger, M.; Burkardt, J. Uniformity measures for point sample in hypercubes. Rapp. Tech. Fla. State Univ. 2004, 25, 73. [Google Scholar]
Parameter | Variation Range |
---|---|
i | [1°,100°] |
orbit altitude | |
Parameter | Variation Range |
---|---|
i | [1°,100°] |
e | [0.01,0.05] |
orbit altitude | |
System | GPS | GLONASS | Galileo | BDS | QZSS | |||
---|---|---|---|---|---|---|---|---|
Orbit | MEO | MEO | MEO | MEO | IGSO | GEO | QZO | GEO |
Number of satellites | 24 | 24 | 24 | 24 | 3 | 3 | 3 | 1 |
Constellation pattern | 6 planes | Walker (24/3/1) * | Walker (24/3/1) | Walker (24/3/1) | / | / | / | / |
Inclination [deg] | 56 | 64.8 | 56 | 55 | 55 | 0 | 43 | 0 |
Altitude (km) | 20,180 | 19,100 | 23,220 | 21,528 | 35,786 | 35,786 | 35,786 | 35,786 |
Nsat | Orbit Altitude (km) | i(°) | No | Nso | Nc | Fitness Value |
---|---|---|---|---|---|---|
6 | 415.471 | 90.398 | 3 | 2 | 1 | 0.68692 |
7 | 477.085 | 87.532 | 7 | 1 | 4 | 0.74325 |
8 | 500.825 | 97.762 | 8 | 1 | 3 | 0.59105 |
9 | 491.636 | 90.274 | 3 | 3 | 1 | 0.67593 |
10 | 430.506 | 90.462 | 5 | 2 | 2 | 0.74518 |
11 | 483.447 | 90.488 | 11 | 1 | 1 | 0.61188 |
12 | 467.620 | 90.697 | 3 | 4 | 1 | 0.67438 |
Nsat | Orbit Altitude (km) | i(°) | e | No | Nw | Nso | Nc1 | Nc2 | Nc3 | Fitness Value |
---|---|---|---|---|---|---|---|---|---|---|
6 | 520.038 | 89.617 | 0.01 | 3 | 1 | 2 | 3 | 1 | 2 | 0.68191 |
7 | 505.997 | 88.544 | 0.01 | 7 | 1 | 1 | 2 | 1 | 2 | 0.73264 |
8 | 529.264 | 99.078 | 0.01 | 8 | 1 | 1 | 3 | 1 | 2 | 0.59394 |
9 | 633.961 | 89.317 | 0.02 | 3 | 1 | 3 | 1 | 1 | 2 | 0.66609 |
10 | 572.877 | 92.260 | 0.01 | 5 | 2 | 1 | 1 | 2 | 2 | 0.72608 |
11 | 532.137 | 89.130 | 0.02 | 11 | 1 | 1 | 1 | 1 | 1 | 0.60108 |
12 | 537.006 | 89.130 | 0.01 | 3 | 1 | 4 | 1 | 1 | 1 | 0.66744 |
No. of Satellites | 2D-LFC | 3D-LFC | ||
---|---|---|---|---|
Mean | Std | Mean | Std | |
6 | 0.54143 | 0.015 | 0.56178 | 0.032 |
7 | 0.53720 | 0.012 | 0.54028 | 0.017 |
8 | 0.54756 | 0.012 | 0.55244 | 0.010 |
9 | 0.54228 | 0.014 | 0.53344 | 0.014 |
10 | 0.53065 | 0.011 | 0.54203 | 0.019 |
11 | 0.54780 | 0.012 | 0.53644 | 0.018 |
12 | 0.54112 | 0.014 | 0.54328 | 0.015 |
COSMIC | 2D-LFC | 3D-LFC | |
---|---|---|---|
No. of 24 h ROEs | 10,340 | 12,386 | 12,250 |
Fitness value | 0.51080 | 0.68692 | 0.68191 |
Mean 3 h- COV | 0.62081 | 0.54143 | 0.56178 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, X.; Han, Y.; Luo, J.; Wickert, J.; Asgarimehr, M. Seeking Optimal GNSS Radio Occultation Constellations Using Evolutionary Algorithms. Remote Sens. 2019, 11, 571. https://doi.org/10.3390/rs11050571
Xu X, Han Y, Luo J, Wickert J, Asgarimehr M. Seeking Optimal GNSS Radio Occultation Constellations Using Evolutionary Algorithms. Remote Sensing. 2019; 11(5):571. https://doi.org/10.3390/rs11050571
Chicago/Turabian StyleXu, Xiaohua, Yi Han, Jia Luo, Jens Wickert, and Milad Asgarimehr. 2019. "Seeking Optimal GNSS Radio Occultation Constellations Using Evolutionary Algorithms" Remote Sensing 11, no. 5: 571. https://doi.org/10.3390/rs11050571
APA StyleXu, X., Han, Y., Luo, J., Wickert, J., & Asgarimehr, M. (2019). Seeking Optimal GNSS Radio Occultation Constellations Using Evolutionary Algorithms. Remote Sensing, 11(5), 571. https://doi.org/10.3390/rs11050571