Estimation of Mexico’s Informal Economy and Remittances Using Nighttime Imagery
<p>Radiance calibrated nighttime image of 2000-2001, Mexico in the inset.</p> "> Figure 2
<p>Landscan Population Data, 2000, Mexico in the inset.</p> "> Figure 3
<p>Overview of the model to predict the underestimation of informal economy and remittances in Mexico’s official GNI measure .</p> "> Figure 4
<p>Stage 1 of the model: outputs are Estimated urban population of the U.S. states and the corresponding regression model parameters used to estimate the urban population of Mexico in Stage 3.</p> "> Figure 5
<p>The log-log linear regression model of the area and population of the urban areas for the 48 contiguous U.S. states.</p> "> Figure 6
<p>Stage 2 of the model: outputs are Estimated Gross State Income of the U.S. states and multiple regression model parameters used to estimate the Gross State Income of the Mexican states in Stage 4 of the model.</p> "> Figure 7
<p>The actual versus predicted plot of the ln(<span class="html-italic">AGSP</span>) values of the U.S. states derived from the multiple regression model in which natural log of the estimated urban population and ‘sum of lights’ are the predictor variables.</p> "> Figure 8
<p>Official <span class="html-italic">AGSP<sub>US<sub>i</sub></sub></span> versus Modeled <span class="html-italic">EGSI<sub>US<sub>i</sub></sub></span> of the U.S. states.</p> "> Figure 9
<p>Stage 3 of the model: output is Estimated ‘U.S. equivalent urban population’ of each Mexican state using the U.S. regression parameters derived from Stage 1.</p> "> Figure 10
<p>Stage 4 of the model: output is the Estimated Gross State Income of the Mexican states using the U.S. regression parameters derived from Stage 2.</p> "> Figure 11
<p>Official <span class="html-italic">GSP<sub>Mex<sub>i</sub></sub></span> versus Modeled <span class="html-italic">EGSI<sub>Mex<sub>i</sub></sub></span> of the Mexican states, excluding <span class="html-italic">Distrito Federal</span>.</p> "> Figure 12
<p>Stage 5 of the model: output is predicted underestimation of the informal economy and remittances in the official GNI estimates.</p> "> Figure 13
<p>Map of the Percentage Residual Gross State Product by U.S. state.</p> "> Figure 14
<p>Map of the Percentage Residual Gross State Product by Mexican state<span class="html-italic">.</span></p> ">
Abstract
:1. Introduction
2. Data Sets
2.1. Radiance Calibrated Nighttime Satellite Imagery Data
2.2. Landscan Population Data
2.3. Official Estimates of the GDP, GNI and GSP of the U.S. and Mexico
Row no. | Estimate | Year | Source | Conversion techniques and Currency units | Value |
---|---|---|---|---|---|
1 | GNI | 2000 | World Dev. Report 2002 | Atlas method- using 3 year average exchange rate | $ 9,646 billion |
2 | GNI | 2000 | Population Reference Bureau | In US Dollars | $ 8,059 billion |
3 | GDP | 2000 | World Dev. Report 2002 | Average official exchange rate of that year | $ 9,883 billion |
4 | GDP | 2000 | U.S. Bureau of Economic Analysis | Current US$ | $ 9,749 billion |
2.4. Official Estimates of the Informal Economy and Remittances of Mexico
Row no. | Estimate | Year | Source | Conversion techniques and Currency units | Value |
---|---|---|---|---|---|
1 | GNI | 2000 | INEGI | In Pesos | 5,491 billion |
2 | GNI | 2000 | INEGI | In terms of exchange rate U.S. Dollars | $ 574 billion * |
3 | GNI | 2000 | INEGI | PPP U.S. Dollars | $ 886 billion * |
4 | GNI | 2000 | World Dev. Report 2002 | Atlas Method - using three year average exchange rate | $ 498 billion |
5 | GNI | 2000 | World Dev. Report 2002 | PPP U.S. Dollars | $ 864 billion ▲ |
6 | GNI | 2000 | Population Reference Bureau | In U.S. Dollars | $ 382 billion |
7 | GDP | 2000 | INEGI | In Pesos | 4,984 billion |
8 | GDP | 2000 | INEGI | In terms of exchange rate U.S. Dollars | $ 521 billion ♦ |
9 | GDP | 2000 | INEGI | PPP U.S. Dollars | $ 804 billion ♦ |
10 | GDP | 2000 | World Dev. Report 2002 | Average official exchange rate of that year | $ 575 billion |
11 | GDP | 2000 | World Dev. Report 2002 | PPP U.S. Dollars | $ 896 billion # |
Informal Economy (2000) | |
---|---|
In Pesos | 616 billion |
In PPP U.S. Dollars | 99 billion |
3. Methods
3.1. Data Analysis – Overview
Abbreviations | Definitions |
---|---|
AUSi | Area of the lit urban areas of each U.S. state (i), demarcated by the brightness threshold of 20 × 1.35 × 10 -10 |
PUSi | Population (extracted from the Landscan dataset) of the lit urban areas, demarcated by the brightness threshold, for each U.S. state (i) |
P´USi | Estimated urban population of the lit urban areas, demarcated by the brightness threshold, for each U.S. state (i) |
SUSi | ‘Sum of lights’ of the lit areas for each U.S. state (i) |
AGSPUSi | Adjusted Official Gross State Product for each U.S. state (i): official GSP is inflated by 10% to account for the contribution of the informal economy |
EGSIUSi | Estimated Gross State Income for each U.S. state (i): sum of the formal economy, informal economy and remittances as estimated from the nighttime lights image |
ResidualUSi | Residual Percentage for each U.S. state (i), percentage difference between official AGSPUS and modeled EGSIUS |
AMexi | Area of the lit urban areas for each Mexican state (i), demarcated by the brightness threshold of 20 × 1.35 × 10 -10 |
P´Mexi | Estimated ‘U.S. equivalent urban population’ of the lit urban areas, demarcated by the brightness threshold, for each Mexican state (i) |
SMexi | ‘Sum of lights’ of the lit areas for each Mexican state (i) |
GSP Mexi | Official Gross State Product of each Mexican state (i) |
EGSI Mexi | Estimated Gross State Income for each Mexican state (i): sum of the formal economy, informal economy and remittances as estimated from the nighttime lights image |
EGDIMex | Estimated Gross Domestic Income of Mexico (sum of EGSI for all states) |
GNIMex | Official Gross National Income of Mexico |
UIER | Predicted underestimation of informal economy and remittances in the official estimates of GNI |
3.2. Basic Assumptions of the Model
- Urban populations can be estimated based on urban area measured from nighttime lights.
- Because spatially disaggregate GSP data are either unavailable or simply do not exist, estimates of urban populations can serve as a valid proxy measure of the value of economic activity.
- Economic activity associated with urban populations creates the same spatial patterns of nighttime lights in Mexico as in the United States (i.e., there are no cultural, socio-economic, or demographic ‘correction factors’).
- Spatial patterns of GDP per capita and spatial patterns of distribution of income (i.e., Gini coefficients) are uniform (but not necessarily equivalent) in both the United States and Mexico.
3.3. Model to Predict Urban Population of the U.S. States – Stage 1
3.4. Model to Predict Gross State Income of the U.S. States – Stage 2
3.5. Estimating the ‘U.S. Equivalent urban Population’ of the States of Mexico – Stage 3
3.6. Estimating Gross State Income of the states of Mexico – Stage 4
3.7. Estimating the Magnitude and Spatial Distribution of the Informal Economy and Remittances of Mexico and Comparing It with the Published Values – Stage 5
4. Results
4.1. Official AGSP and modeled EGSI of the U.S.
U.S. States | Official AGSPUSi (Mn $)* | Modeled EGSIUSi (Mn $) | Percentage Residual |
---|---|---|---|
Alabama | 126,034 | 195,001 | -55 |
Arizona | 174,386 | 147,181 | 16 |
Arkansas | 73,481 | 112,061 | -53 |
California | 1,415,860 | 900,485 | 36 |
Colorado | 189,048 | 147,449 | 22 |
Connecticut | 176,480 | 116,503 | 34 |
Delaware | 45,619 | 41,909 | 8 |
Florida | 518,448 | 583,857 | -13 |
Georgia | 319,976 | 343,800 | -7 |
Idaho | 38,488 | 70,333 | -83 |
Illinois | 510,613 | 488,257 | 4 |
Mexicona | 213,861 | 263,892 | -23 |
Iowa | 99,205 | 176,838 | -78 |
Kansas | 91,093 | 111,667 | -23 |
Kentucky | 123,090 | 149,209 | -21 |
Louisiana | 144,672 | 182,660 | -26 |
Maine | 39,096 | 65,478 | -67 |
Maryland | 198,404 | 161,638 | 19 |
Massachusetts | 302,444 | 170,528 | 44 |
Michigan | 370,959 | 499,804 | -35 |
Minnesota | 203,602 | 290,706 | -43 |
Mississippi | 70,693 | 126,428 | -79 |
Missouri | 194,379 | 208,637 | -7 |
Montana | 23,503 | 64,156 | -173 |
Nebraska | 61,026 | 86,850 | -42 |
Nevada | 81,091 | 69,500 | 14 |
New Hampshire | 47,870 | 67,358 | -41 |
New Jersey | 379,306 | 221,632 | 42 |
New Mexico | 55,798 | 87,387 | -57 |
New York | 854,873 | 505,191 | 41 |
North Carolina | 301,068 | 399,836 | -33 |
North Dakota | 19,527 | 59,650 | -205 |
Ohio | 409,207 | 560,518 | -37 |
Oklahoma | 98,733 | 148,215 | -50 |
Oregon | 123,682 | 88,137 | 29 |
Pennsylvania | 428,581 | 579,311 | -35 |
Rhode Island | 36,970 | 33,301 | 10 |
South Carolina | 123,765 | 205,450 | -66 |
South Dakota | 25,409 | 54,191 | -113 |
Tennessee | 192,336 | 236,374 | -23 |
Texas | 799,956 | 1,469,456 | -84 |
Utah | 74,325 | 89,223 | -20 |
Vermont | 19,560 | 35,674 | -82 |
Virginia | 286,817 | 226,155 | 21 |
Washington | 244,157 | 157,625 | 35 |
West Virginia | 45,624 | 90,620 | -99 |
Wisconsin | 193,311 | 342,603 | -77 |
Wyoming | 19,064 | 56,666 | -197 |
4.2. Official GSP and Modeled GSI of Mexico
Mexican States | Official GSPMexi (PPP U.S. Mn $)* | Modeled EGSIMexi (PPP U.S. Mn $) | Percentage Residual |
---|---|---|---|
Aguascalientes | 9,948 | 18,287 | -84 |
Baja California | 29,174 | 30,004 | -3 |
Baja California Sur | 4,349 | 13,050 | -200 |
Campeche | 9,606 | 15,027 | -56 |
Chiapas | 13,096 | 34,176 | -161 |
Chihuahua | 36,863 | 37,157 | -1 |
Coahuila | 25,109 | 38,197 | -52 |
Colima | 4,394 | 13,172 | -200 |
Distrito Federal | 180,940 | 25,270 | 86 |
Durango | 9,665 | 22,288 | -131 |
Guanajuato | 27,558 | 54,015 | -96 |
Guerrero | 13,819 | 28,445 | -106 |
Hidalgo | 10,479 | 34,686 | -231 |
Jalisco | 51,808 | 53,011 | -2 |
Mexico | 81,147 | 93,334 | -15 |
Michoacan | 17,892 | 32,160 | -80 |
Morelos | 10,728 | 33,067 | -208 |
Nayarit | 4,255 | 14,286 | -236 |
Nuevo Leon | 56,923 | 42,575 | 25 |
Oaxaca | 11,916 | 29,470 | -147 |
Puebla | 30,228 | 49,212 | -63 |
Queretaro | 13,925 | 25,636 | -84 |
Quintana Roo | 11,253 | 15,299 | -36 |
San Luis Potosi | 13,834 | 23,969 | -73 |
Sinaloa | 15,576 | 29,178 | -87 |
Sonora | 21,494 | 35,341 | -64 |
Tabasco | 9,721 | 35,138 | -261 |
Tamaulipas | 24,888 | 39,162 | -57 |
Tlaxcala | 4,276 | 25,332 | -492 |
Veracruz | 31,975 | 56,804 | -78 |
Yucatan | 11,166 | 24,022 | -115 |
Zacatecas | 5,784 | 20,367 | -252 |
4.3. Estimating the Magnitude of Underestimation of Informal Economy and Remittances in the Official Measures of GNI of Mexico
Row No. | In U.S. $ billions | |
---|---|---|
1 | Nighttime lights Estimated GDI of Mexico ( EGDIMex) (formal+informal+remittances) | 1,041 |
2 | Official estimates of the GNI of Mexico ( GNIMex) (formal+informal+remittances) * | 886 |
3 | Predicted underestimation of remittances and informal economy UIER) | 155 |
4 | Official estimates of Informal economy in 2000 ● | 99 |
5 | Official estimates of remittances in 2000 ♦ | 7 |
6 | Total official estimates of informal economy and remittances | 106 |
7 | Predicted underestimation of remittances and informal economy | 155 |
8 | Total official estimates of informal economy and remittances | 106 |
9 | Magnitude of underestimation | ~ 150% |
5. Discussion
6. Conclusions
Acknowledgements
References
- Standing, G. Global Labour Flexibility: Seeking Distributive Justice; MacMillan: Basingstoke, UK, 1999. [Google Scholar]
- Chen, M.A.; Jhabvala, R.; Lund, F. Working Paper on the Informal Economy, Supporting Workers in the Informal Economy: A Policy Framework; International Labour Office: Geneva, Switzerland, 2002. [Google Scholar]
- Chen, M.A. Rethinking the Informal Economy; Seminar Issue of the Symposium of Footloose Labour; 2003; Available online: http://www.Mexico-seminar.com/2003/531/531%20martha%20alter%20chen.htm (accessed on 14 May 2009).
- Women in Informal Employment: Globalizing and Organizing. 2007. Available online: http://www.wiego.org/about_ie/causes%20and%20consequences.php (accessed on 14 May 2009).
- International Labor Organization (ILO). Labour Overview: Latin America and the Caribbean; ILO: Lima, Peru, 2002. [Google Scholar]
- Portes, A.; Roberts, B. The Free-market City: Latin American Urbanization in the Years of the Neoliberal Experiment. Stud. Comp. Int. Develop. 2005, 40, 43–82. [Google Scholar] [CrossRef]
- Jonakin, J. Cycling between Vice and Virtue: Assessing the Informal Sector’s Awkward Role Under Neoliberal Reform. Rev. Int. Pol. Econ. 2006, 13, 290–312. [Google Scholar] [CrossRef]
- International Labor Organization (ILO). Labour Overview: Latin America and the Caribbean; ILO: Lima, Peru, 2005. [Google Scholar]
- Marquez, G.; Chong, A.; Duryea, S.; Mazza, J.; Nopo, H. Outsiders? The Changing Pattern of Exclusion in Latin America and the Caribbean; Inter-American Development Bank: Washington, DC, USA, 2007. [Google Scholar]
- Biles, J. Informal Work and Livelihoods in Mexico: Getting By or Getting Ahead? Prof. Geogr. 2008, 60, 541–555. [Google Scholar] [CrossRef]
- Freije, S. Informal Employment in Latin America and the Caribbean: Causes, Consequences and Policy Recommendations; Inter-American Development Bank: Washington, DC, USA, 2001; Available online: http://www.iadb.org/sds/doc/SOCInfEmployment.pdf (accessed on 14 May 2009).
- Chen, M.A. Rethinking the Informal Economy: Linkages with the Formal Economy and the Formal Regulatory Environment. In Working Paper No. 46; U.N. Department of Economic and Social Affairs, 2007; Available from: http://www.un.org/esa/desa/papers/2007/wp46_2007.pdf (accessed on 14 May 2009).
- World Bank. Trends, Determinants and Macroeconomic Effect of Remittances, Global Economic Prospects; World Bank: Washington, DC, USA, 2006; pp. 85–112. [Google Scholar]
- Ebener, S.; Murray, C.; Tandon, A.; Elvidge, C.D. From Wealth to Health: Modeling the Distribution of Income per Capita at the Sub-national Level Using Nighttime Light Imagery. Int. J. Health Geogr. 2005, 4, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Sutton, P.C.; Elvidge, C.D.; Ghosh, T. Estimation of Gross Domestic Product at Sub-national Scales Using Nighttime Satellite Imagery. Int. J. Ecol. Econ. Stats. 2007, 8, 5–21. [Google Scholar]
- Porter, E. China Shrinks. New York Times. 9 December 2007. Available online: http://www.nytimes.com/2007/12/09/opinion/09sun4.html?_r=1&th&emc=th&oref=slogin (accessed on 14 May 2009).
- Ahmad, S. Improving Inter-spatial and Inter-temporal Comparability of National Accounts. J. Dev. Eco. 1994, 44, 53–75. [Google Scholar] [CrossRef]
- Lo, C.P. Applied Remote Sensing; Longman: Harlow, Essex, UK, 1986. [Google Scholar]
- Sutton, P.C.; Roberts, D.; Elvidge, C.D.; Meij, H. A Comparison of Nighttime Satellite Imagery and Population Density for the Continental United States. Photogrammteric Eng. Remote Sens. 1997, 63, 1303–1313. [Google Scholar]
- Doll, C.N.H. CIESIN Thematic Guide to Night-time Light Remote Sensing and its Applications; Center for International Earth Science Information Network of Columbia University: Palisades, New York, USA, 2008; Available online: http://sedac.ciesin.columbia.edu/tg/ (accessed on 14 May 2009).
- Welch, R. Monitoring Urban Population and Energy Utilization Patterns from Satellite Data. Remote Sens. Environ. 1980, 9, 1–9. [Google Scholar] [CrossRef]
- Welch, R.; Zupko, S. Urban Area Energy Utilization Patterns from DMSP data. Photogrammetric Eng. Remote Sens. 1980, 46, 201–207. [Google Scholar]
- Sutton, P.C.; Roberts, D.; Elvidge, C.D.; Baugh, K. Census from Heaven: An Estimate of Global Human Population Using Nighttime Satellite Imagery. Int. J. Remote Sens. 2001, 22, 3061–3076. [Google Scholar] [CrossRef]
- Lo, C.P. Urban Indicators of China from Radiance Calibrated Digital DMSP-OLS Nighttime Images. Ann. Assoc. Am. Geogr. 2002, 92, 225–240. [Google Scholar] [CrossRef]
- Sutton, P.C. Modeling Population Density with Nighttime Satellite Imagery and GIS. Comput. Environ. Urban Syst. 1997, 21, 227–244. [Google Scholar] [CrossRef]
- Sutton, P.C.; Elvidge, C.D.; Obremski, T. Building and Evaluating Models to Estimate Ambient Population Density. Photogrammetric Eng. Remote Sens. 2003, 69, 545–552. [Google Scholar] [CrossRef]
- Elvidge, C.D.; Baugh, K.E.; Kihn, E.A.; Koehl, H.W.; Davis, E.R.; Davis, C.W. Relation Between Satellite Observed Visible Near-infrared Emissions, Population, Economic Activity and Power Consumption. Int. J. Remote Sens. 1997, 18, 1373–1379. [Google Scholar] [CrossRef]
- Imhoff, M.L.; Lawrence, W.T.; Stutzer, D.C.; Elvidge, C.D. A Technique for Using Composite DMSP-OLS “City Lights” Satellite Data to Map Urban Area. Remote Sens. Environ. 1997, 61, 361–370. [Google Scholar] [CrossRef]
- Elvidge, C.D.; Tuttle, B.T.; Sutton, P.C.; Baugh, K.E.; Howard, A.T.; Milesi, C.; Bhaduri, B.; Nemani, R. Global Distribution and Density of Constructed Impervious Surfaces. Sensors 2007, 7, 1962–1979. [Google Scholar] [CrossRef]
- Doll, C.N.H.; Muller, J.P.; Elvidge, C.D. Nighttime Imagery as a Tool for Global Mapping of Socioeconomic Parameters and Greenhouse Gas Emissions. Ambio 2000, 29, 157–162. [Google Scholar] [CrossRef]
- Doll, C.N.H. Estimating Non-population Activities from Nighttime Satellite Imagery. In Remotely Sensed Cities; Mesev, V., Ed.; Taylor and Francis: London and New York, 2003; pp. 335–353. [Google Scholar]
- Sutton, P.C.; Costanza, R. Global Estimates of Market and Non-market Values Derived from Nighttime Satellite Imagery, Land Cover, and Ecosystem Service Evaluation. Ecol. Eco. 2002, 41, 509–527. [Google Scholar] [CrossRef]
- Sutton, P.C.; Cova, T.; Elvidge, C.D. Mapping "Exurbia" in the Conterminous United States Using Nighttime Satellite Imagery. Geocarto. Int. 2006, 21, 39–45. [Google Scholar] [CrossRef]
- Rodhouse, P.G.; Elvidge, C.D.; Trathan, P.N. Remote Sensing of the Global Lightfishing Fleet: An Analysis of Interactions with Oceanography, Other Fisheries and Predators. Adv. Marine Biol. 2001, 39, 261–303. [Google Scholar]
- Cova, T.J.; Sutton, P.C.; Theobald, D.M. Exurban Change Detection in Fire-prone Areas with Nighttime Satellite Imagery. Photogrammetric Eng. Remote Sens. 2004, 70, 1249–1257. [Google Scholar] [CrossRef]
- Mattera, P. Off the books: The Rise of the Underground Economy; St. Martin’s Press: New York, USA, 1985. [Google Scholar]
- Perspective, “Going Underground”. Investor’s Business Daily. 21 December 1998. Available online: http://www.ncpa.org/pd/economy/pd122198b.html (accessed on 25 January 2009).
- Losby, J.L.; Else, J.F.; Kingslow, M.E.; Edgcomb, E.L.; Malm, E.T.; Kao, V. Informal Economy Literature Review; ISED Consulting and Research: Newark, and The Aspen Institute: Washington, DC, USA, 2002; Available online: http://www.ised.us/doc/Informal%20Economy%20Lit%20Review.pdf (accessed on 14 May 2009).
- McTague, J. Going Underground: America’s Shadow Economy. FrontPage Magazine. 6 January 2005. Available online: http://www.frontpagemag.com/readArticle.aspx?ARTID=10024 (accessed on 14 May 2009).
- Elvidge, C.D.; Baugh, K.E.; Dietz, J.B.; Bland, T.; Sutton, P.C.; Kroehl, H.W. Radiance Calibration of DMSP-OLS Low-light Imaging Data of Human Settlements. Remote Sens. Environ. 1999, 68, 77–88. [Google Scholar] [CrossRef]
- LandScan Global Population Database; Oak Ridge National Laboratory: Oak Ridge, Tennessee, 2000; Available online: http://www.ornl.gov/landscan/ (accessed on 14 May 2009).
- USA Census Bureau, USA Bureau of Economic Analysis. 2000. Available online: http://www.bea.gov/regional/gsp/ (accessed on 14 May 2009).
- World Bank. World Development Report 2002: Building Institutions for Markets; Oxford University Press: New York, USA, 2002. [Google Scholar]
- Population Reference Bureau. 2000 World Population Data Sheet – Demographic data and Estimates for the Countries and Regions of the World; Population Reference Bureau: Washington, DC, USA, 2000. [Google Scholar]
- INEGI. Total de la actividad económica. 2000. Available online: http://dgcnesyp.inegi.gob.mx/CGI-WIN/BDIEINTSI.EXE/NIVM1500020001000100100005# ARBOL (accessed on 14 May 2009).
- World Bank. World Development Report 1994: Infrastructure for Development; Oxford University Press: New York, USA, 1994b. [Google Scholar]
- INEGI. Sistema de Cuentas Nacionales de México, Producto interno bruto, a precios de Mercado. 1999-2004. Available online: http://www.inegi.gob.mx/prod_serv/contenidos/espanol/bvinegi/productos/derivada/cuentas/bienes%20y%20servicios/2004/cbys1999-2004.pdf (accessed on 14 May 2009).
- Bureau of Economic Analysis, Washington, D.C., USA. Personal Communication, 15 January 2008.
- Min, B. Democracy and Light: Electoral Accountability and the Provision of Public Goods, (Unpublished Manuscript).
- INEGI. Sistema de Cuentas Nacionales de México, Cuentas por Sectores Insititucionales, Cuenta Satelite del Subsector informal de los hogares. 1998-2003. Available online: http://www.inegi.gob.mx/prod_serv/contenidos/espanol/bvinegi/productos/derivada/satelite/hogares/Informal2003.pdf (accessed on 14 May 2009).
- Bank of Mexico. Annual Report. 2004. Available online: http://www.banxico.org.mx/documents/%7BBBCDBF46-1EEA-DEBF-CCDC-F61F161812FA%7D.pdf (accessed on 14 May 2009).
- Nordbeck, S. The Law of Allometric Growth; Michigan Inter-University Community of Mathematical Geographers: University of Michigan, Ann Arbor, 1965. [Google Scholar]
- Tobler, W. Satellite Confirmation of Settlement Size Coefficients. Area 1969, 1, 30–34. [Google Scholar]
- Sutton, P.C. A Scale-adjusted Measure of “Urban sprawl” Using Nighttime Satellite Imagery. Remote Sens. Environ. 2003, 86, 353–369. [Google Scholar] [CrossRef]
- Schneider, F.; Enste, D. Shadow Economies: Size, Causes and Consequences. J. Econ. Lit. American Economic Association. 2000, 38, 77–114. [Google Scholar] [CrossRef]
- Vuletin, G. Measuring the Informal Economy in Latin America and the Caribbean. IMF Working Paper, 2008; 08/102. [Google Scholar]
- INEGI. Producto interno bruto por entidad federativa. Participación sectorial por entidad federative. 2000. Available from: http://www.inegi.org.mx/inegi/default.aspx (accessed on 14 May 2009).
- Consejo Nacional de Población. Índices de Desarrollo Humano. 2000. Available from: http://www.conapo.gob.mx/publicaciones/desarrollo/001.pdf (accessed on 28 February 2009).
- Elvidge, C.D.; Cinzano, P.; Pettit, D.R.; Aversen, J.; Sutton, P.C.; Small, C.; Nemani, R.; Longcore, T.; Rich, C.; Safran, J.; Weeks, J.; Ebener, S. The Nighsat mission concept. Int. J. Remote Sens. 2007, 28, 2645–2670. [Google Scholar] [CrossRef]
© 2009 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Ghosh, T.; Anderson, S.; Powell, R.L.; Sutton, P.C.; Elvidge, C.D. Estimation of Mexico’s Informal Economy and Remittances Using Nighttime Imagery. Remote Sens. 2009, 1, 418-444. https://doi.org/10.3390/rs1030418
Ghosh T, Anderson S, Powell RL, Sutton PC, Elvidge CD. Estimation of Mexico’s Informal Economy and Remittances Using Nighttime Imagery. Remote Sensing. 2009; 1(3):418-444. https://doi.org/10.3390/rs1030418
Chicago/Turabian StyleGhosh, Tilottama, Sharolyn Anderson, Rebecca L. Powell, Paul C. Sutton, and Christopher D. Elvidge. 2009. "Estimation of Mexico’s Informal Economy and Remittances Using Nighttime Imagery" Remote Sensing 1, no. 3: 418-444. https://doi.org/10.3390/rs1030418
APA StyleGhosh, T., Anderson, S., Powell, R. L., Sutton, P. C., & Elvidge, C. D. (2009). Estimation of Mexico’s Informal Economy and Remittances Using Nighttime Imagery. Remote Sensing, 1(3), 418-444. https://doi.org/10.3390/rs1030418