Optimal Hyperspectral Characteristics Determination for Winter Wheat Yield Prediction
"> Figure 1
<p>Experiment locations.</p> "> Figure 2
<p>Spectral reflectance of the winter wheat canopy: (<b>a</b>) Jointing stage, (<b>b</b>) heading stage, and (<b>c</b>) grain-filling stage.</p> "> Figure 3
<p>Contour map of synchronous traditional 2D correlation spectra at 350 nm–900 nm: (<b>a</b>) Jointing stage, (<b>b</b>) heading stage, and (<b>c</b>) grain-filling stage.</p> "> Figure 4
<p><span class="html-italic">MI</span> curves in the range of 350 nm–900 nm.</p> "> Figure 5
<p>2D correlation spectra of the winter wheat canopy for the jointing period: (<b>a</b>) Synchronous 2D spectra contour map; (<b>b</b>) diagonal of the synchronous contour map.</p> "> Figure 6
<p>2D correlation spectra of the winter wheat canopy for the heading period: (<b>a</b>) Synchronous 2D spectra contour map; (<b>b</b>) diagonal of synchronous contour map.</p> "> Figure 7
<p>2D correlation spectra of the winter wheat canopy for the grain-filling period: (<b>a</b>) Synchronous 2D spectra contour map; (<b>b</b>) diagonal of synchronous contour map.</p> "> Figure 8
<p>Contribution ratios of the three phenological phases.</p> "> Figure 9
<p>Calibration and validation of winter wheat yield prediction based on the weighted full-spectrum information.</p> "> Figure 10
<p>Calibration and validation of winter wheat yield prediction based on the weighted characteristic spectral information.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experiment Design
2.2. Spectra Measurement
2.3. Winter Wheat Yield Calculation
2.4. Data Analysis
2.4.1. 2D Correlation Spectrum
2.4.2. MI
2.4.3. MI-Enhanced 2D Correlation Spectrum
- Initialization. This step involves inputting the original spectral reflectance with the corresponding yield data and rearranging the input dataset to ensure the constant increase in the perturbation variable.
- Calculating and normalizing MI. In this step, the MI value between the yield value and reflectance of each wavelength is calculated with Equation (3). The acquired MI value is then normalized from 0 to 1 via Equation (4):
- Data fusion. The MI-merged spectral information, which enhances the ability of the original spectral expression in the relationship with external disturbances, is constructed in this step through Equation (5):
- Data preprocessing. To reduce the effect of data dispersion on the display of 2D correlation spectra, the spectral data should be standardized as shown in Equation (6):
- 2D correlation. The standardized MI-merged spectral information is then used for the 2D correlation analysis mentioned in Section 2.4.1.
- Peaks’ selection criteria. The peaks on the principal diagonal in the enhanced synchronous correlation spectrum represented the susceptibility of vibrations of the certain functional group with increasing yield. The wavelengths of some specific peaks can be selected as the sensitive wavebands. In order to make the best of the characteristics of the crop spectral information and further decrease the redundancy of the selected wavelengths, the criteria of peaks’ selection on the diagonal of the MI-enhanced 2D correlation spectrum is set as below: The selected peaks should have a prominence of at least , and the distance between the selected peaks should be larger than . A and B could be calculated through Equations (7) and (8):
2.4.4. Contribution Ratio Determination
2.4.5. Weighted Spectral Information Calculation
2.4.6. Support Vector Machine Regression
3. Results
3.1. Characteristic Analysis of VIS/NIR Spectra
3.2. Traditional 2D Correlation Spectroscopy at the Three Phenological Phases
3.3. Sensitive Waveband Selection Based on the Enhanced 2D Correlation Spectroscopy Method by MI
3.3.1. 2D Spectral Characteristic Analysis of Winter Wheat Canopy during the Jointing Period
3.3.2. 2D Spectral Characteristic Analysis of the Winter Wheat Canopy during the Heading Period
3.3.3. 2D Spectral Characteristic Analysis of the Winter Wheat Canopy during the Grain-Filling Period
3.4. Contribution Ratio Determination to Winter Wheat Yield Accumulation
3.5. Winter Wheat Yield Prediction Modeling and Analysis
4. Discussion
5. Conclusions
- (1)
- After wavelength selection using the proposed MI-enhanced 2D correlation spectral analysis, three groups of wavelengths at the different growing periods were determined as the winter wheat yield sensitive wavebands. Spectral mechanism analysis revealed that such wavelengths correlated with the important crop growth parameters and represented the physiological activities, which were directly or closely related to the final yield formation. Results proved that the MI-enhanced method could effectively extract the sensitive wavelengths of plant physiological characteristics in yield formation.
- (2)
- The winter wheat yield contribution ratios were calculated from the hyperspectral information in the range of 350 nm–900 nm. The heading period had the highest contribution ratio, followed by the grain-filling stage and then the jointing stage. These results coincided with the activity levels in the enhanced 2D correlation spectrum for the three periods. Thus, the proposed MI-enhanced 2D correlation spectral analysis method demonstrated potential in assessing dynamic variance in winter wheat yield formation for each growth period.
- (3)
- Three groups of comprehensive weighted characteristic spectral information for the different periods were obtained combining the selected wavelengths and contribution ratios. Such information was used as the input data to establish the SVM prediction model. The calibration R2 of the model reached 0.877, and RMSEC was 0.27 t/ha; the validation R2 reached 0.624, and RMSEP was 0.353 t/ha. The model performed well in yield prediction with satisfactory accuracy and robustness. Its performance verified the effectiveness of the selected wavelengths and indicated that the winter wheat yield could be predicted using the plant canopy spectral information at different periods.
Author Contributions
Acknowledgments
Funding
Conflicts of Interest
References
- Sands, R.D.; Jones, C.A.; Marshall, E. Global Drivers of Agricultural Demand and Supply. Economic Research Report 186137; 2014. Available online: https://www.ers.usda.gov/webdocs/publications/45272/49035_err174.pdf?v=41900 (accessed on 16 October 2018).
- Reynolds, M.; Tattaris, M.; Cossani, C.M.; Ellis, M.; Yamaguchi-Shinozaki, K.; Pierre, C.S. Exploring Genetic Resources to Increase Adaptation of Wheat to Climate Change. In Advances in Wheat Genetics: From Genome to Field; Ogihara, Y., Takumi, S., Handa, H., Eds.; Springer: Tokyo, Japan, 2015. [Google Scholar]
- Lesk, C.; Rowhani, P.; Ramankutty, N. Influence of extreme weather disasters on global crop production. Nature 2016, 529, 84–87. [Google Scholar] [CrossRef] [PubMed]
- Gerighausen, H.; Lilienthal, H.; Jarmer, T.; Siegmann, B. Evaluation of Leaf Area Index and Dry Matter Predictions for Crop Growth Modelling and Yield Estimation. EARSeL eProceedings 2015, 71–90. [Google Scholar] [CrossRef]
- Atzberger, C. Advances in remote sensing of agriculture: Context description, existing operational monitoring systems and major information needs. Remote Sens. 2013, 5, 949–981. [Google Scholar] [CrossRef]
- Jin, X.; Kumar, L.; Li, Z.; Xu, X.; Yang, G.; Wang, J. Estimation of winter wheat biomass and yield by combining the aquacrop model and field hyperspectral data. Remote Sens. 2016, 8, 972. [Google Scholar] [CrossRef]
- Mulla, D.J. Twenty five years of remote sensing in precision agriculture: Key advances and remaining knowledge gaps. Biosyst. Eng. 2013, 114, 358–371. [Google Scholar] [CrossRef]
- Casa, R.; Rossi, M.; Sappa, G.; Trotta, A. Assessing crop water demand by remote sensing and GIS for the Pontina Plain, Central Italy. Water Resour. Manag. 2009, 23, 1685–1712. [Google Scholar] [CrossRef]
- Pourreza, A.; Lee, W.S.; Combs, R.; Roberts, P.; Ritenour, M. Spectral band selection to design a low cost sensor for citrus black spot disease detection. In Proceedings of the 2015 ASABE International Meeting, New Orleans, LA, USA, 26–29 July 2015; Volume 7004. [Google Scholar]
- Yao, F.; Tang, Y.; Wang, P.; Zhang, J. Estimation of maize yield by using a process-based model and remote sensing data in the Northeast China Plain. Phys. Chem. Earth 2015, 87–88, 142–152. [Google Scholar] [CrossRef]
- Moriondo, M.; Maselli, F.; Bindi, M. A simple model of regional wheat yield based on NDVI data. Eur. J. Agron. 2007, 26, 266–274. [Google Scholar] [CrossRef]
- Prasad, A.K.; Chai, L.; Singh, R.P.; Kafatos, M. Crop yield estimation model for Iowa using remote sensing and surface parameters. Int. J. Appl. Earth Obs. Geoinf. 2006, 8, 26–33. [Google Scholar] [CrossRef]
- Wu, Q.; Qi, B.; Zhao, T.; Yao, X.; Zhu, Y.; Gai, J. A Tentative Study on Utilization of Canopy Hyperspectral Reflectance to Estimate Canopy Growth and Seed Yield in Soybean. Acta Agron. Sin. 2013, 39, 309–318. [Google Scholar] [CrossRef]
- Wu, J.; Sun, L.; Li, S.; Feng, R.; Ji, R.; Yu, W.; Zhang, Y. Correlation Analysis Between Hyperspectral Characteristics and Yield Components of Maize Under Low Temperature Stress. Chin. Agric. Sci. Bull. 2015, 31, 33–37. [Google Scholar]
- Sid’ko, A.F.; Botvich, I.Y.; Pisman, T.I.; Shevyrnogov, A.P. Estimation of chlorophyll content and yield of wheat crops from reflectance spectra obtained by ground-based remote measurements. Field Crops Res. 2017, 207, 24–29. [Google Scholar] [CrossRef]
- Sid’ko, A.F.; Botvich, I.Y.; Pis’man, T.I.; Shevyrnogov, A.P. Estimation of the chlorophyll content and yield of grain crops via their chlorophyll potential. Biophysics 2017, 62, 456–459. [Google Scholar] [CrossRef]
- Fang, H.; Liang, S.; Hoogenboom, G. Integration of MODIS LAI and vegetation index products with the CSM-CERES-Maize model for corn yield estimation. Int. J. Remote Sens. 2011, 32, 1039–1065. [Google Scholar] [CrossRef]
- Dong, T.; Liu, J.; Qian, B.; Zhao, T.; Jing, Q.; Geng, X.; Wang, J.; Huffman, T.; Shang, J. Estimating winter wheat biomass by assimilating leaf area index derived from fusion of Landsat-8 and MODIS data. Int. J. Appl. Earth Obs. Geoinf. 2016, 49, 63–74. [Google Scholar] [CrossRef]
- Tripathy, R.; Chaudhari, K.N.; Mukherjee, J.; Ray, S.S.; Patel, N.K.; Panigrahy, S.; Singh Parihar, J. Forecasting wheat yield in Punjab state of India by combining crop simulation model WOFOST and remotely sensed inputs. Remote Sens. Lett. 2013, 4, 19–28. [Google Scholar] [CrossRef]
- Morel, J.; Bégué, A.; Todoroff, P.; Martiné, J.F.; Lebourgeois, V.; Petit, M. Coupling a sugarcane crop model with the remotely sensed time series of fIPAR to optimise the yield estimation. Eur. J. Agron. 2014, 61, 60–68. [Google Scholar] [CrossRef]
- Morel, J.; Martiné, J.F.; Bégué, A.; Todoroff, P.; Petit, M. A comparison of two coupling methods for improving a sugarcane model yield estimation with a NDVI-derived variable. In Proceedings of the SPIE—The International Society for Optical Engineering, Edinburgh, UK, 24–27 September 2012; Volume 8531. [Google Scholar]
- Huang, J.; Tian, L.; Liang, S.; Ma, H.; Becker-Reshef, I.; Huang, Y.; Su, W.; Zhang, X.; Zhu, D.; Wu, W. Improving winter wheat yield estimation by assimilation of the leaf area index from Landsat TM and MODIS data into the WOFOST model. Agric. For. Meteorol. 2015, 204, 106–121. [Google Scholar] [CrossRef]
- Huang, J.; Ma, H.; Su, W.; Zhang, X.; Huang, Y.; Fan, J.; Wu, W. Jointly Assimilating MODIS LAI and et Products into the SWAP Model for Winter Wheat Yield Estimation. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 4060–4071. [Google Scholar] [CrossRef]
- Huang, J.; Sedano, F.; Huang, Y.; Ma, H.; Li, X.; Liang, S.; Tian, L.; Zhang, X.; Fan, J.; Wu, W. Assimilating a synthetic Kalman filter leaf area index series into the WOFOST model to improve regional winter wheat yield estimation. Agric. For. Meteorol. 2016, 216, 188–202. [Google Scholar] [CrossRef]
- Huang, J.; Ma, H.; Sedano, F.; Lewis, P.; Liang, S.; Wu, Q.; Su, W.; Zhang, X.; Zhu, D. Evaluation of regional estimates of winter wheat yield by assimilating three remotely sensed reflectance datasets into the coupled WOFOST–PROSAIL model. Eur. J. Agron. 2019, 102, 1–13. [Google Scholar] [CrossRef]
- Igne, B.; Reeves, J.B.; McCarty, G.; Hively, W.D.; Lundc, E.; Hurburgh, C.R. Evaluation of spectral pretreatments, partial least squares, least squares support vector machines and locally weighted regression for quantitative spectroscopic analysis of soils. J. Near Infrared Spectrosc. 2010, 18, 167–176. [Google Scholar] [CrossRef]
- Wahabzada, M.; Mahlein, A.K.; Bauckhage, C.; Steiner, U.; Oerke, E.C.; Kersting, K. Plant Phenotyping using Probabilistic Topic Models: Uncovering the Hyperspectral Language of Plants. Sci. Rep. 2016, 6, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Sytar, O.; Brestic, M.; Zivcak, M.; Olsovska, K.; Kovar, M.; Shao, H.; He, X. Applying hyperspectral imaging to explore natural plant diversity towards improving salt stress tolerance. Sci. Total Environ. 2017, 578, 90–99. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thenkabail, P.; Lyon, J.; Huete, A. (Eds.) Hyperspectral Indices and Image Classifications for Agriculture and Vegetation. 2018. Available online: https://books.google.com.hk/books?hl=zh-TW&lr=&id=HGR8DwAAQBAJ&oi=fnd&pg=PT9&dq=Hyperspectral+Indices+and+Image+Classifications+for+Agriculture+and+Vegetation&ots=zb5Onefn_A&sig=Ez626UZOXc1MZ8TVZYwYf6QBV8g&redir_esc=y#v=onepage&q=Hyperspectral%20Indices%20and%20Image%20Classifications%20for%20Agriculture%20and%20Vegetation&f=false (accessed on 16 October 2018).
- Foster, A.J.; Kakani, V.G.; Mosali, J. Estimation of bioenergy crop yield and N status by hyperspectral canopy reflectance and partial least square regression. Precis. Agric. 2017, 18, 192–209. [Google Scholar] [CrossRef]
- Fu, Y.; Yang, G.; Wang, J.; Song, X.; Feng, H. Winter wheat biomass estimation based on spectral indices, band depth analysis and partial least squares regression using hyperspectral measurements. Comput. Electron. Agric. 2014, 100, 51–59. [Google Scholar] [CrossRef]
- Aguate, F.M.; Trachsel, S.; González Pérez, L.; Burgueño, J.; Crossa, J.; Balzarini, M.; Gouache, D.; Bogard, M.; de los Campos, G. Use of hyperspectral image data outperforms vegetation indices in prediction of maize yield. Crop Sci. 2017, 57, 2517–2524. [Google Scholar] [CrossRef]
- Thorp, K.R.; Wang, G.; Bronson, K.F.; Badaruddin, M.; Mon, J. Hyperspectral data mining to identify relevant canopy spectral features for estimating durum wheat growth, nitrogen status, and grain yield. Comput. Electron. Agric. 2017, 136, 1–12. [Google Scholar] [CrossRef]
- Rodrigues, F.A.; Blasch, G.; Defourny, P.; Ortiz-Monasterio, J.I.; Schulthess, U.; Zarco-Tejada, P.J.; Taylor, J.A.; Gérard, B. Multi-temporal and spectral analysis of high-resolution hyperspectral airborne imagery for precision agriculture: Assessment of wheat grain yield and grain protein content. Remote Sens. 2018, 10. [Google Scholar] [CrossRef]
- Sui, J.; Qin, Q.; Ren, H.; Sun, Y.; Zhang, T.; Wang, J.; Gong, S. Winter wheat production estimation based on environmental stress factors from satellite observations. Remote Sens. 2018, 10. [Google Scholar] [CrossRef]
- Wu, K.; Huang, R. The sustainable evaluations, the development potentialities and the countermeasures of water and land resources use in the Huang-Huai-Hai plain. Sci. Geogr. Sin. 2001, 5, 390–395. [Google Scholar] [CrossRef]
- Jiang, Z.; Chen, Z.; Chen, J.; Liu, J.; Ren, J.; Li, Z.; Sun, L.; Li, H. Application of Crop Model Data Assimilation with a Particle Filter for Estimating Regional Winter Wheat Yields. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 4422–4431. [Google Scholar] [CrossRef]
- Zhang, Y.; Zheng, L.; Li, M.; Deng, X.; Ji, R. Predicting apple sugar content based on spectral characteristics of apple tree leaf in different phenological phases. Comput. Electron. Agric. 2015, 112, 20–27. [Google Scholar] [CrossRef]
- Zhou, Q.; Li, J.; Liu, J.; Huang, H.; Sun, S. Two Dimensional correlation infrared spectroscopy of standard and false dahuang. Chin. J. Anal. Chem. 2003, 31, 1058–1061. [Google Scholar]
- Noda, I. Vibrational two-dimensional correlation spectroscopy (2DCOS) study of proteins. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2017, 187, 119–129. [Google Scholar] [CrossRef] [PubMed]
- Qu, L.; Chen, J.; Zhou, Q.; Zhang, G.; Sun, S.; Guo, Y. Identification of authentic and adulterated Aquilariae Lignum Resinatum by Fourier transform infrared (FT-IR) spectroscopy and two-dimensional correlation analysis. J. Mol. Struct. 2016, 1124, 216–220. [Google Scholar] [CrossRef]
- Battiti, R. Using Mutual Information for Selecting Features in Supervised Neural Net Learning. IEEE Trans. Neural Netw. 1994, 5, 537–550. [Google Scholar] [CrossRef]
- Lewis, D.D. Feature Selection and Feature Extract ion for Text Categorization. In Proceedings of the Workshop on Speech and Natural Language, Harriman, NY, USA, 23–26 February 1992; Association for Computational Linguistics: Chicago, IL, USA, 1992; pp. 212–217. [Google Scholar]
- Benoudjit, N.; François, D.; Meurens, M.; Verleysen, M. Spectrophotometric variable selection by mutual information. Chemom. Intell. Lab. Syst. 2004, 74, 243–251. [Google Scholar] [CrossRef] [Green Version]
- Hu, Q.; Zhang, L.; Zhang, D.; Pan, W.; An, S.; Pedrycz, W. Measuring relevance between discrete and continuous features based on neighborhood mutual information. Expert Syst. Appl. 2011, 38, 10737–10750. [Google Scholar] [CrossRef]
- Viscarra Rossel, R.A.; Walvoort, D.J.J.; McBratney, A.B.; Janik, L.J.; Skjemstad, J.O. Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties. Geoderma 2006, 131, 59–75. [Google Scholar] [CrossRef]
- Cortes, C.; Vapnik, V. Support-Vector Networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Cristianini, N.; Shawe-Taylor, J. An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Yuan, H.; Yang, G.; Li, C.; Wang, Y.; Liu, J.; Yu, H.; Feng, H.; Xu, B.; Zhao, X.; Yang, X. Retrieving soybean leaf area index from unmanned aerial vehicle hyperspectral remote sensing: Analysis of RF, ANN, and SVM regression models. Remote Sens. 2017, 9, 309. [Google Scholar] [CrossRef]
- Verrelst, J.; Muñoz, J.; Alonso, L.; Delegido, J.; Rivera, J.P.; Camps-Valls, G.; Moreno, J. Machine learning regression algorithms for biophysical parameter retrieval: Opportunities for Sentinel-2 and -3. Remote Sens. Environ. 2012, 118, 127–139. [Google Scholar] [CrossRef]
- Chang, C.; Lin, C. Libsvm: A Library for Support Vector Machines. ACM Trans. Intell. Syst. Technol. 2011, 2, 1–27. [Google Scholar] [CrossRef]
- Datt, B. Remote Sensing of Chlorophyll a, Chlorophyll b, Chlorophyll a+b, and Total Carotenoid Content in Eucalyptus Leaves. Remote Sens. Environ. 1998, 66, 111–121. [Google Scholar] [CrossRef]
- Acevedo, E.; Silva, P.; Silva, H. Wheat growth and physiology. In Bread Wheat Improvement and Production; FAO: Rome, Italy, 2002; Volume 30. [Google Scholar]
- Zhao, D.; Raja Reddy, K.; Kakani, V.G.; Read, J.J.; Carter, G.A. Corn (Zea mays L.) growth, leaf pigment concentration, photosynthesis and leaf hyperspectral reflectance properties as affected by nitrogen supply. Plant Soil 2003, 257, 205–217. [Google Scholar] [CrossRef]
- Daigger, L.; Sander, D.; Peterson, G. Nitrogen content of winter wheat during growth and maturation. Agron. J. 1976, 68, 815–818. [Google Scholar] [CrossRef]
- Buchwald, H.E.; Wolff, C. Further Evidence for Carotenoids Engaged in a Metastable State in Photosynthesis. Zeitschrift für Naturforschung B 1971, 26, 51–53. [Google Scholar] [CrossRef] [Green Version]
- Rise, M.; Cojocaru, M.; Gottlieb, H.E.; Goldschmidt, E.E. Accumulation of α-tocopherol in senescing organs as related to chlorophyll degradation. Plant Physiol. 1989, 89, 1028–1030. [Google Scholar] [CrossRef]
- Li, M.Z. Spectral Analysis Technique and Its Application; Science Press: Beijing, China, 2006. [Google Scholar]
- Poorani, T.R.; Vellingiria, V.; Deepa, V.S.; Abdula, A.N. Formulation of Eichhornia Crassippes Derived Lutein: Coconut Oil Micro-Emulsion for Sustained Ophthalmic Drug Delivery. Int. J. Pharm. Sci. Res. 2017, 8, 4159–4171. [Google Scholar] [CrossRef]
- Sewe, K.U.; Reich, R. The Effect of Molecular Polarization on the Electrochromism of Carotenoids: II. Lutein-Chlorophyll Complexes: The Origin of the Field-Indicating Absorption-Change at 520 nm in the Membranes of Photosynthesis. Zeitschrift für Naturforschung C 1977, 32, 161–171. [Google Scholar] [CrossRef]
- Zhao, D.; Reddy, K.R.; Kakani, V.G.; Reddy, V.R. Nitrogen deficiency effects on plant growth, leaf photosynthesis, and hyperspectral reflectance properties of sorghum. Eur. J. Agron. 2005, 22, 391–403. [Google Scholar] [CrossRef]
- An, J. Effect of Lighe and Spectrum on Hydrogen Production Technics by Photosynthetic Bacteria. Master’s Thesis, Henan Agricultural University, Zhengzhou, China, 2009. [Google Scholar]
- Gao, J.; Li, P.; Ma, F.; Goltsev, V. Photosynthetic performance during leaf expansion in Malus micromalus probed by chlorophyll a fluorescence and modulated 820 nm reflection. J. Photochem. Photobiol. B Biol. 2014, 137, 144–150. [Google Scholar] [CrossRef] [PubMed]
- Verrelst, J.; Rivera, J.P.; Moreno, J. ARTMO’s Global Sensitivity Analysis (GSA) Toolbox to Quantify Driving Variables of Leaf and Canopy Radiative Transfer Models. EARSeL eProceedings 2015, 1–11. [Google Scholar] [CrossRef]
- Fischer, R.A. Wheat. In Potential Productivity of Field Crops under Different Environments; International Rice Research Institute: Los Baños Laguna, Philippines, 1983; pp. 129–154. [Google Scholar]
- Parry, M.A.J.; Reynolds, M.; Salvucci, M.E.; Raines, C.; Andralojc, P.J.; Zhu, X.G.; Price, G.D.; Condon, A.G.; Furbank, R.T. Raising yield potential of wheat. II. Increasing photosynthetic capacity and efficiency. J. Exp. Bot. 2011, 62, 453–467. [Google Scholar] [CrossRef]
- Ainsworth, E.A.; Long, S.P. What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytol. 2005, 165, 351–372. [Google Scholar] [CrossRef]
- Lin, F.; Ding, X.; Fu, Z.; Deng, J.; Shen, Z. Application of mutual information to variable selection in diagnosis of phosphorus nutrition in rice. Spectrosc. Spectr. Anal. 2009, 29, 2467–2470. [Google Scholar]
- Read, J.J.; Tarpley, L.; McKinion, J.M.; Reddy, K.R. Narrow-Waveband Reflectance Ratios for Remote Estimation of Nitrogen Status in Cotton. J. Environ. Qual. 2002, 31, 1442. [Google Scholar] [CrossRef]
- Gómez-Sanchis, J.; Martín-Guerrero, J.D.; Soria-Olivas, E.; Martínez-Sober, M.; Magdalena-Benedito, R.; Blasco, J. Detecting rottenness caused by Penicillium genus fungi in citrus fruits using machine learning techniques. Expert Syst. Appl. 2012, 39, 780–785. [Google Scholar] [CrossRef]
- Ververis, C.; Georghiou, K.; Danielidis, D.; Hatzinikolaou, D.G.; Santas, P.; Santas, R.; Corleti, V. Cellulose, hemicelluloses, lignin and ash content of some organic materials and their suitability for use as paper pulp supplements. Bioresour. Technol. 2007, 98, 296–301. [Google Scholar] [CrossRef]
- Johkan, M.; Shoji, K.; Goto, F.; Hahida, S.; Yoshihara, T. Effect of green light wavelength and intensity on photomorphogenesis and photosynthesis in Lactuca sativa. Environ. Exp. Bot. 2012, 75, 128–133. [Google Scholar] [CrossRef]
- Kinoshita, T.; Doi, M.; Suetsugu, N.; Kagawa, T.; Wada, M.; Shimazaki, K. Phot1 and phot2 mediate blue light Regulation of Stomatal Opening. Nature 2001, 414, 656–660. [Google Scholar] [CrossRef] [PubMed]
- Takemiya, A.; Inoue, S.; Doi, M.; Kinoshita, T.; Shimazaki, K. Phototropins promote plant growth in response to blue light in low light environments. Plant Cell 2005, 17, 1120–1127. [Google Scholar] [CrossRef]
- Yao, X.; Zhu, Y.; Tian, Y.C.; Feng, W.; Cao, W.X. Exploring hyperspectral bands and estimation indices for leaf nitrogen accumulation in wheat. Int. J. Appl. Earth Obs. Geoinf. 2010, 12, 89–100. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Merzlyak, M.N. Signature analysis of leaf reflectance spectra: Algorithm development for remote sensing of chlorophyll. J. Plant Physiol. 1996, 148, 494–500. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Qin, Q.; Ren, H.; Sun, Y.; Li, M.; Zhang, T.; Ren, S. Optimal Hyperspectral Characteristics Determination for Winter Wheat Yield Prediction. Remote Sens. 2018, 10, 2015. https://doi.org/10.3390/rs10122015
Zhang Y, Qin Q, Ren H, Sun Y, Li M, Zhang T, Ren S. Optimal Hyperspectral Characteristics Determination for Winter Wheat Yield Prediction. Remote Sensing. 2018; 10(12):2015. https://doi.org/10.3390/rs10122015
Chicago/Turabian StyleZhang, Yao, Qiming Qin, Huazhong Ren, Yuanheng Sun, Minzan Li, Tianyuan Zhang, and Shilong Ren. 2018. "Optimal Hyperspectral Characteristics Determination for Winter Wheat Yield Prediction" Remote Sensing 10, no. 12: 2015. https://doi.org/10.3390/rs10122015