The Use of Unmanned Aerial Systems to Map Intertidal Sediment
"> Figure 1
<p>A map showing the location of the three study sites in S. Wales and SW England: (<b>1</b>) Neath Estuary; (<b>2</b>) Appledore; and (<b>3</b>) Llansteffan. The inset shows the location of the main map with respect to the rest of the UK.</p> "> Figure 2
<p>Orthomosaics of the Neath estuary site (<b>top</b>); the Appledore site (<b>middle</b>); and the Llansteffan site (<b>bottom</b>). North arrows are displayed in white for each image: for the top and middle plots North is in an upward direction while the bottom plot has been rotated 90° such that north is to the right. The position and extent of the panoramic photos shown in <a href="#remotesensing-10-01918-f003" class="html-fig">Figure 3</a> are displayed as thin white lines. Locations of ground control points are shown as asterisks; for the Neath study site (a), the different dates are displayed as different colors.</p> "> Figure 3
<p>Panoramic photographs of the Neath Estuary site (<b>top</b>); Appledore site (<b>middle</b>) and Llansteffan site (<b>bottom</b>).</p> "> Figure 4
<p>An example of the data screening process from the Neath estuary: (<b>a</b>) Normalized difference water index, NDWI, (color shading) and the 0 value threshold as a black contour line; (<b>b</b>) Normalized difference vegetation index, NDVI, (color shading) with NDWI removed pixels blank and the 0.3 threshold as a black contour line; (<b>c</b>) elevation (color shading) with NDVI/NDWI removed pixels blank and the HAT threshold as a black contour; (<b>d</b>) the screened orthomosaic showing the bare sediment areas after the water, vegetation and supra-tidal areas (<b>a</b>–<b>c</b>) had been removed. A north arrow is provided in panel (<b>a</b>).</p> "> Figure 5
<p>A plot of UAS measured temperature against point measured temperature, with the line of best fit indicated (<b>a</b>); point-measured moisture content against point measured temperature (<b>b</b>); and point-measured moisture content against point-measured elevation (<b>c</b>). Data is from the three flights at the Neath site with color indicating flight data and shape of symbol indicating sediment type as shown on the legend.</p> "> Figure 6
<p>Plots of UAS-measured temperature for the flight on (<b>a</b>) 30/01; (<b>b</b>) 16/02; and (<b>c</b>) 03/05. A north arrow is given in panel (<b>a</b>). In figure (<b>a</b>) the red line indicates the extent of the previous high tide.</p> "> Figure 7
<p>The natural log of reflectance (+) for the multispectral channels against soil moisture from flights at the Neath estuary site, with the line of best fit indicated: (<b>a</b>) green reflectance; (<b>b</b>) red reflectance; (<b>c</b>) red edge reflectance; (<b>d</b>) near-infrared reflectance. <span class="html-italic">r</span><sup>2</sup> and <span class="html-italic">p</span> values for the correlations are given in the top right-hand corner of each graph.</p> "> Figure 8
<p>The relationship between median grain size and natural log of reflectance for the multispectral channels (+), the best-fit line is indicated in black: (<b>a</b>) green reflectance; (<b>b</b>) red reflectance; (<b>c</b>) red edge reflectance; (<b>d</b>) near-infrared reflectance. <span class="html-italic">r</span><sup>2</sup> and <span class="html-italic">p</span> values for the correlations are given in the top right-hand corner of each graph.</p> "> Figure 9
<p>A comparison between measured and NIR-derived median grain size (+) using Equation (4). The line of best fit and its equation is also plotted. <span class="html-italic">r</span><sup>2</sup> and <span class="html-italic">p</span> values for the correlation is given in the top left-hand corner of the graph.</p> "> Figure 10
<p>Optimum classification maps for the different flights and classifications. Each row is a classifcation scheme: (<b>a</b>–<b>c</b>) k-means; (<b>d</b>–<b>f</b>) ANN; (<b>g</b>–<b>i</b>) random forests. Column one (<b>a</b>,<b>d</b>,<b>g</b>) is the flight on 30/01/2018; column two (<b>b</b>,<b>e</b>,<b>h</b>) is the flight on 16/02; and column 3 (<b>c</b>,<b>f</b>,<b>b</b>) the flight on 03/05/2018. Sand areas are colored yellow and mud areas colored blue. Visually classified points are marked in red (sand as squares and mud as circles).</p> "> Figure 11
<p>Orthomosaics for the three Neath flights (<b>a</b>–<b>c</b>), sand points marked as red squares and mud points as red circles; and, the corresponding classifications (<b>d</b>–<b>f</b>). Sand areas are marked blue and mud areas yellow.</p> "> Figure 12
<p>The Appledore orthomosaic (<b>a</b>) and sediment classification (<b>b</b>) with visual sediment classification marked in red (circles sand; squares mud). Yellow indicates sand classification and blue mud.</p> "> Figure 13
<p>The Llansteffan orthomosaic (<b>left</b>) and sediment classification (<b>right</b>) with visual sediment classification marked in red (circles sand; squares mud). Yellow indicates sand classification and blue mud.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Methodology
2.1.1. Flight Methodology
2.1.2. Additional Measurements
2.1.3. Study Sites
2.1.4. Post-Processing of UAS Data
2.2. Classification Methodology
3. Results
3.1. Variation of Measured Parameters over the Intertidal
3.2. Classification Results
3.2.1. Neath Estuary Classification
3.2.2. Tests at Alternative Sites
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Mackinnon, K.; Smith, H.C.M.; Moore, F.; van der Weijde, A.H.; Lazakis, I. Environmental interactions of tidal lagoons: A comparison of industry perspectives. Renew. Energy 2018, 119, 309–319. [Google Scholar] [CrossRef] [Green Version]
- Fairley, I.; Thomas, T.; Phillips, M.; Reeve, D. Terrestrial laser scanner techniques for enhancement in understanding of coastal environments. In Seafloor Mapping along Continental Shelves: Research and Techniques for Visualizing Benthic Environments; Finkl, C.W., Ed.; Springer International: New York, NY, USA, 2016; pp. 273–289. [Google Scholar]
- Anderson, M.J.; Ford, R.B.; Feary, D.A.; Honeywill, C. Quantitative measures of sedimentation in an estuarine system and its relationship with intertidal soft-sediment infauna. Mar. Ecol. Prog. Ser. 2004, 272, 33–48. [Google Scholar] [CrossRef] [Green Version]
- Rodil, I.F.; Lastra, M. Environmental factors affecting benthic macrofauna along a gradient of intermediate sandy beaches in northern Spain. Estaur. Coast. Shelf Sci. 2004, 61, 37–44. [Google Scholar] [CrossRef]
- McLachlan, A. Physical factors in benthic ecology: Effects of changing sand particle size on beach fauna. Mar. Ecol. Prog. Ser. 1996, 131, 205–217. [Google Scholar] [CrossRef]
- Rodrigues, A.M.; Meireles, S.; Pereira, T.; Gama, A.; Quintino, V. Spatial patterns of benthic macroinvertebrates in intertidal areas of a Southern european estuary: The Tagus, Portugal. Hydrobiologia 2006, 555, 99–113. [Google Scholar] [CrossRef]
- Van der Wal, D.; Ysebaert, T.; Herman, P.M.J. Response of intertidal benthic macrofauna to migrating megaripples and hydrodynamics. Mar. Ecol. Prog. Ser. 2017, 585, 17–30. [Google Scholar] [CrossRef]
- Manning, L.M.; Peterson, C.H.; Bishop, M.J. Dominant macrobenthic populations experience sustained impacts from annual disposal of fine sediments on sandy beaches. Mar. Ecol. Prog. Ser. 2014, 508, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Vanden Eede, S.; Van Tomme, J.; De Busschere, C.; Vandegehucte, M.L.; Sabbe, K.; Stienen, E.W.M.; Degraer, S.; Vincx, M.; Bonte, D. Assessing the impact of beach nourishment on the intertidal food web through the development of a mechanistic-envelope model. J. Appl. Ecol. 2014, 51, 1304–1313. [Google Scholar] [CrossRef] [Green Version]
- Le Hir, P.; Cayocca, F.; Waeles, B. Dynamics of sand and mud mixtures: A multiprocess-based modelling strategy. Cont. Shelf Res. 2011, 31, 135S–149S. [Google Scholar] [CrossRef]
- Wu, W.; Perera, C.; Smith, J.; Sanchez, A. Critical shear stress for erosion of sand and mud mixtures. J. Hydraul. Res. 2018, 56, 96–110. [Google Scholar] [CrossRef]
- Benedet, L.; Finkl, C.W.; Cambell, T.; Klein, A. Predicting the effect of beach nourishment and cross-shore sediment variation on beach morphodynamic assessment. Coast. Eng. 2004, 51, 839–861. [Google Scholar] [CrossRef]
- Medina, R.; Losada, M.A.; Losada, I.J.; Vidal, C. Temporal and spatial relationship between sediment grain size and beach profile. Mar. Geol. 1994, 118, 195–206. [Google Scholar] [CrossRef]
- Braat, L.; van Kessel, T.; Leuvan, J.R.F.W.; Kleinhans, M.G. Effects of mud supply on large-scale estuary morphology and development over centuries to millennia. Earth Surf. Dyn. 2017, 5, 617–652. [Google Scholar] [CrossRef] [Green Version]
- Calliari, L.J.; Holland, T.; Pereira, P.S.; Guedes, R.M.C. The Influence of Mud on the Inner Shelf, Shoreface, Beach, and Surf Zone Morphodynamics; Cassino, Southern Brazil. In Proceedings of the Coastal Sediments’07, New Orleans, LA, USA, 13–17 May 2007. [Google Scholar]
- Ahn, I.-Y.; Choi, J.-W. Macrobenthic communities inpacted by anthropogenic activities in an intertidal sand falt on te west coast (Yellow Sea) of Korea. Mar. Pollut. Bull. 1998, 36, 808–817. [Google Scholar] [CrossRef]
- Wartel, S.; Chen, M.; van Eck, G.T.M.; van Maldegem, D. Influence of harbour construction on mud accumulation in the Scheldt estuary. Aquat. Ecosyst. Health Manag. 2007, 10, 107–115. [Google Scholar] [CrossRef]
- Lesourd, S.; Lesueur, P.; Brun-Cottan, J.C.; Garnaud, S.; Poupinet, N. Seasonal variations in the characteristics of superficial sediments in a macrotidal estuary. Estaur. Coast. Shelf Sci. 2003, 58, 3–16. [Google Scholar] [CrossRef]
- Rainey, M.P.; Tyler, A.N.; Gilvear, D.J.; Bryant, R.G.; McDonald, P. Mapping intertidal estuarine sediment grain size distributions through airborne remote sensing. Remote. Sens. Environ. 2003, 86, 480–490. [Google Scholar] [CrossRef]
- Castillo, E.; Pereda, R.; Luis, J.M.; Medina, R.; Viguri, J. Sediment grain size estimation using airborne remote sensing, field sampling, and robust statistic. Environ. Monit. Assess. 2011, 181, 431–444. [Google Scholar] [CrossRef] [PubMed]
- Thomson, A.G.; Fuller, R.M.; Yates, M.G.; Brown, S.L.; Cox, R.; Wadsworth, R.A. The use of airborne remote sensing for extensive mapping of intertidal sediments and saltmarshes in eastern England. Int. J. Remote Sens. 2003, 24, 2717–2737. [Google Scholar] [CrossRef]
- Deronde, B.; Houthuys, R.; Debrun, W.; Fransaer, D.; van Lanker, V.; Henriet, J.P. Use of Airborne Hyperspectral Data and Laserscan Data to Study Beach Morphodynamics along the Belgian Coast. J. Coast. Res. 2006, 22, 1108–1117. [Google Scholar] [CrossRef]
- Adam, S.; De Backer, A.; Degaer, S.; Monbaliu, J.; Toorman, E.A.; Vincx, M. Sediment characterization of intertidal mudflats using remote sensing. Proc. Mar. Sci. 2008, 9, 109–124. [Google Scholar]
- Yates, M.G.; Jones, A.R.; McGrorty, S.; Goss-Custard, J.D. The Use of Satellite Imagery to Determine the Distribution of Intertidal Surface Sediments of the Wash, England. Estaur. Coast. Shelf Sci. 1993, 36, 333–344. [Google Scholar] [CrossRef]
- Jung, R.; Adolph, W.; Ehlers, M.; Farke, H. A multi-sensor approach for detecting the different land covers of tidal flats in the German Wadden Sea—A case study at Norderney. Remote Sens. Environ. 2015, 170, 188–202. [Google Scholar] [CrossRef]
- Van der Wal, D.; Herman, P.M.J. Quantifying the particle size of intertidal sediments with satellite remote sensing in the visible light, thermal infrared and microwave spectral domain. In Proceedings of the ISPRS Commission VII Symposium ‘Remote Sensing: From Pixels to Processes’; Kerle, N., Skidmore, A., Eds.; ISPRS: Enschede, The Netherlands, 2006. [Google Scholar]
- Chickadel, C.; Thomson, J. Exploitation of Thermal Signals in Tidal Flat Environments (Award no: N00014-08-10809)—Final Report; Applied Physics Lab, University of Washington: Seattle, WA, USA, 2010. [Google Scholar]
- Thomson, J.; Chickadel, C.; Rinehimer, J.P. Classification of Intertidal Sediments Using Infrared Sensing. In Proceedings of the GO35C-08 AGU Ocean Sciences, Portland, OR, USA, 2–26 February 2010. [Google Scholar]
- Ibrahim, E.; Adam, S.; Monbaliu, J. Assesemnt of unsupervised classification techniwues for intertidal sediments. In Remote Sensing for a Changing Europe; Maktav, D., Ed.; IOS Press: Amsterdam, The Netherlands, 2009. [Google Scholar]
- Wang, W.; Yang, X.; Liu, G.; Zhou, H.; Ma, W.; Yu, Y.; Li, Z. Random forest classification of sediments on exposed intertidal flats using ALOS-2 quad-polarimetric SAR data. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016. [Google Scholar] [CrossRef]
- Easytide Website. Available online: http://www.ukho.gov.uk/easytide/EasyTide/index.aspx (accessed on 3 May 2018).
- Sanz-Ablanedo, E.; Chandler, J.H.; Rodríguez-Pérez, J.R.; Ordóñez, C. Accuracy of Unmanned Aerial Vehicle (UAV) and SfM Photogrammetry Survey as a Function of the Number and Location of Ground Control Points Used. Remote Sens. 2018, 10, 1606. [Google Scholar] [CrossRef]
- Kung, O.; Strecha, C.; Beyeler, A.; Zufferey, J.-C.; Floreano, D.; Fua, P.; Gervaix, F. The accuracy of automatic photogrammetric techniques on ultra-light UAV imagery. In Proceedings of the UAV-g 2011—Unmanned Aerial Vehicle in Geomatics, Zürich, Switzerland, 14–16 September 2011. [Google Scholar]
- Strecha, C.; Bronstein, A.; Bronstein, M.; Fua, P. LDA-Hash: Improved matching with smaller descriptors. IEEE Trans. Pattern Anal. Mach. Intell. 2012, 34, 66–78. [Google Scholar] [CrossRef] [PubMed]
- Triggs, B.; McLauchlan, P.; Hartley, R.; Fitzgibbon, A. Bundle Adjustment—A Modern Synthesis. In Vision Algorithms: Theory and Practice; Triggs, B., Zisserman, A., Szeliski, R., Eds.; Springer International: New York, NY, USA, 2000; pp. 298–372. [Google Scholar]
- Hartley, R.; Zisserman, A. Multiple View Geometry in Computer Vision; Cambridge University Press: Cambridge, UK, 2004; p. 674. [Google Scholar]
- McFeeters, S.K. The use of the normalized difference water index (NDWI) in the delineation of open water features. Int. J. Remote Sens. 1996, 17, 1425–1432. [Google Scholar] [CrossRef]
- Yu, L.; Porwal, A.; Holden, E.-J.; Dentith, M.C. Suppression of vegetation in multispectral remote sensing images. Int. J. Remote Sens. 2011, 32, 7343–7357. [Google Scholar] [CrossRef]
- Arthur, D.; Vassilvitskii, S.; Siam, A. k-means plus plus: The Advantages of Careful Seeding. In Proceedings of the 18th Annual Symposium on Discrete Algorithms, New Orleans, LA, USA, 7–9 January 2007; pp. 1027–1035. [Google Scholar]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Ilea, D.E.; Whelan, P.F. Image segmentation based on the integration of colour-texture descriptors—A review. Pattern Recognit. 2011, 44, 2479–2501. [Google Scholar] [CrossRef]
- Kumar, G.; Sarthi, P.; Ranjan, P.; Rajesh, R. Performance of k-means based Satellite Image Clustering in RGB and HSV Color Space. In Proceedings of the 5th International Conference on Recent Trends in Information Technology, Chennai, India, 8–9 April 2016. [Google Scholar]
- Kusetogullari, H.; Yavariabdi, A. Unsupervised Change Detection in Landsat Images with Atmospheric Artifacts: A Fuzzy Multiobjective Approach. Math. Probl. Eng. 2018. [Google Scholar] [CrossRef]
- Su, L.H.; Gibeaut, J. Using UAS Hyperspatial RGB Imagery for Identifying Beach Zones along the South Texas Coast. Remote Sens. 2017, 9, 159. [Google Scholar] [CrossRef]
- Zhang, H.; Fritts, J.E.; Goldman, S.A. Image segmentation evaluation: A survey of unsupervised methods. Comput. Vis. Image Underst. 2008, 110, 260–280. [Google Scholar] [CrossRef] [Green Version]
- Lloyd, S.P. Least-squares quantisation in PCM. IEEE Trans. Inf. Theory 1982, 22, 129–137. [Google Scholar] [CrossRef]
- Svozil, D.; Kvasnicka, V.; Pospichal, J.Í. Introduction to multi-layer feed-forward neural networks. Chemom. Intell. Lab. Syst. 1997, 39, 43–62. [Google Scholar] [CrossRef]
- Moller, M.F. A scaled conjugate-gradient algorithm for fast supervised learning. Neural Netw. 1993, 6, 525–533. [Google Scholar] [CrossRef]
- Youden, W.J. Index for rating diagnostic tests. Cancer 1950, 3, 32–35. [Google Scholar] [CrossRef] [3.0.CO;2-3/pdf" target='_blank'>Green Version]
- Clark, R.N. Chapter 1: Spectroscopy of Rocks and Minerals, and Principles of Spectroscopy. In Manual of Remote Sensing, Volume 3, Remote Sensing for the Earth Sciences; Rencz, A.N., Ed.; John Wiley and Sons: Hoboken, NJ, USA, 1999; pp. 3–58. [Google Scholar]
- Lorenz, S.; Salehi, S.; Kirsch, M.; Zimmermann, R.; Unger, G.; Vest Sørensen, E.; Gloaguen, R. Radiometric Correction and 3D Integration of Long-Range Ground-Based Hyperspectral Imagery for Mineral Exploration of Vertical Outcrops. Remote Sens. 2018, 10, 176. [Google Scholar] [CrossRef]
- Jackisch, R.; Lorenz, S.; Zimmermann, R.; Möckel, R.; Gloaguen, R. Drone-Borne Hyperspectral Monitoring of Acid Mine Drainage: An Example from the Sokolov Lignite District. Remote Sens. 2018, 10, 385. [Google Scholar] [CrossRef]
- Kirsch, M.; Lorenz, S.; Zimmermann, R.; Tusa, L.; Möckel, R.; Hödl, P.; Booysen, R.; Khodadadzadeh, M.; Gloaguen, R. Integration of Terrestrial and Drone-Borne Hyperspectral and Photogrammetric Sensing Methods for Exploration Mapping and Mining Monitoring. Remote Sens. 2018, 10, 1366. [Google Scholar] [CrossRef]
Flight Date dd/mm/yyyy | Site | Flight Parameters | Environmental Parameters | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Drone/Camera | Take-Off Time | Flight Time (minutes) | No. of Images | Cruising Altitude (m) | Area Covered (km2) | Number of GCPs | Mean Wind Speed (ms−1) | Average Temperature (°C) | Time of Low Tide | ||
30/01/2018 | Neath | eBee/Sequoia | 0936 | 16 | 280 | 84 | 0.30 | 7 | 2.25 | 4.5 | 1105 |
30/01/2018 | Neath | eBee/thermoMAP | 1021 | 22 | 3806 | 53 | 0.07 | 3 | 3.49 | 4.5 | 1105 |
16/02/2018 | Neath | eBee/Sequoia | 1138 | 14 | 208 | 73 | 0.11 | 8 | 6.90 | 5.7 | 1230 |
16/02/2018 | Neath | eBee/thermoMAP | 1201 | 18 | 2928 | 53 | 0.11 | 3 | 4.93 | 5.7 | 1230 |
03/05/2018 | Neath | eBee/Sequoia | 1238 | 13 | 203 | 84 | 0.12 | 12 | 5.95 | 10.8 | 1458 |
03/05/2018 | Neath | eBee/thermoMAP | 1305 | 20 | 3208 | 53 | 0.12 | 7 | 5.91 | 10.8 | 1458 |
15/05/2018 | Llansteffan | eBee Plus/Sequoia | 1221 | 18 | 264 | 106 | 0.01 | 10 | 2.47 | 11.7 | 1511 |
17/05/2018 | Appledore | eBee Plus/Sequoia | 1209 | 37 | 596 | 100 | 0.33 | 11 | 2.82 | 13.3 | 1505 |
Sand | Mud | |
---|---|---|
Predicted sand | True sand (TS) | False sand (FS) |
Predicted mud | False mud (FM) | True mud (TM) |
Classification | Rank | Flight 1 | Flight 2 | Flight 3 |
---|---|---|---|---|
K-means | 1st | HSV, NIR (0.97) | HSV, MS (0.73) | HSV, NIR (0.81) |
2nd | MS/HSV, MS/HSV, RE, NIR (0.87) | MS (0.71) | HSV (0.75) | |
ANN Classification | 1st | HSV, NIR/RGB, RE, NIR (0.97) | RGB, MS (0.87) | HSV, NIR/HSV, RE, NIR (0.81) |
2nd | HSV, MS/HSV, RE, NIR/MS/RGB, NIR (0.87) | RGB (0.85) | RGB/RGB, RE, NIR (0.77) | |
RF classification | 1st | HSV/HSV, NIR (0.99) | HSV, NIR (0.65) | HSV, MS/HSV, NIR (0.81) |
2nd | HSV, MS (0.97) | HSV, MS/HSV (0.61) | HSV, RE, NIR (0.79) |
Set of Input Data | k-Means | Artificial Neural Networks | Random Forests | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Lower 95% | j-Index | Upp-er 95% | Lower 95% | j-Index | Upp-er 95% | Lower 95%. | j-Index | Upp-er 95% | ||
Flight 1: 30/01/18 | HSV | 0 | 0 | 0 | 0 | 0 | 69 | 0.96 | 0.99 | 1.01 |
HSV, MS | 0.79 | 0.87 | 0.95 | 0.79 | 0.87 | 60 | 0.93 | 0.97 | 1.01 | |
HSV, NIR | 0.93 | 0.97 | 1.01 | 0.93 | 0.97 | 67 | 0.96 | 0.99 | 1.01 | |
HSV, RE, NIR | 0.79 | 0.87 | 0.95 | 0.79 | 0.87 | 60 | 0.91 | 0.96 | 1 | |
MS | 0.79 | 0.87 | 0.95 | 0.79 | 0.87 | 60 | 0.89 | 0.94 | 1 | |
RGB | −0.06 | 0.12 | 0.30 | −0.06 | 0.12 | 58 | 0.08 | 0.24 | 0.40 | |
RGB, MS | −0.06 | 0.12 | 0.30 | 0 | 0 | 69 | 0.91 | 0.9 | 1 | |
RGB, NIR | −0.06 | 0.12 | 0.30 | 0.79 | 0.87 | 60 | 0.89 | 0.94 | 1 | |
RGB, RE, NIR | −0.06 | 0.12 | 0.30 | 0.93 | 0.97 | 67 | 0.89 | 0.94 | 1 | |
Flight 2: 16/02/18 | HSV | 0.14 | 0.36 | 0.59 | 0.46 | 0.65 | 0.850 | 0.41 | 0.61 | 0.81 |
HSV, MS | 0.58 | 0.73 | 0.87 | 0.62 | 0.78 | 0.95 | 0.36 | 0.57 | 0.77 | |
HSV, NIR | 0.20 | 0.43 | 0.65 | 0.43 | 0.63 | 0.83 | 0.46 | 0.65 | 0.85 | |
HSV, RE, NIR | 0.36 | 0.56 | 0.75 | 0.48 | 0.67 | 0.87 | 0.38 | 0.59 | 0.79 | |
MS | 0.58 | 0.71 | 0.84 | 0.44 | 0.63 | 0.83 | 0.41 | 0.61 | 0.81 | |
RGB | 0.05 | 0.27 | 0.49 | 0.73 | 0.85 | 0.97 | −0.30 | −0.11 | 0.08 | |
RGB, MS | 0.05 | 0.27 | 0.49 | 0.76 | 0.87 | 0.99 | 0.32 | 0.53 | 0.74 | |
RGB, NIR | 0.05 | 0.27 | 0.49 | 0.36 | 0.50 | 0.64 | 0.25 | 0.47 | 0.69 | |
RGB, RE, NIR | 0.05 | 0.27 | 0.49 | 0.29 | 0.46 | 0.62 | 0.20 | 0.43 | 0.65 | |
Flight 3: 03/05/18 | HSV | 0.58 | 0.75 | 0.92 | 0.54 | 0.69 | 0.84 | 0.60 | 0.73 | 0.85 |
HSV, MS | 0.42 | 0.56 | 0.70 | 0.580 | 0.71 | 0.84 | 0.70 | 0.81 | 0.92 | |
HSV, NIR | 0.67 | 0.81 | 0.95 | 0.70 | 0.81 | 0.92 | 0.70 | 0.81 | 0.92 | |
HSV, RE, NIR | 0.56 | 0.69 | 0.82 | 0.70 | 0.81 | 0.92 | 0.68 | 0.79 | 0.91 | |
MS | 0.26 | 0.40 | 0.53 | 0.51 | 0.65 | 0.78 | 0.51 | 0.65 | 0.78 | |
RGB | −0.30 | −0.06 | 0.18 | 0.65 | 0.77 | 0.89 | 0.58 | 0.71 | 0.84 | |
RGB, MS | −0.30 | −0.06 | 0.18 | 0.58 | 0.71 | 0.84 | 0.56 | 0.69 | 0.82 | |
RGB, NIR | −0.30 | −0.06 | 0.18 | 0.63 | 0.75 | 0.87 | 0.63 | 0.75 | 0.87 | |
RGB, RE, NIR | −0.30 | −0.06 | 0.18 | 0.65 | 0.77 | 0.89 | 0.60 | 0.73 | 0.85 |
HSV | HSV, MS | HSV, NIR | HSV, RE, NIR | MS | RGB | RGB, MS | RGB, NIR | RGB, RE, NIR |
---|---|---|---|---|---|---|---|---|
4 | 8 | 14 | 5 | 3 | 2 | 2 | 1 | 3 |
j = 0.97 | Predicted Sand | Predicted Mud |
---|---|---|
Sand | 67 | 2 |
Mud | 0 | 32 |
j = 0.6 | Predicted Sand | Predicted Mud |
---|---|---|
Sand | 47 | 1 |
Mud | 8 | 15 |
j = 0.81 | Predicted Sand | Predicted Mud |
---|---|---|
Sand | 39 | 9 |
Mud | 0 | 24 |
j = 0.64 | Predicted Sand | Predicted Mud |
---|---|---|
Sand | 21 | 5 |
Mud | 6 | 29 |
j = 0.71 | Predicted Sand | Predicted Mud |
---|---|---|
Sand | 25 | 10 |
Mud | 0 | 20 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fairley, I.; Mendzil, A.; Togneri, M.; Reeve, D.E. The Use of Unmanned Aerial Systems to Map Intertidal Sediment. Remote Sens. 2018, 10, 1918. https://doi.org/10.3390/rs10121918
Fairley I, Mendzil A, Togneri M, Reeve DE. The Use of Unmanned Aerial Systems to Map Intertidal Sediment. Remote Sensing. 2018; 10(12):1918. https://doi.org/10.3390/rs10121918
Chicago/Turabian StyleFairley, Iain, Anouska Mendzil, Michael Togneri, and Dominic E. Reeve. 2018. "The Use of Unmanned Aerial Systems to Map Intertidal Sediment" Remote Sensing 10, no. 12: 1918. https://doi.org/10.3390/rs10121918