Performance of TRMM TMPA 3B42 V7 in Replicating Daily Rainfall and Regional Rainfall Regimes in the Amazon Basin (1998–2013)
<p>Pattern of the Intertropical Convergence Zone (ITCZ), South Atlantic Convergence Zone (SACZ), South American Low Level Jet (SALLJ) core and northeast and southeast wind trades during the South American Monsoon System from December to February (DJF). Source: V. Michot.</p> "> Figure 2
<p>Rain gauge network used as ground reference (205 stations with daily data from 1998 to 2013). The colors of the stations and the labels allow identifying the climatic regions with similar rainfall regimes [<a href="#B33-remotesensing-10-01879" class="html-bibr">33</a>,<a href="#B36-remotesensing-10-01879" class="html-bibr">36</a>].</p> "> Figure 3
<p>Spatial distribution of (<b>a</b>) mean daily rainfall per rain gauge (<b>b</b>) mean daily rainfall in the nearest pixel 3B42 of the rain gauge. Both are expressed in millimeters per day. The average is computed on the 1998–2013 period.</p> "> Figure 4
<p>Spatial distribution of (<b>a</b>) 3B42 Bias in percent between estimated and observed rainfall, and (<b>b</b>) 3B42 Relative RMSE, in millimeters per day. Both are calculated from 2000 to 2013 at daily time scale.</p> "> Figure 5
<p>Spatial distribution of (<b>a</b>) the probability of detection and (<b>b</b>) the false alarm ratio. Both are calculated from 2000 to 2013 at daily time scale.</p> "> Figure 6
<p>(<b>a</b>) Relative RMSE (in mm), (<b>b</b>) bias (in mm), (<b>c</b>) POD, and (<b>d</b>) FAR of 3B42, at daily time scale for each month, calculated from 2000 to 2013 at daily time scale.</p> "> Figure 7
<p>Annual rainfall regimes of the different regions defined in <a href="#remotesensing-10-01879-f002" class="html-fig">Figure 2</a> for the AB. The <span class="html-italic">x</span>-axis represents each month of the year, <span class="html-italic">y</span>-axis represents the rainfall in millimeters per month. Blue bars represent the observed rainfall and red ones the estimated rainfall.</p> "> Figure 8
<p>(<b>a</b>) Relative RMSE (in mm), (<b>b</b>) bias (in mm), (<b>c</b>) POD, and (<b>d</b>) FAR of 3B42, at daily scale for each month of the year for the five regions: (<b>i</b>) the northeast, (<b>ii</b>) south, (<b>iii</b>) north, (<b>iv</b>) center, (<b>v</b>) west regions.</p> "> Figure 9
<p>Correlation between elevation and (<b>a</b>) bias, in %; (<b>b</b>) relative RMSE, in mm; (<b>c</b>) POD; and (<b>d</b>) FAR in the region west. The <span class="html-italic">x</span>-axis represents the elevation (in meters), <span class="html-italic">y</span>-axis represents the score of each statistic.</p> "> Figure 10
<p>(<b>a</b>,<b>b</b>) location of rain gauges with shelter situation and overestimation (in mm) by 3B42. The white arrow represent the main wind in the region of Bolivian rainfall hotspot [<a href="#B18-remotesensing-10-01879" class="html-bibr">18</a>].</p> "> Figure 11
<p>Rainfall sub-regimes Cl1 to Cl4, in the northeastern region of AB from rain gauge (blue line), 3B42 pixel (red line), and mean annual regime of the region from rain gauge (grey line).</p> "> Figure 12
<p>Monthly composite maps of 3B42 grid normalized monthly anomalies (<b>top</b>) and OLR and water vapor flux monthly significant anomalies (<b>bottom</b>). Anomalies are computed based on cluster Cl1 years in the northeastern region. The blue polygon represents the northeastern region of the AB.</p> "> Figure 13
<p>Monthly composite maps of 3B42 grid normalized monthly anomalies (<b>top</b>) and OLR and water vapor flux monthly significant anomalies (<b>bottom</b>). Anomalies are computed based on cluster Cl4 years in the northeastern region. The blue polygon represents the northeastern region of the AB.</p> ">
Abstract
:1. Introduction
2. Data and Methodology
2.1. Study Area
2.2. Observed Precipitations: Rain Gauge Data
2.3. Estimated Precipitations: TRMM TMPA 3B42 Version 7 Daily Product
2.4. Outgoing Longwave Radiation and Water Vapor Flux
2.5. Intercomparison Methodology
2.5.1. Daily Rainfall Values
2.5.2. Rainfall Regimes
3. Results and Discussion
3.1. Comparison between Points and Pixels at Annual and Monthly Time Scales
3.2. Regional and Time Analysis of TRMM 3B42 V7 Performance
3.2.1. Annual Rainfall in the Regions
3.2.2. Regional Rainfall Regimes
3.2.3. Regional Rainfall Sub-Regimes in the Northeastern Region of the AB
3.3. Comparisons between 3B42, Water Vapor Flux, and OLR Spatial Pattern Anomalies
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Meinke, H.; Stone, R.C. Seasonal and Inter-Annual Climate Forecasting: The New Tool for Increasing Preparedness to Climate Variability and Change in Agricultural Planning and Operations. Clim. Chang. 2005, 70, 221–253. [Google Scholar] [CrossRef]
- Arvor, D. Etude par Télédétection de la Dynamique du soja et de L’impact des Précipitations sur les Productions au Mato Grosso (Brésil). Thèse de Doctorat, Université Rennes 2, Rennes, France, 2009. [Google Scholar]
- Brondizio, E.S.; Moran, E.F. Human dimensions of climate change: The vulnerability of small farmers in the Amazon. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2008, 363, 1803–1809. [Google Scholar] [CrossRef] [PubMed]
- Coomes, O.T.; Lapointe, M.; Templeton, M.; List, G. Amazon river flow regime and flood recessional agriculture: Flood stage reversals and risk of annual crop loss. J. Hydrol. 2016, 539, 214–222. [Google Scholar] [CrossRef]
- Liebmann, B.; Allured, D. Daily precipitation grids for South America. Bull. Am. Meteorol. Soc. 2005, 86, 1567. [Google Scholar] [CrossRef]
- Dubreuil, V.; Arvor, D.; Ronchail, J. Potentialités des données TRMM pour la spatialisation des précipitations au Mato Grosso, Brésil. In Proceedings of the XXe Colloque de l’Association Internationale de Climatologie, Carthage, Tunisie, 3–9 September 2007; pp. 210–215. [Google Scholar]
- Ronchail, J.; Cochonneau, G.; Molinier, M.; Guyot, J.-L.; De Miranda Chaves, A.G.; Guimarães, V.; de Oliveira, E. Interannual rainfall variability in the Amazon basin and sea-surface temperatures in the equatorial Pacific and the tropical Atlantic Oceans. Int. J. Climatol. 2002, 22, 1663–1686. [Google Scholar] [CrossRef] [Green Version]
- Delahaye, F. Analyse Comparative des Différents Produits Satellitaires D’estimation des Précipitations en Amazonie Brésilienne. Thèse de Doctorat, Université Rennes 2, Rennes, France, 2013. [Google Scholar]
- Cai, Y.; Jin, C.; Wang, A.; Guan, D.; Wu, J.; Yuan, F.; Xu, L. Spatio-temporal analysis of the accuracy of tropical multisatellite precipitation analysis 3B42 precipitation data in mid-high latitudes of China. PLoS ONE 2015, 10, e0120026. [Google Scholar] [CrossRef] [PubMed]
- Guo, R.; Liu, Y. Evaluation of Satellite Precipitation Products with Rain Gauge Data at Different Scales: Implications for Hydrological Applications. Water 2016, 8, 281. [Google Scholar] [CrossRef]
- Tian, Y.; Peters-Lidard, C.D.; Choudhury, B.J.; Garcia, M. Multitemporal analysis of TRMM-based satellite precipitation products for land data assimilation applications. J. Hydrometeorol. 2007, 8, 1165–1183. [Google Scholar] [CrossRef]
- Zulkafli, Z.; Buytaert, W.; Onof, C.; Manz, B.; Tarnavsky, E.; Lavado, W.; Guyot, J.L. A comparative performance analysis of TRMM 3B42 (TMPA) versions 6 and 7 for hydrological applications over Andean–Amazon River basins. J. Hydrometeorol. 2014, 15, 581–592. [Google Scholar] [CrossRef]
- Salio, P.; Hobouchian, M.P.; Skabar, Y.G.; Vila, D. Evaluation of high-resolution satellite precipitation estimates over southern South America using a dense rain gauge network. Atmos. Res. 2015, 163, 146–161. [Google Scholar] [CrossRef]
- Dinku, T.; Connor, S.J.; Ceccato, P. Comparison of CMORPH and TRMM-3B42 over Mountainous Regions of Africa and South America. In Satellite Rainfall Applications for Surface Hydrology; Gebremichael, M., Hossain, F., Eds.; Springer: Dordrecht, The Netherlands, 2010; pp. 193–204. ISBN 978-90-481-2915-7. [Google Scholar]
- Mohd Zad, S.; Zulkafli, Z.; Muharram, F. Satellite Rainfall (TRMM 3B42-V7) Performance Assessment and Adjustment over Pahang River Basin, Malaysia. Remote Sens. 2018, 10, 388. [Google Scholar] [CrossRef]
- Thiemig, V.; Rojas, R.; Zambrano-Bigiarini, M.; Levizzani, V.; De Roo, A. Validation of satellite-based precipitation products over sparsely gauged African river basins. J. Hydrometeorol. 2012, 13, 1760–1783. [Google Scholar] [CrossRef]
- Bookhagen, B.; Strecker, M.R. Orographic barriers, high-resolution TRMM rainfall, and relief variations along the eastern Andes. Geophys. Res. Lett. 2008, 35, L06403. [Google Scholar] [CrossRef]
- Espinoza, J.C.; Chavez, S.; Ronchail, J.; Junquas, C.; Takahashi, K.; Lavado, W. Rainfall hotspots over the southern tropical Andes: Spatial distribution, rainfall intensity, and relations with large-scale atmospheric circulation. Water Resour. Res. 2015, 51, 3459–3475. [Google Scholar] [CrossRef]
- Paccini, L.; Espinoza, J.C.; Ronchail, J.; Segura, H. Intra-seasonal rainfall variability in the Amazon basin related to large-scale circulation patterns: A focus on western Amazon-Andes transition region: Intra-seasonal rainfall variability in western Amazon. Int. J. Climatol. 2018, 38, 2386–2399. [Google Scholar] [CrossRef]
- Getirana, A.C.; Espinoza, J.C.V.; Ronchail, J.; Rotunno Filho, O.C. Assessment of different precipitation datasets and their impacts on the water balance of the Negro River basin. J. Hydrol. 2011, 404, 304–322. [Google Scholar] [CrossRef]
- Buarque, D.C.; de Paiva, R.C.D.; Clarke, R.T.; Mendes, C.A.B. A comparison of Amazon rainfall characteristics derived from TRMM, CMORPH and the Brazilian national rain gauge network. J. Geophys. Res. 2011, 116. [Google Scholar] [CrossRef] [Green Version]
- Zubieta, R.; Getirana, A.; Espinoza, J.C.; Lavado, W. Impacts of satellite-based precipitation datasets on rainfall–runoff modeling of the Western Amazon basin of Peru and Ecuador. J. Hydrol. 2015, 528, 599–612. [Google Scholar] [CrossRef]
- Zhou, J.; Lau, K.M. Does a Monsoon Climate Exist over South America? J. Clim. 1998, 11, 1020–1040. [Google Scholar] [CrossRef]
- Marengo, J.A.; Liebmann, B.; Kousky, V.E.; Filizola, N.P.; Wainer, I.C. Onset and End of the Rainy Season in the Brazilian Amazon Basin. J. Clim. 2001, 14, 833–852. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Fu, R. Cross-Equatorial Flow and Seasonal Cycle of Precipitation over South America. J. Clim. 2002, 15, 1591–1608. [Google Scholar] [CrossRef]
- Vera, C.; Baez, J.; Douglas, M.; Emmanuel, C.B.; Marengo, J.; Meitin, J.; Nicolini, M.; Nogues-Paegle, J.; Paegle, J.; Penalba, O.; et al. The South American Low-Level Jet Experiment. Bull. Am. Meteorol. Soc. 2006, 87, 63–77. [Google Scholar] [CrossRef]
- Figueroa, S.N.; Nobre, C.A. Precipitation distribution over central and western tropical South America. Climanalise 1990, 5, 36–45. [Google Scholar]
- Marengo, J.A. Interannual variability of surface climate in the Amazon basin. Int. J. Climatol. 1992, 12, 853–863. [Google Scholar] [CrossRef]
- Espinoza Villar, J.C.; Ronchail, J.; Guyot, J.L.; Cochonneau, G.; Naziano, F.; Lavado, W.; De Oliveira, E.; Pombosa, R.; Vauchel, P. Spatio-temporal rainfall variability in the Amazon basin countries (Brazil, Peru, Bolivia, Colombia, and Ecuador). Int. J. Climatol. 2009, 29, 1574–1594. [Google Scholar] [CrossRef] [Green Version]
- Michot, V.; Dubreuil, V.; Roncahil, J.; Lucio, P.S. Constitution et analyse critique d’une base de données spatiale pour l’étude des saisons des pluies dans le bassin amazonien. In Proceedings of the ENVIBRAS 2014 Environnement et Géomatique: Approches Comparées France—Brésil, Rennes, France, 12–15 November 2014; pp. 237–244. [Google Scholar]
- Michot, V.; Arvor, D.; Ronchail, J.; Corpetti, T.; Jégou, N.; Lucio, P.S.; Dubreuil, V. Validation and reconstruction of rain gauge-based daily time series for the entire Amazon basin. Theor. Appl. Climatol. 2018. under review. [Google Scholar]
- Huffman, G.J.; Bolvin, D.T. TRMM and Other Data Precipitation Data Set Documentation 2015. Available online: https://pmm.nasa.gov/sites/default/files/document_files/3B42_3B43_doc_V7.pdf (accessed on 10 August 2015).
- Liebmann, B.; Smith, A.C. Description of a complete (interpolated) outgoing longwave radiation dataset. Bull. Am. Meteorol. Soc. 1996, 77, 1275–1277. [Google Scholar]
- Kalnay, E.; Kanamitsu, M.; Kistler, R.; Collins, W.; Deaven, D.; Gandin, L.; Iredell, M.; Saha, S.; White, G.; Woollen, J.; et al. The NCEP/NCAR 40-year reanalysis project. Bull. Am. Meteorol. Soc. 1996, 77, 437–471. [Google Scholar] [CrossRef]
- Peixoto, J.P.; Oort, A.H. Physics of Climate; American Institute of Physics: New York, NY, USA, 1992; 520p, ISBN1 978-0-88318-711-1. ISBN2 978-0-88318-712-8. [Google Scholar]
- Scheel, M.L.M.; Rohrer, M.; Huggel, C.; Santos Villar, D.; Silvestre, E.; Huffman, G.J. Evaluation of TRMM Multi-satellite Precipitation Analysis (TMPA) performance in the Central Andes region and its dependency on spatial and temporal resolution. Hydrol. Earth Syst. Sci. 2011, 15, 2649–2663. [Google Scholar] [CrossRef] [Green Version]
- Michot, V. Analyse Spatiale et Temporelle de la Variabilité des Régimes de Précipitations dans le Bassin Amazonien. Ph.D. Thesis, Université Bretagne-Loire, Rennes 2, Rennes, France, 2017. [Google Scholar]
- Camps-Valls, G.; Bruzzone, L. Kernel Methods for Remote Sensing Data Analysis; John Wiley & Sons: Chichester, UK, 2009; ISBN 978-0-470-74899-2. [Google Scholar]
- Barbosa Santos, E.B. Modelagem estatística e atribuições dos eventos de precipitação extrema na Amazônia brasileira. In Statistical Modeling and Attributions of Extreme Precipitation Events in the Brazilian Amazon; Universidade Federal do Rio Grande: Do Norte Natal, Brazil, 2015. [Google Scholar]
- Delahaye, F.; Kirstetter, P.-E.; Dubreuil, V.; Machado, L.A.; Vila, D.A.; Clark, R. A consistent gauge database for daily rainfall analysis over the Legal Brazilian Amazon. J. Hydrol. 2015, 527, 292–304. [Google Scholar] [CrossRef]
- Groisman, P.Y.; Legates, D.R. The Accuracy of United States Precipitation Data. Bull. Am. Meteorol. Soc. 1994, 75, 215–227. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Fisher, B.L.; Wolff, D.B. Estimating Rain Rates from Tipping-Bucket Rain Gauge Measurements. J. Atmos. Oceanic Technol. 2008, 25, 43–56. [Google Scholar] [CrossRef] [Green Version]
- Fu, R.; Zhu, B.; Dickinson, R.E. How Do Atmosphere and Land Surface Influence Seasonal Changes of Convection in the Tropical Amazon? J. Clim. 1999, 12, 1306–1321. [Google Scholar] [CrossRef]
- Durieux, L. Etude des Relations entre les Caractéristiques Géographiques de la Surface et les Nuages Convectifs dans la Région de L’arc de Déforestation en Amazonie. Ph.D. Thesis, Université de Provence, UFR Des Sciences Géographiques et de L’aménagement, Aix-Marseille, France, 2002. [Google Scholar]
- Durieux, L. The impact of deforestation on cloud cover over the Amazon arc of deforestation. Remote Sens. Environ. 2003, 86, 132–140. [Google Scholar] [CrossRef]
- Wang, Z.; Sassen, K. Cloud Type and Macrophysical Property Retrieval Using Multiple Remote Sensors. J. Appl. Meteorol. 2001, 40, 1665–1682. [Google Scholar] [CrossRef]
Region | 3B42 | Rain Gauge | Difference 3B42-Rain Gauge |
---|---|---|---|
Northeast | 2202 | 2140 | +3% |
South | 1635 | 1536 | +6% |
North | 1893 | 1873 | +1% |
Center | 2405 | 2373 | +1% |
West | 1026 | 967 | +6% |
Year | Cluster |
---|---|
2002–2003 | 1 |
2004–2005 | 1 |
2006–2007 | 1 |
2011–2012 | 1 |
2000–2001 | 2 |
2001–2002 | 2 |
2009–2010 | 2 |
2010–2011 | 2 |
2008–2009 | 3 |
1998–1999 | 4 |
1999–2000 | 4 |
2005–2006 | 4 |
2007–2008 | 4 |
Rainfall Sub-Regime | Rain Gauge | 3B42 | Errors (%) of 3B42 |
---|---|---|---|
Cl1 | 2181 | 2234 | 2 |
Cl2 | 2170 | 2261 | 4 |
Cl3 | 2545 | 2607 | 2 |
Cl4 | 2369 | 2419 | 2 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Michot, V.; Vila, D.; Arvor, D.; Corpetti, T.; Ronchail, J.; Funatsu, B.M.; Dubreuil, V. Performance of TRMM TMPA 3B42 V7 in Replicating Daily Rainfall and Regional Rainfall Regimes in the Amazon Basin (1998–2013). Remote Sens. 2018, 10, 1879. https://doi.org/10.3390/rs10121879
Michot V, Vila D, Arvor D, Corpetti T, Ronchail J, Funatsu BM, Dubreuil V. Performance of TRMM TMPA 3B42 V7 in Replicating Daily Rainfall and Regional Rainfall Regimes in the Amazon Basin (1998–2013). Remote Sensing. 2018; 10(12):1879. https://doi.org/10.3390/rs10121879
Chicago/Turabian StyleMichot, Véronique, Daniel Vila, Damien Arvor, Thomas Corpetti, Josyane Ronchail, Beatriz M. Funatsu, and Vincent Dubreuil. 2018. "Performance of TRMM TMPA 3B42 V7 in Replicating Daily Rainfall and Regional Rainfall Regimes in the Amazon Basin (1998–2013)" Remote Sensing 10, no. 12: 1879. https://doi.org/10.3390/rs10121879
APA StyleMichot, V., Vila, D., Arvor, D., Corpetti, T., Ronchail, J., Funatsu, B. M., & Dubreuil, V. (2018). Performance of TRMM TMPA 3B42 V7 in Replicating Daily Rainfall and Regional Rainfall Regimes in the Amazon Basin (1998–2013). Remote Sensing, 10(12), 1879. https://doi.org/10.3390/rs10121879