Quantifying Changes on Forest Succession in a Dry Tropical Forest Using Angular-Hyperspectral Remote Sensing
<p>Parque Estatal de Mata-Seca (PEMS), Minas Gerais, Brasil. August 2013.</p> "> Figure 2
<p>(<b>a</b>): Acquisition of nominal angles images in CHRIS/PROBA. FZA: Fly-by-Zenith Angle, VZA: Viewing Zenith Angle, VAA: Viewing Azimuth Angle. (<b>b</b>): Viewing geometry of CHRIS/PROBA and the sun for both images over PEMS. AA: Azimuth Angle, ZA: Zenith Angle.</p> "> Figure 3
<p>Class distribution of the successional stages of the TDF in PEMS (Brazil) for years 2008 and 2014 according to different classifiers.</p> "> Figure 4
<p>Reflectance signature of the three successional stages of TDF for 2008 and 2014, after inverted PCA. Mean value (solid line) and standard deviation (dashed line).</p> "> Figure 5
<p>Land cover changes in PEMS, between 2008 and 2014 according to different classifiers.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Sensor Description
2.3. Acquisition and Data Processing
2.4. Training and Validation Data
2.5. Classification of Forest Successional Stages
2.6. Final Successional Stage Maps
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lugo, A.E.; Gonzalez-Liboy, J.A.; Cintron, B.; Dugger, K. Structure, productivity and transpiration of a subtropical dry forest in Puerto Rico. Biotropica 1978, 10, 278–291. [Google Scholar] [CrossRef]
- Sánchez-Azofeifa, G.A.; Kalacska, M.; do Espirito-Santo, M.M.; Fernandes, G.W.; Schnitzer, S. Tropical dry forest succession and the contribution of lianas to Wood Area Index (WAI). For. Ecol. Manag. 2009, 258, 941–948. [Google Scholar] [CrossRef]
- Sánchez-Azofeifa, G.A.; Quesada, M.; Rodriguez, J.P.; Nassar, J.; Stoner, K.E.; Castillo, A.; Garvin, T.; Zent, E.L.; Calvo-Alvarado, J.C.; Kalacska, M.E.R.; et al. Research priorities for neotropical dry forests. Biotropica 2005, 37, 477–485. [Google Scholar]
- Wright, S.J. Tropical forests in a changing environment. Trends Ecol. Evol. 2005, 20, 553–560. [Google Scholar] [CrossRef] [PubMed]
- Portillo-Quintero, C.A.; Sánchez-Azofeifa, G.A. Extent and conservation of tropical dry forests in the Americas. Biol. Conserv. 2010, 143, 144–155. [Google Scholar] [CrossRef]
- Arroyo-Mora, J.P.; Sanchez-Azofeifa, G.A.; Kalacska, M.E.R.; Rivard, B.; Calvo-Alvarado, J.C.; Janzen, D.H. Secondary forest detection in a Neotropical dry forest landscape using Landsat 7 ETM+ and IKONOS Imagery. Biotropica 2005, 37, 497–507. [Google Scholar] [CrossRef]
- Sanchez-Azofeifa, A.; Antonio Guzmán, J.; Campos, C.A.; Castro, S.; Garcia-Millan, V.; Nightingale, J.; Rankine, C. Twenty-first century remote sensing technologies are revolutionizing the study of tropical forests. Biotropica 2017, 49, 604–619. [Google Scholar] [CrossRef]
- Barnsley, M.J.; Settle, J.J.; Cutter, M.A.; Lobb, D.R.; Teston, F. The PROBA/CHRIS mission: A low-cost smallsat for hyperspectral multiangle observations of the earth surface and atmosphere. IEEE Trans. Geosci. Remote Sens. 2004, 42, 1512–1520. [Google Scholar] [CrossRef]
- Kneubühler, M.; Koetz, B.; Richter, R.; Schaepman, M.; Itten, K. Geometric and radiometric pre-Processing of CHRIS/PROBA data over mountainous terrain. In Proceedings of the Third CHRIS/PROBA Workshop, Frascati, Italy, 21–23 March 2005. [Google Scholar]
- Feeley, K.J.; Gillespie, T.W.; Terborgh, J.W. The utility of spectral indices from Landsat ETM+ for measuring the structure and composition of tropical dry forests. Biotropica 2005, 37, 508–519. [Google Scholar] [CrossRef]
- Braswell, B.H.; Hagen, S.C.; Frolking, S.E.; Salas, W.A. A multivariable approach for mapping sub-pixel land cover distributions using MISR and MODIS: Application in the Brazilian Amazon region. Remote Sens. Environ. 2003, 87, 243–256. [Google Scholar] [CrossRef]
- Diner, D.J.; Asner, G.P.; Davies, R.; Knyazikhin, Y.; Muller, J.P.; Nolin, A.W.; Pinty, B.; Schaaf, C.; Stroeve, J.C. New directions in earth observing: Scientific applications of multiangle remote sensing. Bull. Am. Meteorol. Soc. 1999, 80, 2209–2228. [Google Scholar] [CrossRef]
- García Millán, V.E.; Sánchez-Azofeifa, G.A.; Málvarez García, G.C.; Rivard, B. Quantifying tropical dry forest succession in the Americas using CHRIS/PROBA. Remote Sens. Environ. 2014, 144, 120–136. [Google Scholar] [CrossRef]
- Garcia Millan, V.E.; Sanchez-Azofeifa, G.A.; Malvarez, G. Mapping Tropical Dry Forest Succession with CHRIS/PROBA Hyperspectral Images Using Nonparametric Decision Trees. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 8, 3081–3094. [Google Scholar] [CrossRef]
- Stagakis, S.; Vanikiotis, T.; Sykioti, O. Estimating forest species abundance through linear unmixing of CHRIS/PROBA imagery. ISPRS J. Photogramm. Remote Sens. 2016, 119, 79–89. [Google Scholar] [CrossRef]
- Wang, Q.; Pang, Y.; Zengyuan, L.; Sun, G.; Chen, E.; Ni-Meister, W. The potential of forest biomass inversion based on vegetation indices using multi-angle CHRIS/PROBA data. Remote Sens. 2016, 8, 891. [Google Scholar] [CrossRef]
- Gu, Z.J.; Sanchez-Azofeifa, G.A.; Feng, J.; Cao, S. Predictability of leaf area index using vegetation indices from multiangular CHRIS/PROBA data over eastern China. J. Appl. Remote Sens. 2015, 9, 096085. [Google Scholar] [CrossRef] [Green Version]
- Rautiainen, M.; Lang, M.; Mõttus, M.; Kuusk, A.; Nilson, T.; Kuusk, J.; Lükk, T. Multi-angular reflectance properties of a hemiboreal forest: An analysis using CHRIS PROBA data. Remote Sens. Environ. 2008, 112, 2627–2642. [Google Scholar] [CrossRef]
- Liesenberg, V.; Boehm, H.-D.V.; Gloaguen, R. The contribution of CHRIS/PROBA data for tropical peat swamp landscape discrimination purposes. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Cape Town, South Africa, 12–17 July 2009. [Google Scholar]
- Koetz, B.; Kneubühler, M.; Widlowski, J.L.; Morsdorf, F.; Schaepman, M.; Itten, K. Assessment of canopy structure and heterogeneity from multiangular CHRIS-PROBA data. In Proceedings of the 9th International Symposium on Physical Measurements and Signatures in Remote Sensing (ISPMSRS), Beijing, China, 17–19 October 2005; pp. 73–78. [Google Scholar]
- Lucas, R.; Bunting, P.; Paterson, M.; Chisholm, L. Classification of Australian forest communities using aerial photography, CASI and HyMap data. Remote Sens. Environ. 2008, 112, 2088–2103. [Google Scholar] [CrossRef]
- Lucas, R.M.; Honzak, M.; Foody, G.M.; Curran, P.J.; Corves, C. Characterizing tropical secondary forests using multi-temporal Landsat sensor imagery. Int. J. Remote Sens. 1993, 14, 3061–3067. [Google Scholar] [CrossRef]
- Steininger, M.K. Tropical secondary forest regrowth in the Amazon: Age, area and change estimation with Thematic Mapper data. Int. J. Remote Sens. 1996, 17, 9–27. [Google Scholar] [CrossRef]
- Vieira, I.C.; de Almeida, A.S.; Davidson, E.A.; Stone, T.A.; de Carvalho, C.J.; Guerrero, J.B. Classifying successional forests using Landsat spectral properties and ecological characteristics in eastern Amazonia. Remote Sens. Environ. 2003, 87, 470–481. [Google Scholar] [CrossRef]
- Helmer, E.H.; Ruzycki, T.S.; Wunderle, J.M., Jr.; Vogesser, S.; Ruefenacht, B.; Kwit, C.; Brandeis, T.J.; Ewert, D.N. Mapping tropical dry forest height, foliage height profiles and disturbance type and age with a time series of cloud-cleared Landsat and ALI image mosaics to characterize avian habitat. Remote Sens. Environ. 2010, 114, 2457–2473. [Google Scholar] [CrossRef]
- Alves, R. Zonamento ambiental e os desafios da implementação do Parque Estadual Mata Seca, Municipio de Manga, Norte de Minas Gerais; Instituto de Geociencias da Universidade Federal de Minas Gerais: Belo Horizonte, Brazil, 2008. [Google Scholar]
- Madeira, B.G.; Espirito-Santo, M.M.; D’Angelo Neto, S.; Nunes, Y.R.F.; Sánchez Azofeifa, G.A.; Fernandes, G.W.; Quesada, M. Changes in tree and liana communities along successional gradient in a tropical dry forest in south-eastern Brazil. Plant Ecol. 2009, 201, 291–304. [Google Scholar] [CrossRef]
- Kalacska, M.; Bohlman, S.; Sanchez-Azofeifa, G.A.; Castro-Esau, K.; Caelli, T. Hyperspectral discrimination of tropical dry forest lianas and trees: Comparative data reduction approaches at the leaf and canopy levels. Remote Sens. Environ. 2007, 109, 406–415. [Google Scholar] [CrossRef] [Green Version]
- Kalacska, M.E.R.; Sanchez-Azofeifa, G.A.; Calvo-Alarado, J.C.; Quesada, M.; Rivard, B.; Janzen, D.H. Species composition, similarity and diversity in three successional stages of a seasonally dry tropical forest. For. Ecol. Manag. 2004, 200, 227–247. [Google Scholar] [CrossRef]
- Murcia, C. Edge effects in fragmented forests: Implications for conservation. Trends Ecol. Evol. 1995, 10, 58–62. [Google Scholar] [CrossRef]
- Cutter, M.; Sweeting, M.A. Hyperspectral imaging mission for small satellites—Five years orbit experience. Proc. IEEE 2007, 1–2, 355–360. [Google Scholar]
- Fomferra, N.; Peters, M.; Quast, R.; Zuhlke, M.; Danne, O.; Storm, T.; Brockmann, C.; Regner, P. ESA’s Toolboxes for Optical Earth Observation Data: BEAM, CHRIS-Box and the Glob-Toolbox. In Proceedings of the ESA Living Planet Symposium, Bergen, Norway, 28 June–2 July 2010; Volume 686. [Google Scholar]
- Gómez-Chova, L.; Alonso, L.; Guanter, L.; Camps-Valls, G.; Calpe, J.; Moreno, J. Correction of systematic spatial noise in push-broom hyperspectral sensors: Application to CHRIS/PROBA images. Appl. Opt. 2008, 47, 46–60. [Google Scholar] [CrossRef]
- Guanter, L.; Alonso, L.; Moreno, J. A method for the surface reflectance retrieval from PROBA/CHRIS data over land: Application to ESA SPARC campaigns. IEEE Trans. Geosci. Remote Sens. 2005, 43, 2908–2917. [Google Scholar] [CrossRef]
- Schaepman-Strub, G.; Schaepman, M.E.; Painter, T.H.; Dangel, S.; Martonchik, J.V. Reflectance quantities in optical remote sensing—Definitions and case studies. Remote Sens. Environ. 2006, 103, 27–42. [Google Scholar] [CrossRef]
- Kruse, F.A.; Lefkoff, A.B.; Boardman, J.B.; Heidebrecht, K.B.; Shapiro, A.T.; Barloon, P.J.; Goetz, A.F.H. The Spectral Image Processing System (SIPS)—Interactive Visualization and Analysis of Imaging spectrometer Data. Remote Sens. Environ. 1993, 44, 145–163. [Google Scholar] [CrossRef]
- Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef] [Green Version]
- Quinlan, J.R. Decision Trees and Instance-Based Classifiers. In CRC Handbook of Computer Science and Engineering; Tucker, A.B., Ed.; CRC Press: Boca Raton, FL, USA, 1996. [Google Scholar]
- Chopping, M.; Moisen, G.G.; Su, L.; Laliberte, A.; Rango, A.; Martochnick, J.V.; Peters, D.P.C. Large area mapping of southwestern forest crown cover, canopy height and biomass using the NASA Multiangle Imaging SpectroRadiometer. Remote Sens. Environ. 2008, 112, 2051–2063. [Google Scholar] [CrossRef]
- Galvão, L.S.; Ponzoni, F.J.; Liesenberg, V.; dos Santos, J.R. Possibilities of discriminating tropical secondary succession in Amazônia using hyperspectral and multiangular CHRIS/PROBA data. Int. J. Appl. Earth Obs. Geoinf. 2009, 11, 8–14. [Google Scholar] [CrossRef]
- Laurin, G.V.; Puletti, N.; Hawthorne, W.; Liesenberg, V.; Corona, P.; Papale, D.; Chen, Q.; Valentini, R. Discrimination of tropical forest types, dominant species, and mapping of functional guilds by hyperspectral and simulated multispectral Sentinel-2 data. Remote Sens. Environ. 2016, 176, 163–176. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Cao, S.; Campos-Vargas, C.; Sanchez-Azofeifa, G.A. Identifying tropical dry forests extent and succession via the use of machine learning techniques. Int. J. Appl. Earth Obs. Geoinf. 2017, 63, 196–205. [Google Scholar] [CrossRef]
- Martinuzzi, S.; Gould, W.A.; Vierling, L.A.; Hudak, A.T.; Nelson, R.F. Quantifying Tropical Dry Forest Type and Succession: Substantial Improvement with LiDAR. Biotropica 2013, 45, 135–146. [Google Scholar] [CrossRef]
- Tucker, J.M.; Brondizio, E.S.; Moran, E.F. Rates of forest regrowth in Eastern Amazonia: A comparison of Altamira and Bragantina regions, Para State, Brazil. Interciencia 1998, 23, 64–73. [Google Scholar]
- Skole, D.; Tucker, C. Tropical deforestation and habitat fragmentation in the Amazon: Satellite data from 1978 to 1988. Science 1993, 260, 1905–1909. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Moran, E.F.; Brondizio, E.S.; Mausel, P.; Wu, Y. Discrimination between advanced secondary succession and mature moist forest near Altamira, Brazil using Landsat TM data. In Proceedings of the American Society for Photogrammetry and Remote Sensing Annual Meeting, Reno, NV, USA, November 1994; Available online: https://www.researchgate.net/profile/Eduardo_Brondizio/publication/267698102_Discrimination_Between_Advanced_Secondary_Succession_and_Mature_Moist_Forest_Near_Altamira_Brazil_Using_Landsat_T_M_Data/links/54a16c330cf257a636036d67.pdf (accessed on 3 October 2018).
- Brondizio, E.S.; Moran, E.F.; Mausel, P.; Wu, Y. Land cover in the Amazon estuary: Linking of the Thematic Mapper with botanical and historical data. Photogramm. Eng. Remote Sens. 1996, 62, 921–929. [Google Scholar]
- Mausel, P.; Wu, Y.; Li, Y.; Moran, E.F.; Brondizio, E.S. Spectral identification of succession stages following deforestation in the Amazon. Geocarto Int. 1993, 8, 61–72. [Google Scholar] [CrossRef]
- Cao, S.; Sanchez-Azofeifa, G.A. Modeling seasonal surface temperature variations in secondary tropical dry forests. Int. J. Appl. Earth Obs. Geoinf. 2017, 62, 122–134. [Google Scholar] [CrossRef]
- Castillo-Nunez, M.; Sánchez-Azofeifa, G.A.; Croitoru, A.; Rivard, B.; Calvo-Alvarado, J.; Dubayah, R.O. Delineation of secondary succession mechanisms for tropical dry forests using LiDAR. Remote Sens. Environ. 2011, 115, 2217–2231. [Google Scholar] [CrossRef]
- Zhang, C.; Qiu, F. Mapping individual tree species in an urban forest using airborne LiDAR data and hyperspectral imagery. Photogramm. Eng. Remote Sens. 2012, 78, 1079–1087. [Google Scholar] [CrossRef]
- Anderson, J.E.; Plourde, L.C.; Martin, M.E.; Braswell, B.H.; Smith, M.-L.; Dubayah, R.O.; Hofton, M.A.; Blair, J.B. Integrating waveform LiDAR with hyperspectral imagery for inventory of a northern temperate forest. Remote Sens. Environ. 2008, 112, 1856–1870. [Google Scholar] [CrossRef]
- Jones, T.G.; Coops, N.C.; Sharma, T. Assessing the utility of airborne hyperspectral and LiDAR data for species distribution mapping in the coastal Pacific Northwest, Canada. Remote Sens. Environ. 2010, 114, 2841–2852. [Google Scholar] [CrossRef]
- Clark, M.L.; Roberts, D.A.; Ewel, J.J.; Clark, D.B. Estimation of tropical rain forest aboveground biomass with small-footprint LiDAR and hyperspectral sensors. Remote Sens. Environ. 2011, 115, 2931–2942. [Google Scholar] [CrossRef]
- Cook, B.D.; Corp, L.A.; Nelson, R.F.; Middleton, E.M.; Morton, D.C.; McCorkel, J.T.; Masek, J.G.; Ranson, K.J.; Ly, V.; Montesano, P.M. NASA Goddard’s LiDAR, hyperspectral and thermal (G-LiHT) airborne imager. Remote Sens. 2013, 5, 4045–4066. [Google Scholar] [CrossRef]
- Koch, B. Status and future of laser scanning, synthetic aperture radar and hyperspectral remote sensing data for forest biomass assessment. ISPRS J. Photogramm. Remote Sens. 2010, 65, 581–590. [Google Scholar] [CrossRef]
- Canadell, J.G.; Le Quere, C.; Raupach, M.R.; Field, C.B.; Buitenhuis, E.T.; Ciais, P.; Gillett, N.P.; Houghton, R.A.; Marland, G. Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks. Proc. Natl. Acad. Sci. USA 2007, 104, 18866–18870. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Achard, F.; Eva, H.D.; Stibig, H.J.; Mayaux, P.; Gallego, J.; Richards, T.; Malingreau, J.P. Determination of deforestation rates of the world’s humid tropical forests. Science 2002, 297, 999–1002. [Google Scholar] [CrossRef] [PubMed]
- Eaton, J.M.; Lawrence, D. Loss of carbon sequestration potential after several decades of shifting cultivation in the Southern Yucatan. For. Ecol. Manag. 2009, 258, 949–958. [Google Scholar] [CrossRef]
Successional Stage | Early | Intermediate | Late |
---|---|---|---|
#Families (0.1 ha) | 4.3 ± 2.1 | 12.0 ± 0.9 | 12.3 ± 2.7 |
# Species (0.1 ha) | 8.0 ± 1.3 | 20.2 ± 2.1 | 19.6 ± 1.7 |
Dominant family | Caesalpiniaceae (59.1%) | Bignoniaceae (34.1%) | Bignoniaceae (34.0%) |
Dominant species | Senna spectabilis | Tabebuia roseo–alba | Tabebuia ochracea |
(40.5%) | (20.5%) | (24.3%) | |
#Stems (0.1 ha) | 49.3 ± 21.0 | 109.0 ± 11.6 | 115.3 ± 15.8 |
Averaged height (m) | 3.4 ± 0.3 | 8.0 ± 2.0 | 11.8 ± 1.7 |
Basal area (m2/ha) | 0.006 ± 0.001 | 0.009 ± 0.001 | 0.012 ± 0.003 |
HCI | 0.008 ± 0.003 | 0.15 ± 0.04 | 0.33 ± 0.1 |
#bands | 18 |
---|---|
Pixel size | 17 m |
Swath | 13 km |
Spectral range | 491–797 nm |
Bandwidth | 5.8–14.9 nm |
Nominal angles | 0°/±36°/±55° |
Acquisition Date | 24 February 2008 | 18 December 2014 |
---|---|---|
Season | Wet | Wet |
Acquisition time | 12:56 | 15:02 |
Solar azimuth angle | 84.4° | 249.6° |
Solar zenith angle | 33.0° | 72.5° |
Sensor azimuth angle | 179.1° | 4.8° |
Sensor zenith angle Viewing Azimuth Angle Viewing Zenith Angle | −55.8° 115° 22° | −52.5° 95° 18° |
Legend | Land Cover Class in 2008 | Land Cover Class in 2014 |
---|---|---|
Late stage | Late stage (no change) | |
Late stage | Intermediate stage | |
Late stage | Early stage | |
Late stage | Other classes (not TDF) | |
Intermediate stage | Intermediate stage (no change) | |
Intermediate stage | Late stage | |
Intermediate stage | Early stage | |
Intermediate stage | Other classes (not TDF) | |
Early stage | Early stage (no change) | |
Early stage | Late stage | |
Early stage | Intermediate stage | |
Early stage | Other classes (not TDF) | |
Other classes (not TDF) | Other classes (no change) | |
Other classes (not TDF) | Late stage | |
Other classes (not TDF) | Intermediate stage | |
Other classes (not TDF) | Early stage |
Classification Method | Year | Class | n | Producers’ Accuracy | Users’ Accuracy | Map Accuracy | Kappa Accuracy |
---|---|---|---|---|---|---|---|
SVM | 2008 | L I E O | 224 346 272 337 | 98.2 53.2 7.4 100.0 | 52.6 55.3 100.0 82.6 | 64.5% | 0.52 |
2014 | L I E O | 557 277 239 298 | 94.6 41.9 97.5 76.5 | 78.0 76.3 74.0 100.0 | 80.5% | 0.72 | |
SAM | 2008 | L I E O | 226 345 329 596 | 76.1 87.3 53.2 49.8 | 78.9 79.2 93.1 83.7 | 63.2% | 0.53 |
2014 | L I E O | 557 280 264 595 | 82.4 79.3 72.4 49.8 | 89.8 64.4 99.5 91.4 | 68.9% | 0.60 | |
Decision Tree | 2008 | L I E O | 224 346 272 299 | 92.0 26.9 37.9 100.0 | 45.2 40.6 91.2 87.2 | 61.4% | 0.49 |
2014 | L I E O | 590 203 266 312 | 87.3 46.9 81.2 90.3 | 82.4 64.0 72.9 86.2 | 78.7% | 0.700 |
SVM | SAM | Decision Tree | |||||||
---|---|---|---|---|---|---|---|---|---|
Class Name | #Pixels | % | Ha | #Pixels | % | Ha | #Pixels | % | Ha |
Late—No changes | 90,822 | 26.9 | 3632.9 | 26,464 | 7.8 | 1058.6 | 81,174 | 24.1 | 3247.0 |
Late to Intermediate | 20,453 | 6.1 | 818.1 | 14,109 | 4.2 | 564.4 | 21,459 | 6.4 | 858.4 |
Late to Early | 10,366 | 3.1 | 414.6 | 78 | 0.0 | 3.1 | 2056 | 0.6 | 82.2 |
Late to Other classes | 1738 | 0.5 | 69.5 | 790 | 0.2 | 31.6 | 2837 | 0.8 | 113.5 |
Intermediate—No change | 15,267 | 4.5 | 610.7 | 54,559 | 16.2 | 2182.4 | 10,062 | 3.0 | 402.5 |
Intermediate to Late | 66,363 | 19.7 | 2654.5 | 49,014 | 14.5 | 1960.6 | 45,749 | 13.6 | 1830.0 |
Intermediate to Early | 11,740 | 3.5 | 469.6 | 2459 | 0.7 | 98.4 | 4290 | 1.3 | 171.6 |
Intermediate to Other classes | 4051 | 1.2 | 162.0 | 15,467 | 4.6 | 618.7 | 9523 | 2.8 | 380.9 |
Early—No change | 3986 | 1.2 | 159.4 | 0 | 0.0 | 0.0 | 3649 | 1.1 | 146.0 |
Early to Late | 3679 | 1.1 | 147.2 | 19,500 | 5.8 | 780.0 | 25,007 | 7.4 | 1000.3 |
Early to Intermediate | 3000 | 0.9 | 120.0 | 30,689 | 9.1 | 1227.6 | 10,012 | 3.0 | 400.5 |
Early to Other | 1284 | 0.4 | 51.4 | 14,384 | 4.3 | 575.4 | 6921 | 2.1 | 276.8 |
Other classes—No change | 46,467 | 13.8 | 1858.7 | 70,153 | 20.8 | 2806.1 | 73,063 | 21.6 | 2922.5 |
Other classes to Late | 26,349 | 7.8 | 1054.0 | 5959 | 1.8 | 238.4 | 21,049 | 6.2 | 842.0 |
Other classes to Intermediate | 6285 | 1.9 | 251.4 | 22,428 | 6.6 | 897.1 | 7249 | 2.1 | 290.0 |
Other classes to Early | 25,639 | 7.6 | 1025.6 | 11,436 | 3.4 | 457.4 | 13,389 | 4.0 | 535.6 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garcia Millan, V.; Sanchez-Azofeifa, A. Quantifying Changes on Forest Succession in a Dry Tropical Forest Using Angular-Hyperspectral Remote Sensing. Remote Sens. 2018, 10, 1865. https://doi.org/10.3390/rs10121865
Garcia Millan V, Sanchez-Azofeifa A. Quantifying Changes on Forest Succession in a Dry Tropical Forest Using Angular-Hyperspectral Remote Sensing. Remote Sensing. 2018; 10(12):1865. https://doi.org/10.3390/rs10121865
Chicago/Turabian StyleGarcia Millan, Virginia, and Arturo Sanchez-Azofeifa. 2018. "Quantifying Changes on Forest Succession in a Dry Tropical Forest Using Angular-Hyperspectral Remote Sensing" Remote Sensing 10, no. 12: 1865. https://doi.org/10.3390/rs10121865