Sentinel-1 and Ground-Based Sensors for Continuous Monitoring of the Corvara Landslide (South Tyrol, Italy)
"> Figure 1
<p>Landslide monitoring network location and field impressions: (<b>A</b>) Landslide monitoring network; (<b>B</b>) monthly measurement station consisting of an X-band corner reflector and a support for the DGNSS antenna; (<b>C</b>) permanent DGNSS station, solar panel for power supply, and X-band corner reflector. DGNSS: differential global navigation satellite system.</p> "> Figure 2
<p>Workflow of the Small BAseline Subsets (SBAS) processing for the slope displacement analysis. Atm. and IFG refer to atmospheric and interferograms, respectively. UTM: Universal Transverse Mercator.</p> "> Figure 3
<p>S1 SAR acquisition connections. (<b>A</b>) Perpendicular baselines (indicating a maximal spatial baseline of 174 m) between different image acquisitions according to their relative position (570 interferograms; yellow and green points indicate the master and slaves, respectively); (<b>B</b>) Delaunay connections for 3D phase unwrapping; (<b>C</b>) final connection graph after discarding pairs with a mean coherence less than 0.2 (the gray dashed lines present the snow time span, the black lines between acquisitions show the remaining connections, and the red dots indicate the discarded data); and (<b>D</b>) min/max (orange/red colors), mean-Std/mean+Std (green colors), and mean (blue color) coherence (within the landslide boundary) of the remaining pairs (i.e., 60 interferograms) after the graph editing.</p> "> Figure 4
<p>The effect of seasonal, temporal baseline, and surface scatterers’ decorrelation on phase (<b>left</b>) and coherence (<b>right</b>). (<b>A</b>) Coherent interferogram showing the effect of the short baseline (i.e., 6 days) on the phase and (<b>B</b>) coherence related to the pair of 19–25 Oct 2016. (<b>C</b>) Phase values affected by decorrelation caused by vegetation and (<b>D</b>) coherence related to the pair of 6 June–3 July 2015. (<b>E</b>) Phase values affected by decorrelation caused by snow and (<b>F</b>) coherence related to the pair of 2–28 February 2016. The white polygon shows the boundary of the Corvara landslide. All images are presented in the SAR geometry.</p> "> Figure 5
<p>Coherence and displacement maps before the geocoding step. (<b>A</b>) Coherence map (threshold of 0.2). (<b>B</b>) Coherence map (threshold of 0.35). The positions of 8 DGNSS stations and 30 reference points selected for the refinement step (ramp and phase constant removal) are presented on the coherence map. (<b>C</b>) Cumulative line of sight (LOS) displacement map and (<b>D</b>) mean LOS velocity map (both created with the coherence threshold of 0.2 and 2D unwrapping method). The locations of 8 DGNSS stations and 30 reference points are presented on the displacement map. The images are presented in the SAR geometry.</p> "> Figure 6
<p>Comparison of interpolated SBAS LOS velocity maps (<b>A</b>) with an unwrapping coherence threshold (CC) of 0.35 and 2D PhU, (<b>B</b>) with CC of 0.35 and 3D PhU, (<b>C</b>) with CC of 0.2 and 2D PhU, and (<b>D</b>) with CC of 0.2 and 3D PhU. The spatial interpolation applied to the results of the DInSAR processing chain is meant to spatially preserve the results’ continuity, avoiding discontinuities between pixels of low coherence. The figures show the terrain-corrected results in the UTM reference system.</p> "> Figure 7
<p>Cross-section comparison of DInSAR results and landslide movement rates. CC represents the coherence thresholds and PhU the phase unwrapping process. The topography profile a–b is divided into (1) an accumulation area, (2) a first transition, (3) a transit area, (4) a second transition, and (5) a source area. Since the movement direction of the right side of the landslide, corresponding to the “b” profile, is not aligned to LOS (based on the DGNSS measurements of <a href="#remotesensing-10-01781-f008" class="html-fig">Figure 8</a>), the SBAS velocity for this part of the landslide was projected to the “b” profile alignment to avoid underestimating the velocity. The green and purple lines overlapped each other at the left part and then separated at the distance of 1500 m.</p> "> Figure 8
<p>Vector direction and velocity rate of DGNSS benchmarks for 2015 and 2016.</p> "> Figure 9
<p>Cumulative monthly 3D displacement measured at permanent DGNSS stations (lines) compared with measured mean precipitation (bars).</p> "> Figure 10
<p>3D displacement velocities between September 2013 and December 2016 at selected DGNSS stations.</p> "> Figure 11
<p>Comparison of SBAS and DGNSS time series results. LOS cumulative displacement of the stations 4 and 57 is with a coherence threshold of 0.35. The DGNSS-fitted line (DGNSSL) is indicated in the figure, and the data-free area (i.e., from December 2015 to April 2016) indicates the snow period. SBAS-2D and -3D present the phase unwrapping method applied to the SBAS processing.</p> "> Figure 11 Cont.
<p>Comparison of SBAS and DGNSS time series results. LOS cumulative displacement of the stations 4 and 57 is with a coherence threshold of 0.35. The DGNSS-fitted line (DGNSSL) is indicated in the figure, and the data-free area (i.e., from December 2015 to April 2016) indicates the snow period. SBAS-2D and -3D present the phase unwrapping method applied to the SBAS processing.</p> "> Figure 12
<p>LOS DGNSS and SBAS results comparison. (<b>A</b>) Cumulative LOS displacement of the SBAS results versus the DGNSS measurement presented for each DGNSS benchmark. (B) Validation of the SBAS velocity as a function of the chosen coherence threshold and PhU techniques. The error bars indicate the standard error for each displacement measurement with their related parameters.</p> ">
Abstract
:1. Introduction
2. Material
2.1. Study Site
2.2. Data
3. Methods
4. Results
4.1. Sentinel-1 DInSAR Analysis
4.2. DGNSS Monitoring Results
4.3. DInSAR and DGNSS Results Comparison
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Petley, D. Global patterns of loss of life from landslides. Geology 2012, 40, 927–930. [Google Scholar] [CrossRef]
- Guzzetti, F. Landslide Hazard and Risk Assessment. Ph.D. Thesis, University of Bonn, Bonn, Germany, 2006. [Google Scholar]
- Guzzetti, F.; Mondini, A.C.; Cardinali, M.; Fiorucci, F.; Santangelo, M.; Chang, K.-T. Landslide inventory maps: {New} tools for an old problem. Earth-Sci. Rev. 2012, 112, 42–66. [Google Scholar] [CrossRef]
- Van Westen, C.J.; van Asch, T.W.J.; Soeters, R. Landslide hazard and risk zonation—Why is it still so difficult? Bull. Eng. Geol. Environ. 2006, 65, 167–184. [Google Scholar] [CrossRef]
- De Novellis, V.; Castaldo, R.; Lollino, P.; Manunta, M.; Tizzani, P. Advanced three-dimensional finite element modeling of a slow landslide through the exploitation of DInSAR measurements and in situ surveys. Remote Sens. 2016, 8. [Google Scholar] [CrossRef]
- Calò, F.; Ardizzone, F.; Castaldo, R.; Lollino, P.; Tizzani, P.; Guzzetti, F.; Lanari, R.; Angeli, M.G.; Pontoni, F.; Manunta, M. Enhanced landslide investigations through advanced DInSAR techniques: The Ivancich case study, Assisi, Italy. Remote Sens. Environ. 2014, 142, 69–82. [Google Scholar] [CrossRef]
- Tolomei, C.; Taramelli, A.; Moro, M.; Saroli, M.; Aringoli, D.; Salvi, S. Analysis of the deep-seated gravitational slope deformations over Mt. Frascare (Central Italy) with geomorphological assessment and DInSAR approaches. Geomorphology 2013, 201, 281–292. [Google Scholar] [CrossRef]
- Rodríguez, C.E.; Bommer, J.J.; Chandler, R.J. Earthquake-induced landslides: 1980–1997. Soil Dyn. Earthq. Eng. 1999, 18, 325–346. [Google Scholar] [CrossRef]
- Torres, R.; Snoeij, P.; Geudtner, D.; Bibby, D.; Davidson, M.; Attema, E.; Potin, P.; Rommen, B.; Floury, N.; Brown, M.; et al. GMES Sentinel-1 mission. Remote Sens. Environ. 2012, 120, 9–24. [Google Scholar] [CrossRef]
- Rucci, A.; Ferretti, A.; Monti-Guarnieri, A.; Rocca, F. Sentinel 1 SAR interferometry applications: The outlook for sub millimeter measurements. Remote Sens. Environ. 2012, 120, 156–163. [Google Scholar] [CrossRef]
- Dai, K.; Li, Z.; Tomás, R.; Liu, G.; Yu, B.; Wang, X.; Cheng, H.; Chen, J.; Stockamp, J. Monitoring activity at the Daguangbao mega-landslide (China) using Sentinel-1 TOPS time series interferometry. Remote Sens. Environ. 2016, 186, 501–513. [Google Scholar] [CrossRef]
- De Luca, C.; Bonano, M.; Casu, F.; Fusco, A.; Lanari, R.; Manunta, M.; Manzo, M.; Pepe, A.; Zinno, I. Automatic and systematic Sentinel-1 SBAS-DInSAR processing chain for deformation time-series generation. Procedia Comput. Sci. 2016, 100, 1176–1180. [Google Scholar] [CrossRef]
- Manunta, M.; Bonano, M.; Buonanno, S.; Casu, F.; De Luca, C.; Fusco, A.; Lanari, R.; Manzo, M.; Ojha, C.; Pepe, A.; et al. Unsupervised parallel SBAS-DInSAR chain for massive and systematic Sentinel-1 data processing. Int. Geosci. Remote Sens. Symp. 2016, 2016, 3890–3893. [Google Scholar] [CrossRef]
- Tomás, R.; Romero, R.; Mulas, J.; Marturià, J.J.; Mallorquí, J.J.; Lopez-Sanchez, J.M.; Herrera, G.; Gutiérrez, F.; González, P.J.; Fernández, J.; et al. Radar interferometry techniques for the study of ground subsidence phenomena: A review of practical issues through cases in Spain. Environ. Earth Sci. 2014, 71. [Google Scholar] [CrossRef] [Green Version]
- Ferretti, A.; Prati, C.; Rocca, F. Permanent scatterers in SAR interferometry. IEEE Trans. Geosci. Remote Sens. 2001, 39, 8–20. [Google Scholar] [CrossRef] [Green Version]
- Berardino, P.; Fornaro, G.; Lanari, R.; Sansosti, E. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2375–2383. [Google Scholar] [CrossRef]
- Prati, C.; Ferretti, A.; Perissin, D. Recent advances on surface ground deformation measurement by means of repeated space-borne SAR observations. J. Geodyn. 2010, 49, 161–170. [Google Scholar] [CrossRef] [Green Version]
- Hooper, A. A multi-temporal InSAR method incorporating both persistent scatterer and small baseline approaches. Geophys. Res. Lett. 2008, 35, L16302. [Google Scholar] [CrossRef]
- Wasowski, J.; Bovenga, F. Investigating landslides and unstable slopes with satellite Multi Temporal Interferometry: Current issues and future perspectives. Eng. Geol. 2014, 174, 103–138. [Google Scholar] [CrossRef]
- Colesanti, C.; Wasowski, J. Investigating landslides with space-borne Synthetic Aperture Radar (SAR) interferometry. Eng. Geol. 2006, 88, 173–199. [Google Scholar] [CrossRef]
- Pepe, A.; Euillades, L.D.; Manunta, M.; Lanari, R. New advances of the extended minimum cost flow phase unwrapping algorithm for SBAS-DInSAR analysis at full spatial resolution. IEEE Trans. Geosci. Remote Sens. 2011, 49, 4062–4079. [Google Scholar] [CrossRef]
- Goldstein, R.M.; Zebker, H.A.; Werner, C.L. Satellite radar interferometry: Two-dimensional phase unwrapping. Radio Sci. 1988, 23, 713–720. [Google Scholar] [CrossRef]
- Chen, C.W.; Zebker, H.A. Two-dimensional phase unwrapping with use of statistical models for cost functions in nonlinear optimization. J. Opt. Soc. Am. A 2001, 18, 338–351. [Google Scholar] [CrossRef]
- Ghiglia, D.C.; Romero, L.A. Direct phase estimation from phase differences using fast elliptic partial differential equation solvers. Opt. Lett. 1989, 14, 1107–1109. [Google Scholar] [CrossRef] [PubMed]
- Zebker, H.A.; Villasenor, J. Decorrelation in interferometric radar echoes. IEEE Trans. Geosci. Remote Sens. 1992, 30, 950–959. [Google Scholar] [CrossRef] [Green Version]
- Zebker, H.; Rosen, P.; Hensley, S. Atmospheric effects in interferometric synthetic aperture radar surface deformation and topographic maps. J. Geophys. 1997, 102, 7547–7563. [Google Scholar] [CrossRef] [Green Version]
- González, P.J.; Fernandez, J.; Camacho, A.G. Coseismic three-dimensional displacements determined using SAR data: Theory and an application test. Pure Appl. Geophys. 2009, 166, 1403–1424. [Google Scholar] [CrossRef]
- Guglielmino, F.; Nunnari, G.; Puglisi, G.; Spata, A. Simultaneous and integrated strain tensor estimation from geodetic and satellite deformation measurements to obtain three-dimensional displacement maps. IEEE Trans. Geosci. Remote Sens. 2011, 49, 1815–1826. [Google Scholar] [CrossRef]
- Samsonov, S.; Tiampo, K. Analytical optimization of a DInSAR and GPS dataset for derivation of three-dimensional surface motion. IEEE Geosci. Remote Sens. Lett. 2006, 3, 107–111. [Google Scholar] [CrossRef]
- Samsonov, S.; Tiampo, K.; Rundle, J.; Li, Z.H. Application of DInSAR-GPS optimization for derivation of fine-scale surface motion maps of southern California. IEEE Trans. Geosci. Remote Sens. 2007, 45, 512–521. [Google Scholar] [CrossRef]
- David, F.W. A Guide to the Analysis and Display of Spatial Data 1992; Pergamon: Oxford, UK, 1992. [Google Scholar]
- Cressie, N. Statistics for Spatial Data; John Wiley & Sons: Hoboken, NJ, USA, 2015. [Google Scholar]
- Moritz, H. Advanced Physical Geodesy; Wichmann: Karlsruhe, Germany, 1980. [Google Scholar]
- Komac, M.; Holley, R.; Mahapatra, P.; van der Marel, H.; Bavec, M. Coupling of GPS/GNSS and radar interferometric data for a 3D surface displacement monitoring of landslides. Landslides 2015, 12, 241–257. [Google Scholar] [CrossRef]
- Lollino, G.; Giordan, D.; Thuro, K.; Carranza-Torres, C.; Wu, F.; Marinos, P.; Delgado, C. Engineering Geology for Society and Territory—Volume 6: Applied Geology for Major Engineering Projects; Springer: Berlin, Germany, 2015; ISBN 9783319090603. [Google Scholar]
- Xu, C.; Wang, H.; Ge, L.; Yonezawa, C.; Cheng, P. InSAR tropospheric delay mitigation by GPS observations: A case study in Tokyo area. J. Atmos. Sol. Terr. Phys. 2006, 68, 629–638. [Google Scholar] [CrossRef]
- Schlögel, R.; Thiebes, B.; Mulas, M.; Cuozzo, G.; Notarnicola, C.; Schneiderbauer, S.; Crespi, M.; Mazzoni, A.; Mair, V.; Corsini, A. Multi-temporal X-Band radar interferometry using corner reflectors: Application and validation at the Corvara Landslide (Dolomites, Italy). Remote Sens. 2017, 9, 739. [Google Scholar] [CrossRef]
- Soldati, M.; Corsini, A.; Pasuto, A. Landslides and climate change in the Italian Dolomites since the Late glacial. CATENA 2004, 55, 141–161. [Google Scholar] [CrossRef]
- Corsini, A.; Marchetti, M.; Soldati, M. Holocene slope dynamics in the area of Corvara in Badia (Dolomites, Italy): Chronology and paleoclimatic significance of some landslides. Geogr. Fis. Din. Quat. 2001, 24, 127–139. [Google Scholar]
- Borgatti, L.; Ravazzi, C.; Donegana, M.; Corsini, A.; Marchetti, M.; Soldati, M. A lacustrine record of early Holocene watershed events and vegetation history, Corvara in Badia, Dolomites (Italy). J. Quat. Sci. 2007, 22, 173–189. [Google Scholar] [CrossRef]
- Corsini, A.; Pasuto, A.; Soldati, M.; Zannoni, A. Field monitoring of the Corvara landslide (Dolomites, Italy) and its relevance for hazard assessment. Geomorphology 2005, 66, 149–165. [Google Scholar] [CrossRef]
- Cruden, D.M.; Varnes, D.J.; Turner, A.K.; Schuster, R.L. Landslides Investigation and Mitigation, Special Report 247; Transportation Research Board: Washington, DC, USA, 1996. [Google Scholar]
- Mulas, M.; Petitta, M.; Corsini, A.; Schneiderbauer, S.; Mair, F.V.; Iasio, C. Long-term monitoring of a deep-seated, slow-moving landslide by mean of C-Band and X-Band advanced interferometric products: The Corvara in Badia case study (Dolomites, Italy). Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 2015, XL-7/W3, 827–829. [Google Scholar] [CrossRef] [Green Version]
- Darvishi, M.; Schlögel, R.; Bruzzone, L.; Cuozzo, G. Integration of PSI, MAI, and intensity-based sub-pixel offset tracking results for landslide monitoring with X-band corner reflectors-Italian Alps (Corvara). Remote Sens. 2018, 10. [Google Scholar] [CrossRef]
- SARMAP. SARScape: Technical Description; SARMAP: Purasca, Switzerland, 2012. [Google Scholar]
- Costantini, M. A novel phase unwrapping method based on network programming. IEEE Trans. Geosci. Remote Sens. 1998, 36, 813–821. [Google Scholar] [CrossRef]
- Pepe, A.; Lanari, R. On the extension of the minimum cost flow algorithm for phase unwrapping of multitemporal differential SAR interferograms. IEEE Trans. Geosci. Remote Sens. 2006, 44, 2374–2383. [Google Scholar] [CrossRef]
- Hanssen, R.F. Radar Interferometry: Data Interpretation and Error Analysis; Springer Science & Business Media: Berlin, Germany, 2001. [Google Scholar]
- Hooper, A.; Zebker, H.A. Phase unwrapping in three dimensions with application to InSAR time series. J. Opt. Soc. Am. 2007, 24, 2737–2747. [Google Scholar] [CrossRef]
Product Type | Mode | Pass | Pol. | Inc/Az Angle | Rtime | Rg × Az Spacing | W.L |
---|---|---|---|---|---|---|---|
S1-A/B | IW | Descending | VV | 42°/−165° | 12/6 day | 3.8 m × 13.8 m | 5.6 cm |
CR No. | DGNSS | DSBAS (0.35; 3D) | DSBAS (0.2; 3D) | DSBAS (0.2; 2D) | DSBAS (0.35; 2D) |
---|---|---|---|---|---|
4M | −116.1 | −71.24 | −98.25 | −55.52 | −89.88 |
6H | −108.3 | −52.87 | −94.09 | −32.79 | −98.18 |
11H | −211.5 | −57.92 | −120.14 | −29.3 | −103.75 |
23 | −213.4 | −74.49 | −49.08 | −54.44 | −143.7 |
25 | −210.3 | −107.44 | −83.58 | −72.22 | −124.35 |
49H | −146.2 | −110.57 | −68.13 | −70.65 | −142.5 |
57M | −105.9 | −38.04 | −80.71 | −92.02 | −112.74 |
58H | −27.1 | −5.45 | 30.5 | 22.28 | −49.17 |
RMSE | 7.9 | 7.8 | 9.0 | 6.1 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Darvishi, M.; Schlögel, R.; Kofler, C.; Cuozzo, G.; Rutzinger, M.; Zieher, T.; Toschi, I.; Remondino, F.; Mejia-Aguilar, A.; Thiebes, B.; et al. Sentinel-1 and Ground-Based Sensors for Continuous Monitoring of the Corvara Landslide (South Tyrol, Italy). Remote Sens. 2018, 10, 1781. https://doi.org/10.3390/rs10111781
Darvishi M, Schlögel R, Kofler C, Cuozzo G, Rutzinger M, Zieher T, Toschi I, Remondino F, Mejia-Aguilar A, Thiebes B, et al. Sentinel-1 and Ground-Based Sensors for Continuous Monitoring of the Corvara Landslide (South Tyrol, Italy). Remote Sensing. 2018; 10(11):1781. https://doi.org/10.3390/rs10111781
Chicago/Turabian StyleDarvishi, Mehdi, Romy Schlögel, Christian Kofler, Giovanni Cuozzo, Martin Rutzinger, Thomas Zieher, Isabella Toschi, Fabio Remondino, Abraham Mejia-Aguilar, Benni Thiebes, and et al. 2018. "Sentinel-1 and Ground-Based Sensors for Continuous Monitoring of the Corvara Landslide (South Tyrol, Italy)" Remote Sensing 10, no. 11: 1781. https://doi.org/10.3390/rs10111781
APA StyleDarvishi, M., Schlögel, R., Kofler, C., Cuozzo, G., Rutzinger, M., Zieher, T., Toschi, I., Remondino, F., Mejia-Aguilar, A., Thiebes, B., & Bruzzone, L. (2018). Sentinel-1 and Ground-Based Sensors for Continuous Monitoring of the Corvara Landslide (South Tyrol, Italy). Remote Sensing, 10(11), 1781. https://doi.org/10.3390/rs10111781