“Regression-then-Fusion” or “Fusion-then-Regression”? A Theoretical Analysis for Generating High Spatiotemporal Resolution Land Surface Temperatures
"> Figure 1
<p>Study area. (<b>a</b>) Land cover map obtained from the Moderate Resolution Imaging Spectroradiometer (MODIS) yearly land cover product in 2013; (<b>b</b>) study area of the Landsat 8 data, which is obtained from the red, green, and blue bands, for 4 September 2014; (<b>c</b>) study area of the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data, which is obtained from the visible and near infrared (VNIR) bands on 18 October 2004.</p> "> Figure 2
<p>Schematic diagram of the similar pixels within a moving window. We use the thresholds set for the spatial difference and the temporal difference to determine the similar pixels [<a href="#B21-remotesensing-10-01382" class="html-bibr">21</a>].</p> "> Figure 3
<p>Flowcharts of the “regression-then-fusion” (R-F) and “fusion-then-regression” (F-R) methods. (<b>a</b>) R-F method and (<b>b</b>) F-R method.</p> "> Figure 4
<p>Implementation of the F-R and R-F methods using Landsat 8 data. The subscripts 100, 300, and 3 km indicate the resolutions of the data. <math display="inline"><semantics> <mrow> <msub> <mi>T</mi> <mrow> <mn>100</mn> <mo>,</mo> <mi>c</mi> <mi>o</mi> <mi>n</mi> <mi>t</mi> <mi>r</mi> <mi>a</mi> <mi>s</mi> <mi>t</mi> </mrow> </msub> </mrow> </semantics></math> represents the results of the regression method or fusion method using the actual LST as inputs, which does not contain transmitted errors.</p> "> Figure 5
<p>Implementation of the F-R and R-F methods using ASTER data. The subscripts 90, 270, and 2.7 km indicate the resolutions of the data.</p> "> Figure 6
<p>Results of the F-R and R-F methods on 6 October 2014. (<b>a</b>) F-R method (100 m); (<b>b</b>) R-F method (100 m); (<b>c</b>) actual land surface temperature (100 m); (<b>d</b>–<b>f</b>) subsets of (<b>a</b>–<b>c</b>) corresponding to the black square area in (<b>a</b>–<b>c</b>); and (<b>g</b>–<b>h</b>) scatter plots between (<b>c</b>) and (<b>a</b>,<b>b</b>).</p> "> Figure 7
<p>Regressed errors and squared errors (SEs). (<b>a</b>) Difference between the regressed errors (i.e., the regressed error of 4 September 2014 minus that of 6 October 2014), (<b>b</b>) difference between the SEs (i.e., the SE of the R-F method minus that of the F-R method), and (<b>c</b>) scatter plot of the SEs of the F-R and R-F method. The color bar in (<b>c</b>) indicates the density of spots, in which the colors from purple to yellow correspond to the densities from low to high.</p> "> Figure 8
<p>Accuracy (i.e., RMSE and <span class="html-italic">r</span>) of the F-R and R-F method and of their middle processes. (<b>a</b>) F-R method, and (<b>b</b>) R-F method. “Contrast” indicates the results of the regression method or fusion method using the actual LST as inputs, of which the obtained methods are presented in <a href="#remotesensing-10-01382-f004" class="html-fig">Figure 4</a>. “Difference” indicates the increased error of the F-R or R-F methods compared with the regression method or fusion method (i.e., “Contrast”). The blue arrow indicates that the result of the previous step is used as the input for the next step. <math display="inline"><semantics> <mrow> <msub> <mi>t</mi> <mn>0</mn> </msub> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mi>t</mi> <mn>1</mn> </msub> </mrow> </semantics></math> indicate the time of the results. The black spots are the <span class="html-italic">r</span> value corresponding to the x-axis.</p> "> Figure 9
<p>Results of the F-R and R-F methods on 4 September 2014. (<b>a</b>) F-R method (100 m); (<b>b</b>) R-F method (100 m); (<b>c</b>) actual LST (100 m); (<b>d</b>–<b>f</b>) subsets of (<b>a</b>–<b>c</b>) corresponding to the black square area in (<b>a</b>–<b>c</b>); and (<b>g</b>–<b>h</b>) scatter plots between (<b>c</b>) and (<b>a</b>,<b>b</b>).</p> "> Figure 10
<p>Regressed errors and SEs. (<b>a</b>) Difference between the regressed errors (i.e., the regressed error of 4 September 2014 minus that of the 6 October 2014), (<b>b</b>) difference of the SEs (i.e., the SE of the F-R method minus that of the R-F method), and (<b>c</b>) scatter plot of the SEs of the F-R and R-F methods. The color bar in (<b>c</b>) indicates the densities of spots, in which the colors from purple to yellow correspond to the densities from low to high.</p> "> Figure 11
<p>Accuracy (i.e., RMSE and <span class="html-italic">r</span>) of the F-R and R-F methods and of their middle processes. (<b>a</b>) F-R method, and (<b>b</b>) R-F method. “Contrast” indicates the results of regression method or fusion method using the actual LSTs as inputs, of which the obtained methods are presented in <a href="#remotesensing-10-01382-f004" class="html-fig">Figure 4</a>. “Difference” indicates the increased error of the F-R or R-F methods compared with the regression method or the fusion method (i.e., “Contrast”). The blue arrow indicates that the result of the previous step is used as the input for the next step. <math display="inline"><semantics> <mrow> <msub> <mi>t</mi> <mn>0</mn> </msub> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mi>t</mi> <mn>1</mn> </msub> </mrow> </semantics></math> indicate the time of the results.</p> "> Figure 12
<p>Results of the F-R and R-F methods. (<b>a</b>) Result of step 1 of the F-R method (270 m), (<b>b</b>) result of step 1 of the R-F method (90 m), (<b>c</b>) actual LST at 11:10 (90 m), (<b>d</b>) result of the F-R method (90 m), (<b>e</b>) result of the F-R method (90 m), (<b>f</b>) actual LST at 22:15 (90 m), and (<b>g</b>,<b>h</b>) scatter plots between (<b>f</b>) and (<b>d</b>,<b>e</b>). The color bar in (<b>g</b>,<b>h</b>) indicates the densities of spots, in which the colors from purple to yellow correspond to the densities from low to high.</p> "> Figure 13
<p>Accuracy (i.e., RMSE and <span class="html-italic">r</span>) of the regression and fusion methods at different scales. (<b>a</b>) Accuracy of the Landsat 8 data on 6 October 2014, and (<b>b</b>) accuracy of the ASTER data on 18 October 2004.</p> "> Figure 14
<p>Results of the regression and fusion methods. (<b>a</b>) Regression (300 m→100 m), (<b>b</b>) fusion (300 m→100 m), (<b>c</b>) actual LST (100 m) on 6 October 2014, (<b>d</b>) regression (270 m→90 m), (<b>e</b>) fusion (270 m→90 m), and (<b>f</b>) actual LST (90 m) on 18 October 2014.</p> ">
Abstract
:1. Introduction
2. Data and Study Area
3. Methodology
3.1. Overview of the Regression and Spatiotemporal Fusion Methods
3.1.1. Overview of the Regression Method
3.1.2. Overview of the Spatiotemporal Fusion Method
3.2. Implementations of the R-F and F-R Methods
3.2.1. Implementation Details of the R-F Method
3.2.2. Implementation Details of the F-R Method
3.3. Error Analysis of the R-F and F-R Methods
3.3.1. Error Analysis of the R-F Method
3.3.2. Error Analysis of the F-R Method
3.4. Comparisons of the R-F and F-R Method Errors
3.5. Implementation Strategies with Landsat 8 Data and ASTER Data
4. Results
4.1. Tests with Landsat 8 Data on Different Days
4.1.1. Results of the R-F and F-R Methods When
4.1.2. Results of the R-F and F-R Methods When
4.2. Tests with ASTER Data Collected in One Day
5. Discussion
5.1. Comparisons of the Regression Method and the Fusion Method
5.2. Advantages, Prospects and Limitations of the F-R and R-F Methods
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Anderson, M.C.; Norman, J.M.; Kustas, W.P.; Houborg, R.; Starks, P.J.; Agam, N. A thermal-based remote sensing technique for routine mapping of land-surface carbon, water and energy fluxes from field to regional scales. Remote Sens. Environ. 2008, 112, 4227–4241. [Google Scholar] [CrossRef]
- Cammalleri, C.; Anderson, M.C.; Ciraolo, G.; D’Urso, G.; Kustas, W.P.; La Loggia, G.; Minacapilli, M. Applications of a remote sensing-based two-source energy balance algorithm for mapping surface fluxes without in situ air temperature observations. Remote Sens. Environ. 2012, 124, 502–515. [Google Scholar] [CrossRef]
- Anderson, M.C.; Allen, R.G.; Morse, A.; Kustas, W.P. Use of Landsat thermal imagery in monitoring evapotranspiration and managing water resources. Remote Sens. Environ. 2012, 122, 50–65. [Google Scholar] [CrossRef]
- Tran, H.; Uchihama, D.; Ochi, S.; Yasuoka, Y. Assessment with satellite data of the urban heat island effects in Asian mega cities. Int. J. Appl. Earth Obs. Geoinf. 2006, 8, 34–48. [Google Scholar] [CrossRef]
- Voogt, J.A.; Oke, T.R. Thermal remote sensing of urban climates. Remote Sens. Environ. 2003, 86, 370–384. [Google Scholar] [CrossRef]
- Zoran, M. MODIS and NOAA-AVHRR land surface temperature data detect a thermal anomaly preceding the 11 March 2011 Tohoku earthquake. Int. J. Remote Sens. 2012, 33, 6805–6817. [Google Scholar] [CrossRef]
- Kustas, W.P.; Norman, J.M.; Anderson, M.C.; French, A.N. Estimating subpixel surface temperatures and energy fluxes from the vegetation index–radiometric temperature relationship. Remote Sens. Environ. 2003, 85, 429–440. [Google Scholar] [CrossRef]
- Guijun, Y.; Ruiliang, P.; Wenjiang, H.; Jihua, W.; Chunjiang, Z. A novel method to estimate subpixel temperature by fusing solar-reflective and thermal-infrared remote-sensing data with an artificial neural network. IEEE Trans. Geosci. Remote Sens. 2010, 48, 2170–2178. [Google Scholar] [CrossRef]
- Dominguez, A.; Kleissl, J.; Luvall, J.C.; Rickman, D.L. High-resolution urban thermal sharpener (huts). Remote Sens. Environ. 2011, 115, 1772–1780. [Google Scholar] [CrossRef]
- Agam, N.; Kustas, W.P.; Anderson, M.C.; Li, F.; Neale, C.M.U. A vegetation index based technique for spatial sharpening of thermal imagery. Remote Sens. Environ. 2007, 107, 545–558. [Google Scholar] [CrossRef]
- Essa, W.; Verbeiren, B.; van der Kwast, J.; Batelaan, O. Improved Dis Trad for downscaling thermal MODIS imagery over urban areas. Remote Sens. 2017, 9, 1243. [Google Scholar] [CrossRef]
- Sattari, F.; Hashim, M.; Pour, A.B. Thermal sharpening of land surface temperature maps based on the impervious surface index with the TsHARP method to ASTER satellite data: A case study from the metropolitan Kuala Lumpur, Malaysia. Measurement 2018, 125, 262–278. [Google Scholar] [CrossRef]
- Guo, L.J.; Moore, J.M. Pixel block intensity modulation: Adding spatial detail to tm band 6 thermal imagery. Int. J. Remote Sens. 1998, 19, 2477–2491. [Google Scholar] [CrossRef]
- Nichol, J. An emissivity modulation method for spatial enhancement of thermal satellite images in urban heat island analysis. Photogramm. Eng. Remote Sens. 2009, 75, 547–556. [Google Scholar] [CrossRef]
- Hutengs, C.; Vohland, M. Downscaling land surface temperatures at regional scales with random forest regression. Remote Sens. Environ. 2016, 178, 127–141. [Google Scholar] [CrossRef]
- Keramitsoglou, I.; Kiranoudis, C.T.; Qihao, W. Downscaling geostationary land surface temperature imagery for urban analysis. IEEE Geosci. Remote Sens. Lett. 2013, 10, 1253–1257. [Google Scholar] [CrossRef]
- Yang, Y.; Cao, C.; Pan, X.; Li, X.; Zhu, X. Downscaling land surface temperature in an arid area by using multiple remote sensing indices with random forest regression. Remote Sens. 2017, 9, 789. [Google Scholar] [CrossRef]
- Carper, W.J. The use of intensity-hue-saturation transformations for merging spot panchromatic and multispectral image data. Photogramm. Eng. Remote Sens. 1990, 56, 459–467. [Google Scholar]
- Yocky, D.A. Multiresolution wavelet decomposition image merger of Landsat thematic mapper and spot panchromatic data. Photogramm. Eng. Remote Sens. 1996, 62, 1067–1074. [Google Scholar]
- Nunez, J.; Otazu, X.; Fors, O.; Prades, A.; Palà, V.; Arbiol, R. Multiresolution-based image fusion with additive wavelet decomposition. IEEE Trans. Geosci. Remote Sens. 1999, 37, 1204–1211. [Google Scholar] [CrossRef] [Green Version]
- Gao, F.; Masek, J.; Schwaller, M.; Hall, F. On the blending of the Landsat and MODIS surface reflectance: Predicting daily landsat surface reflectance. IEEE Trans. Geosci. Remote Sens. 2006, 44, 2207–2218. [Google Scholar] [CrossRef]
- Zhu, X.; Cai, F.; Tian, J.; Williams, T.K.A. Spatiotemporal fusion of multisource remote sensing data: Literature survey, taxonomy, principles, applications, and future directions. Remote Sens. 2018, 10, 527. [Google Scholar] [CrossRef]
- Zhu, X.; Chen, J.; Gao, F.; Chen, X.; Masek, J.G. An enhanced spatial and temporal adaptive reflectance fusion model for complex heterogeneous regions. Remote Sens. Environ. 2010, 114, 2610–2623. [Google Scholar] [CrossRef]
- Wu, P.; Shen, H.; Zhang, L.; Göttsche, F.M. Integrated fusion of multi-scale polar-orbiting and geostationary satellite observations for the mapping of high spatial and temporal resolution land surface temperature. Remote Sens. Environ. 2015, 156, 169–181. [Google Scholar] [CrossRef]
- Weng, Q.; Fu, P.; Gao, F. Generating daily land surface temperature at Landsat resolution by fusing Landsat and MODIS data. Remote Sens. Environ. 2014, 145, 55–67. [Google Scholar] [CrossRef]
- Bechtel, B.; Zakšek, K.; Hoshyaripour, G. Downscaling land surface temperature in an urban area: A case study for Hamburg, Germany. Remote Sens. 2012, 4, 3184–3200. [Google Scholar] [CrossRef]
- Bai, Y.; Wong, M.; Shi, W.Z.; Wu, L.X.; Qin, K. Advancing of land surface temperature retrieval using extreme learning machine and spatio-temporal adaptive data fusion algorithm. Remote Sens. 2015, 7, 4424–4441. [Google Scholar] [CrossRef]
- Jimenez-Munoz, J.C.; Sobrino, J.A.; Skokovic, D.; Mattar, C.; Cristobal, J. Land surface temperature retrieval methods from landsat-8 thermal infrared sensor data. IEEE Geosci. Remote Sens. Lett. 2014, 11, 1840–1843. [Google Scholar] [CrossRef]
- Jimenez-Munoz, J.C.; Sobrino, J.A. Feasibility of retrieving land-surface temperature from ASTER TIR bands using two-channel algorithms: A case study of agricultural areas. IEEE Trans. Geosci. Remote Sens. 2007, 4, 60–64. [Google Scholar] [CrossRef]
- Jeganathan, C.; Hamm, N.A.S.; Mukherjee, S.; Atkinson, P.M.; Raju, P.L.N.; Dadhwal, V.K. Evaluating a thermal image sharpening model over a mixed agricultural landscape in India. Int. J. Appl. Earth Obs. Geoinf. 2011, 13, 178–191. [Google Scholar] [CrossRef]
- Duan, S.B.; Li, Z.L. Spatial downscaling of MODIS land surface temperatures using geographically weighted regression: Case study in Northern China. IEEE Trans. Geosci. Remote Sens. 2016, 54, 6458–6469. [Google Scholar] [CrossRef]
- Chen, X.; Liu, M.; Zhu, X.; Chen, J.; Zhong, Y.; Cao, X. “Blend-then-index” or “index-then-blend”: A theoretical analysis for generating high-resolution NDVI time series by STARFM. Photogramm. Eng. Remote Sens. 2018, 84, 65–73. [Google Scholar] [CrossRef]
- Quan, J.; Zhan, W.; Chen, Y.; Liu, W. Downscaling remotely sensed land surface temperatures: A comparison of typical methods. J. Remote Sens. 2013, 17, 361–387. [Google Scholar]
- Quan, J.; Zhan, W.; Ma, T.; Du, Y.; Guo, Z.; Qin, B. An integrated model for generating hourly Landsat-like land surface temperatures over heterogeneous landscapes. Remote Sens. Environ. 2018, 206, 403–423. [Google Scholar] [CrossRef]
- Quan, J.; Chen, Y.; Zhan, W.; Wang, J.; Voogt, J.; Wang, M. Multi-temporal trajectory of the urban heat island centroid in Beijing, China based on a gaussian volume model. Remote Sens. Environ. 2014, 149, 33–46. [Google Scholar] [CrossRef]
- Srivastava, P.K.; Han, D.; Ramirez, M.R.; Islam, T. Machine learning techniques for downscaling SMOS satellite soil moisture using MODIS land surface temperature for hydrological application. Water Resour. Manag. 2013, 27, 3127–3144. [Google Scholar] [CrossRef]
- Eleftheriou, D.; Kiachidis, K.; Kalmintzis, G.; Kalea, A.; Bantasis, C.; Koumadoraki, P.; Spathara, M.E.; Tsolaki, A.; Tzampazidou, M.I.; Gemitzi, A. Determination of annual and seasonal daytime and nighttime trends of MODIS LST over Greece—Climate change implications. Sci. Total Environ. 2018, 616–617, 937–947. [Google Scholar] [CrossRef] [PubMed]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xia, H.; Chen, Y.; Zhao, Y.; Chen, Z. “Regression-then-Fusion” or “Fusion-then-Regression”? A Theoretical Analysis for Generating High Spatiotemporal Resolution Land Surface Temperatures. Remote Sens. 2018, 10, 1382. https://doi.org/10.3390/rs10091382
Xia H, Chen Y, Zhao Y, Chen Z. “Regression-then-Fusion” or “Fusion-then-Regression”? A Theoretical Analysis for Generating High Spatiotemporal Resolution Land Surface Temperatures. Remote Sensing. 2018; 10(9):1382. https://doi.org/10.3390/rs10091382
Chicago/Turabian StyleXia, Haiping, Yunhao Chen, Yutong Zhao, and Zixuan Chen. 2018. "“Regression-then-Fusion” or “Fusion-then-Regression”? A Theoretical Analysis for Generating High Spatiotemporal Resolution Land Surface Temperatures" Remote Sensing 10, no. 9: 1382. https://doi.org/10.3390/rs10091382
APA StyleXia, H., Chen, Y., Zhao, Y., & Chen, Z. (2018). “Regression-then-Fusion” or “Fusion-then-Regression”? A Theoretical Analysis for Generating High Spatiotemporal Resolution Land Surface Temperatures. Remote Sensing, 10(9), 1382. https://doi.org/10.3390/rs10091382