Spectral and Spatial Classification of Hyperspectral Images Based on Random Multi-Graphs
"> Figure 1
<p>Flow chart of the proposed SS-RMG method.</p> "> Figure 2
<p>Implementation of LBP feature extraction.</p> "> Figure 3
<p>Flow chart of the Random Multi-Graphs algorithm.</p> "> Figure 4
<p>Indian Pines dataset and corresponding ground truth. (<b>a</b>) False color composite image (R-G-B = band 50-27-17); (<b>b</b>) The ground truth image with 16 land-cover classes.</p> "> Figure 5
<p>Pavia University dataset and corresponding ground truth. (<b>a</b>) False color composite image (R-G-B = band 10-27-46); (<b>b</b>) The ground truth image with 9 land-cover classes.</p> "> Figure 6
<p>Baffin Bay dataset and corresponding ground truth. (<b>a</b>) False color composite image; (<b>b</b>) The ground truth image with 4 classes.</p> "> Figure 7
<p>Influence of graph numbers.</p> "> Figure 8
<p>Influence of spectral band numbers.</p> "> Figure 9
<p>Classification performance versus different patch sizes.</p> "> Figure 10
<p>Classification results by different methods on the Indian Pines dataset. (<b>a</b>) Ground-truth map; (<b>b</b>) EPF-G; (<b>c</b>) IFRF; (<b>d</b>) LBP-ELM; (<b>e</b>) R-VCANet; (<b>f</b>) Proposed SS-RMG.</p> "> Figure 11
<p>Classification results of different methods on the Baffin Bay dataset. (<b>a</b>) Ground-truth map; (<b>b</b>) EPF-G; (<b>c</b>) IFRF; (<b>d</b>) LBP-ELM; (<b>e</b>) R-VCANet; (<b>f</b>) Proposed SS-RMG.</p> "> Figure 12
<p>Classification results of different methods on the Pavia University dataset. (<b>a</b>) Ground-truth map; (<b>b</b>) EPF-G; (<b>c</b>) IFRF; (<b>d</b>) LBP-ELM; (<b>e</b>) R-VCANet; (<b>f</b>) Proposed SS-RMG.</p> "> Figure 13
<p>Influence of training sample number on the <span class="html-italic">Indian Pines</span> dataset.</p> ">
Abstract
:1. Introduction
2. Related Work
3. Methodology
3.1. Spectral and Spatial Feature Extraction
3.2. Classification Based on Random Multi-Graphs
- Step 1: Randomly select features from all the high dimensional features of each sample.
- Step 2: Select m anchor points to cover the data manifold denoted by an anchors matrix, and then compute the mapping matrix P to represent the rest of the data points via the selected anchors.
- Step 3: Run semi-supervised inference on this graph by using graph Laplacian Regularization.
- Step 4: Repeat the above steps to get graphs.
- Step 5: graphs are voted to obtain the labels for the unlabeled data points.
4. Experimental Results and Analysis
4.1. Dataset Description
4.2. Analysis of Parameters
4.3. Classification Results
4.4. Analysis and Discussion
5. Conclusions and Future Work
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Horig, B.; Kuhn, F.; Oschutz, F.; Lehmann, F. HyMap hyperspectral remote sensing to detect hydrocarbons. Int. J. Remote Sens. 2010, 4, 1413–1422. [Google Scholar] [CrossRef]
- Butz, C.; Grosjean, M.; Fischer, D.; Wunderle, S.; Tylmann, W.; Rein, B. Hyperspectral imaging spectroscopy: A promising method for the biogeochemical analysis of lake sediments. J. Appl. Remote Sens. 2015, 9, 096031. [Google Scholar] [CrossRef]
- Qin, Q.; Zhang, Z.; Chen, L.; Wang, N.; Zhang, C. Oil and gas reservoir exploration based on hyperspectral remote sensing and super-low-frequency electromagnetic detection. J. Appl. Remote Sens. 2016, 10, 016017. [Google Scholar] [CrossRef]
- Jin, X.; Jie, L.; Wang, S.; Qi, H.; Li, S. Classifying wheat hyperspectral pixels of healthy heads and fusarium head blight disease using a deep neural network in the wild field. Remote Sens. 2018, 10, 395. [Google Scholar] [CrossRef]
- Chen, M.; Wang, Q.; Li, X. Discriminant analysis with graph learning for hyperspectral image classification. Remote Sens. 2018, 10, 836. [Google Scholar] [CrossRef]
- Jia, S.; Hu, J.; Xie, Y.; Shen, L.; Jia, X.; Li, Q. Gabor cube selection based multitask joint sparse representation for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2016, 54, 3174–3187. [Google Scholar] [CrossRef]
- Hughes, G.F. On the mean accuracy of statistical pattern recognizers. IEEE Trans. Inf. Theory 1968, 14, 55–63. [Google Scholar] [CrossRef]
- Gong, M.; Zhang, M.; Yuan, Y. Unsupervised band selection based on evolutionary multiobjective optimization for hyperspectral images. IEEE Trans. Geosci. Remote Sens. 2016, 54, 544–557. [Google Scholar] [CrossRef]
- Chen, Y.; Jiang, H.; Li, C.; Jia, X.; Ghamisi, P. Deep feature extraction and classification of hyperspectral images based on convolutional neural networks. IEEE Trans. Geosci. Remote Sens. 2016, 54, 6232–6251. [Google Scholar] [CrossRef]
- Yuan, Y.; Lin, J.; Wang, Q. Hyperspectral image classification via multi-task joint sparse representation and stepwise MRF optimization. IEEE Trans. Cybern. 2016, 46, 2966–2977. [Google Scholar] [CrossRef] [PubMed]
- Camps-Valls, G.; Tuia, G.; Bruzzone, L. Advances in hyperspectral image classification. IEEE Signal Process. Mag. 2014, 31, 45–54. [Google Scholar] [CrossRef]
- Benediktsson, J.; Palmason, J.; Sveinsson, J. Classification of hyperspectral data from urban areas based on extended morphological profiles. IEEE Trans. Geosci. Remote Sens. 2005, 43, 480–490. [Google Scholar] [CrossRef]
- Li, J.; Bioucas-Dias, J.; Plaza, A. Spectral-spatial hyperspectral image segmentation using subspace mul-timodal logistic regression and Markov random fields. IEEE Trans. Geosci. Remote Sens. 2012, 50, 809–823. [Google Scholar] [CrossRef]
- Tarbalka, Y.; Fauvel, M.; Chanussot, J.; Benediktsson, J.A. SVM and MRF-based method for accurate classification of hyperspectral images. IEEE Geosci. Remote Sens. Lett. 2010, 7, 736–740. [Google Scholar] [CrossRef]
- Wang, Q.; Meng, Z.; Li, X. Locality adaptive discriminant analysis for spectral-spatial classification of hyperspectral images. IEEE Geosci. Remote Sens. Lett. 2017, 14, 2077–2081. [Google Scholar] [CrossRef]
- Makantasis, K.; Doulamis, A.; Doulamis, N.; Nikitakis, A. Tensor-based classification models for hyperspectral data analysis. IEEE Trans. Geosci. Remote Sens. 2018, 56, 1–15. [Google Scholar] [CrossRef]
- Chen, Y.; Lin, Z.; Zhao, X.; Wang, G.; Gu, Y. Deep learning-based classification of hyperspectral data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 2094–2107. [Google Scholar] [CrossRef]
- Chen, Y.; Zhao, X.; Jia, X. Spectral-spatial classification of hyperspectral data based on deep belief network. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 2381–2392. [Google Scholar] [CrossRef]
- Chen, Y.; Zhu, L.; Ghamisi, P.; Jia, X.; Li, G.; Tang, L. Hyperspectral images classification with gabor filtering and convolutional neural network. IEEE Geosci. Remote Sens. Lett. 2017, 14, 2355–2359. [Google Scholar] [CrossRef]
- Chen, Y.; Li, C.; Ghamisi, P.; Jia, X.; Gu, Y. Deep fusion of remote sensing data for accurate classification. IEEE Geosci. Remote Sens. Lett. 2017, 14, 1253–2157. [Google Scholar] [CrossRef]
- Ding, C.; Li, Y.; Xia, Y.; Wei, W.; Zhang, L.; Zhang, Y. Convolutional neural networks based hyperspectral image classification method with adaptive kernels. Remote Sens. 2017, 9, 618. [Google Scholar] [CrossRef]
- Wu, H.; Prasad, S. Convolutional recurrent neural networks for hyperspectral data classification. Remote Sens. 2017, 9, 298. [Google Scholar] [CrossRef]
- Li, W.; Wu, G.; Zhang, F.; Du, Q. Hyperspectral image classification using deep pixel-pair features. IEEE Trans. Geosci. Remote Sens. 2017, 55, 844–853. [Google Scholar] [CrossRef]
- Li, J.; Xi, B.; Li, Y.; Du, Q.; Wang, K. Hyperspectral classification based on texture feature enhancement and deep belief networks. Remote Sens. 2018, 10, 396. [Google Scholar] [CrossRef]
- Zhong, P.; Gong, Z.; Li, S.; Schonlieb, C.B. Learning to diversify deep belief networks for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2017, 55, 3516–3530. [Google Scholar] [CrossRef]
- Pan, B.; Shi, Z.; Xu, X. R-VCANet: A new deep-learning-based hyperspectral image classification method. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 1975–1986. [Google Scholar] [CrossRef]
- Pan, B.; Shi, Z.; Zhang, N.; Xie, S. Hyperspectral image classification based on nonlinear spectral-spatial network. IEEE Geosci. Remote Sens. Lett. 2016, 13, 1782–1786. [Google Scholar] [CrossRef]
- Makantasis, K.; Karantzalos, K.; Doulamis, A.; Doulamis, N. Deep supervised learning for hyperspectral data classification through convolutional neural networks. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Milan, Italy, 26–31 May 2015; pp. 4959–4962. [Google Scholar]
- Zhang, M.; Li, W.; Du, Q. Diverse region-based CNN for hyperspectral image classification. IEEE Trans. Image Process. 2018, 27, 2623–2634. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Li, W.; Ran, Q.; Gao, L.; Zhang, B. Multisource remote sensing data classification based on convolutional neural network. IEEE Trans. Geosci. Remote Sens. 2018, 56, 937–949. [Google Scholar] [CrossRef]
- Song, X.; Jiao, L.; Yang, S.; Zhang, X.; Shang, F. Sparse coding and classifier ensemble based multi-instance learning for image categorization. Signal Process. 2013, 93, 1–11. [Google Scholar] [CrossRef]
- Santos, A.; Araujo, A.; Menotti, D. Combining multiple classification mehthods for hyperspectral data interpretation. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 6, 1450–1459. [Google Scholar] [CrossRef]
- Ceamanos, X.; Waske, B.; Benediktsson, J.A.; Chanussot, J.; Fauvel, M.; Sveinsson, J.R. A classifier ensemble based on fusion of support vector machines for classfying hyperspectral data. Int. J. Image Data Fusion 2010, 1, 293–307. [Google Scholar] [CrossRef] [Green Version]
- Huang, X.; Zhang, L. An SVM ensemble approach combining spectral, sturctural, and semantic features for the classification of high-resolution remotely sensed imagery. IEEE Trans. Geosci. Remote Sens. 2013, 51, 257–272. [Google Scholar] [CrossRef]
- Gu, Y.; Liu, H. Sample-screening MKL method via boosting strategy for hyperspectral image classification. Neurocomputing 2016, 173, 1630–1639. [Google Scholar] [CrossRef]
- Qi, C.; Zhou, Z.; Sun, Y.; Song, H.; Hu, L.; Wang, Q. Feature selection and multiple kernel boosting framework based on PSO with mutation mechanism for hyperspectral classification. Neurocomputing 2017, 220, 181–190. [Google Scholar] [CrossRef]
- Zhang, E.; Zhang, X.; Jiao, L.; Li, L.; Hou, B. Spectral-spatial hyperspectral image ensemble classification via joint sparse representation. Pattern Recogit. 2016, 59, 42–54. [Google Scholar] [CrossRef]
- Zhang, Q.; Sun, J.; Zhong, G.; Dong, J. Random multi-graphs: a semi-supervised learning framework for classification of high dimensional data. Image Vis. Comput. 2017, 60, 30–37. [Google Scholar] [CrossRef]
- Li, W.; Chen, C.; Su, H.; Du, Q. Local binary patterns and extreme learning machine for hyperspectral imagery classification. IEEE Trans. Geosci. Remote Sens. 2015, 53, 3681–3693. [Google Scholar] [CrossRef]
- Du, Q.; Yang, H. Similarity-based unsupervised band selection for hyperspectral image analysis. IEEE Geosci. Remote Sens. Lett. 2008, 5, 546–568. [Google Scholar]
- Ojala, T.; Peitikainen, M.; Maenpaa, T. Multiresolution gray-scale and rotation invariant texture classification with local binary pattern. IEEE Trans. Pattern Anal. Mach. Intell. 2002, 24, 971–987. [Google Scholar] [CrossRef]
- Rawat, W.; Wang, Z. Deep convolutional neural networks for image classification: A comprehensive review. Neural Comput. 2017, 29, 2352–2449. [Google Scholar] [CrossRef] [PubMed]
- Tang, P.; Wang, X.; Feng, B.; Liu, W. Learning multi-instance deep discriminative patterns for image classification. IEEE Trans. Image Process. 2017, 26, 3385–3396. [Google Scholar] [CrossRef] [PubMed]
- Xu, P.; Sarikaya, R. Contextual domain classification in spoken language understanding systems using recurrent neural network. In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Florence, Italy, 4–9 May 2014; pp. 136–140. [Google Scholar]
- Price, M.; Glass, J.; Chandrakasan, A. A low-power speech recognizer and voice activity detector using deep neural networks. IEEE J. Solid-State Circuits 2018, 53, 66–75. [Google Scholar] [CrossRef]
- Zhu, X.; Tuia, D.; Mou, L.; Xia, G.-S.; Zhang, L.; Xu, F.; Fraundorfer, F. Deep learning in remote sensing: A comprehensive review and list of resources. IEEE Geosci. Remote Sens. Mag. 2017, 5, 8–36. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, L.; Du, B. Deep learning for remote sensing data: A technical tutorial on the state of the art. IEEE Geosci. Remote Sens. Mag. 2016, 4, 22–40. [Google Scholar] [CrossRef]
- Ghamisi, P.; Plaza, J.; Chen, Y.; Li, J.; Plaza, A. Advanced spectral classifiers for hyperspectral images: A review. IEEE Geosci. Remote Sens. Mag. 2017, 5, 8–32. [Google Scholar] [CrossRef]
- Liu, W.; Wang, J.; Chang, S. Hashing with graphs. In Proceedings of the International Conference on Machine Learning, Bellevue, WA, USA, 28 June–2 July 2011; pp. 1–8. [Google Scholar]
- Kim, S.; Choi, S. Multi-view anchor graph hashing. In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, Vancouver, BC, Canada, 26–31 May 2013; pp. 3123–3127. [Google Scholar]
- Liu, W.; He, J.; Chang, S.-F. Large graph construction for scalable semi-supervised learning. In Proceedings of the International Conference on Machine Learning, Haifa, Israel, 21–24 June 2010; pp. 1–8. [Google Scholar]
- Vincent, P.; Larochelle, H.; Lajoie, I.; Bengio, Y.; Manzagol, P.-A. Stacked denoising autoencoders: Learning useful representations in a deep network with a local denosing criterion. J. Mach. Learn. Res. 2010, 11, 3371–3408. [Google Scholar]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Kang, X.; Li, S.; Benediktsson, J.A. Spectral-spatial hyperspectral image classification with edge-perserving filtering. IEEE Trans. Geosci. Remote Sens. 2014, 52, 2666–2677. [Google Scholar] [CrossRef]
- Kang, X.; Li, S.; Benediktsson, J.A. Feature extraction of hyperspectral images with image fusion and recursive filtering. IEEE Trans. Geosci. Remote Sens. 2014, 52, 3742–3752. [Google Scholar] [CrossRef]
- Kay, J.E.; Holland, M.M.; Jahn, A. Inter-annual to multi-decadal Arctic sea ice extent trends in a warming world. Geophys. Res. Lett. 2011, 38, L15708. [Google Scholar] [CrossRef]
# | Class | Train | Test |
---|---|---|---|
1 | Alfalfa | 5 | 41 |
2 | Corn-notill | 143 | 1285 |
3 | Corn-mintill | 83 | 747 |
4 | Corn | 24 | 213 |
5 | Grass-pasture | 48 | 435 |
6 | Grass-trees | 73 | 657 |
7 | Grass-pasture-mowed | 3 | 25 |
8 | Hay-windrowed | 48 | 430 |
9 | Oats | 2 | 18 |
10 | Soybean-notill | 97 | 975 |
11 | Soybean-mintill | 246 | 2209 |
12 | Soybean-clean | 59 | 534 |
13 | Wheat | 21 | 184 |
14 | Woods | 127 | 1138 |
15 | Building-grass-trees-drives | 39 | 347 |
16 | Stone-steel-towers | 9 | 84 |
Total | 1027 | 9322 |
# | Class | Train | Test |
---|---|---|---|
1 | Asphalt | 66 | 6565 |
2 | Meadows | 186 | 18,463 |
3 | Gravel | 21 | 2078 |
4 | Trees | 31 | 3033 |
5 | Painted metal sheets | 13 | 1332 |
6 | Bare Soil | 50 | 4979 |
7 | Bitumen | 13 | 1317 |
8 | Self-blocking bricks | 37 | 3645 |
9 | Shadows | 9 | 938 |
Total | 426 | 42,350 |
# | Class | Train | Test |
---|---|---|---|
1 | White ice | 75 | 7429 |
2 | Gray ice | 137 | 13,541 |
3 | Sea ice | 527 | 52,163 |
4 | Land | 114 | 11,281 |
Total | 853 | 84,414 |
Class | EPF-G | IFRF | R-VCANet | LBP-ELM | SS-RMG |
---|---|---|---|---|---|
Alfalfa | 95.85 ± 11.2 | 96.00 ± 2.63 | 98.97 ± 1.65 | 98.53 ± 3.45 | 99.64 ± 0.91 |
Corn-notill | 93.95 ± 3.08 | 95.29 ± 2.13 | 95.34 ± 1.68 | 97.03 ± 1.08 | 99.48 ± 0.56 |
Corn-mintill | 96.25 ± 2.95 | 96.03 ± 2.64 | 96.17 ± 1.52 | 96.56 ± 1.99 | 99.93 ± 0.12 |
Corn | 67.00 ± 9.15 | 94.82 ± 3.75 | 97.38 ± 2.87 | 96.89 ± 4.08 | 98.41 ± 1.24 |
Grass-pasture | 98.17 ± 1.25 | 97.77 ± 2.90 | 97.80 ± 1.65 | 98.33 ± 2.34 | 99.32 ± 0.80 |
Grass-trees | 97.97 ± 1.12 | 98.78 ± 0.58 | 99.83 ± 0.17 | 98.07 ± 0.83 | 99.73 ± 0.26 |
Grass-pasture-mowed | 100.0 ± 0.00 | 96.18 ± 12.2 | 96.00 ± 5.35 | 93.64 ± 5.17 | 93.10 ± 4.40 |
Hay-windrowed | 99.99 ± 0.04 | 100.0 ± 0.00 | 99.98 ± 0.05 | 99.50 ± 0.91 | 99.40 ± 0.52 |
Oats | 99.14 ± 3.41 | 90.52 ± 13.5 | 96.29 ± 6.41 | 92.80 ± 11.1 | 99.05 ± 2.38 |
Soybean-notill | 80.85 ± 4.36 | 94.97 ± 1.85 | 96.13 ± 1.49 | 97.27 ± 0.61 | 98.91 ± 0.46 |
Soybean-mintill | 95.32 ± 2.08 | 98.11 ± 1.27 | 98.71 ± 0.76 | 98.91 ± 0.41 | 99.53 ± 0.56 |
Soybean-clean | 87.23 ± 6.66 | 96.79 ± 2.02 | 96.90 ± 1.74 | 98.31 ± 1.64 | 99.41 ± 0.65 |
Wheat | 100.0 ± 0.00 | 96.90 ± 2.42 | 99.58 ± 0.42 | 99.01 ± 1.83 | 100.0 ± 0.00 |
Woods | 99.25 ± 0.92 | 99.90 ± 0.32 | 99.83 ± 0.14 | 99.40 ± 0.72 | 99.97 ± 0.04 |
Building-grass-trees-drives | 78.80 ± 6.70 | 94.90 ± 3.27 | 98.58 ± 1.20 | 99.52 ± 0.65 | 100.0 ± 0.00 |
Stone-steel-towers | 87.36 ± 5.49 | 95.82 ± 5.74 | 99.08 ± 1.11 | 92.53 ± 9.34 | 98.53 ± 1.03 |
OA (%) | 92.43 ± 1.18 | 97.21 ± 0.44 | 97.90 ± 0.32 | 98.15 ± 0.33 | 99.44 ± 0.28 |
K × 100 | 91.33 ± 1.35 | 96.78 ± 0.51 | 97.60 ± 0.37 | 97.89 ± 0.38 | 99.36 ± 0.32 |
Class | EPF-G | IFRF | R-VCANet | LBP-ELM | SS-RMG |
---|---|---|---|---|---|
Asphalt | 97.35 ± 1.94 | 91.47 ± 3.27 | 94.73 ± 1.78 | 88.15 ± 1.54 | 96.18 ± 0.74 |
Meadows | 98.54 ± 0.77 | 98.98 ± 0.45 | 99.71 ± 0.19 | 96.08 ± 2.72 | 98.94 ± 0.59 |
Gravel | 93.19 ± 6.24 | 87.18 ± 4.81 | 89.33 ± 5.25 | 93.43 ± 4.04 | 99.14 ± 0.51 |
Trees | 87.48 ± 10.1 | 88.81 ± 8.17 | 90.38 ± 3.04 | 76.43 ± 11.2 | 95.46 ± 3.95 |
Painted metal sheets | 96.77 ± 3.27 | 99.73 ± 0.43 | 99.89 ± 0.15 | 88.69 ± 3.17 | 99.84 ± 0.04 |
Bare soil | 83.85 ± 8.33 | 94.68 ± 4.09 | 96.81 ± 2.21 | 97.85 ± 1.80 | 99.73 ± 0.16 |
Bitumen | 88.23 ± 9.07 | 90.19 ± 3.67 | 93.68 ± 3.41 | 95.37 ± 3.20 | 97.05 ± 1.91 |
Self-blocking bricks | 91.01 ± 3.53 | 85.19 ± 4.82 | 95.09 ± 1.79 | 89.88 ± 3.53 | 96.70 ± 0.72 |
Shadows | 99.06 ± 0.86 | 77.24 ± 10.5 | 97.06 ± 2.47 | 69.29 ± 10.9 | 99.39 ± 0.27 |
OA (%) | 93.86 ± 1.76 | 93.73 ± 1.46 | 96.77 ± 0.91 | 92.30 ± 1.05 | 98.14 ± 0.21 |
K × 100 | 91.86 ± 2.25 | 91.74 ± 1.89 | 95.71 ± 1.21 | 89.73 ± 1.47 | 97.54 ± 0.28 |
Class | EPF-G | IFRF | R-VCANet | LBP-ELM | SS-RMG |
---|---|---|---|---|---|
White ice | 76.00 ± 4.35 | 75.05 ± 7.75 | 85.99 ± 1.13 | 88.38 ± 2.67 | 85.82 ± 1.22 |
Gray ice | 75.86 ± 2.97 | 72.76 ± 5.20 | 86.85 ± 0.78 | 79.35 ± 0.52 | 82.81 ± 1.90 |
Sea water | 98.26 ± 0.23 | 98.24 ± 0.68 | 95.14 ± 0.51 | 94.27 ± 1.65 | 97.24 ± 0.52 |
Land | 99.38 ± 0.52 | 98.00 ± 1.65 | 92.87 ± 1.74 | 99.16 ± 0.29 | 99.43 ± 0.41 |
OA (%) | 91.94 ± 0.51 | 90.84 ± 1.15 | 92.67 ± 0.34 | 91.90 ± 0.88 | 94.17 ± 0.22 |
K × 100 | 87.01 ± 1.19 | 84.48 ± 1.78 | 88.09 ± 1.21 | 85.49 ± 1.74 | 90.61 ± 1.11 |
Class | Training | Testing | CNN-PPF | SS-RMG |
---|---|---|---|---|
Corn-notill | 200 | 1228 | 92.99 | 95.63 |
Corn-mintill | 200 | 630 | 96.66 | 95.64 |
Grass-pasture | 200 | 283 | 98.58 | 99.88 |
Grass-trees | 200 | 530 | 100.0 | 100.0 |
Hay-windrowed | 200 | 278 | 100.0 | 99.83 |
Soybean-notill | 200 | 772 | 96.24 | 93.18 |
Soybean-mintill | 200 | 2255 | 87.80 | 98.23 |
Soybean-clean | 200 | 393 | 98.98 | 97.64 |
Woods | 200 | 1065 | 99.81 | 99.91 |
OA | 94.34 | 97.54 |
Dataset | EPF-G | IFRF | R-VCANet | LBP-ELM | SS-RMG |
---|---|---|---|---|---|
Indian Pines | 7.31 | 2.37 | 1369.43 | 26.79 | 59.98 |
Pavia University | 19.72 | 15.96 | 2778.13 | 80.93 | 290.31 |
Baffin Bay | 26.52 | 20.34 | 4057.32 | 139.20 | 397.47 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, F.; Wang, Q.; Dong, J.; Xu, Q. Spectral and Spatial Classification of Hyperspectral Images Based on Random Multi-Graphs. Remote Sens. 2018, 10, 1271. https://doi.org/10.3390/rs10081271
Gao F, Wang Q, Dong J, Xu Q. Spectral and Spatial Classification of Hyperspectral Images Based on Random Multi-Graphs. Remote Sensing. 2018; 10(8):1271. https://doi.org/10.3390/rs10081271
Chicago/Turabian StyleGao, Feng, Qun Wang, Junyu Dong, and Qizhi Xu. 2018. "Spectral and Spatial Classification of Hyperspectral Images Based on Random Multi-Graphs" Remote Sensing 10, no. 8: 1271. https://doi.org/10.3390/rs10081271
APA StyleGao, F., Wang, Q., Dong, J., & Xu, Q. (2018). Spectral and Spatial Classification of Hyperspectral Images Based on Random Multi-Graphs. Remote Sensing, 10(8), 1271. https://doi.org/10.3390/rs10081271