Evaluating Metal Effects on the Reflectance Spectra of Plant Leaves during Different Seasons in Post-Mining Areas, China
<p>Location map for experimental sites in Heihe, Heilongjiang Province, China.</p> "> Figure 2
<p>Pictures of three plants in the field. In the figure, (<b>a</b>–<b>c</b>) are White birch, Mongolian oak, and Cotton grass, respectively.</p> "> Figure 3
<p>(<b>a</b>) Averaged leaf reflectance spectra of different vegetation species at S<sub>0</sub>, S<sub>1</sub>, and S<sub>2</sub> sampling points. (<b>b</b>) For the S<sub>1</sub> sampling point, range of reflectance spectra calculated throughout the growing season measurements (mean ± one standard deviation).</p> "> Figure 4
<p>Changes in VIs (<b>a</b>) REP, (<b>b</b>) PRI, and (<b>c</b>) RE-NDVI of different sampling points and plant species throughout the growing season. Bars are ± standard error. Bars indicated with a different letter are significantly different at the 0.05 probability level, grouped into classes a, b, c, and d.</p> "> Figure 5
<p>Differences in the correlation coefficient between the metal element concentrations and VIs derived from the different data sets. In the figure, (a–d) represent all vegetation samples, White birch, Mongolian oak, and Cotton grass, respectively.</p> "> Figure 6
<p>The distribution of the optimized bands selected by SMLR.</p> "> Figure 7
<p>Measured versus optimal simulated metal concentration for (<b>a</b>) Co, (<b>b</b>) Cu, (<b>c</b>) Mo, (<b>d</b>) Ni.</p> "> Figure 7 Cont.
<p>Measured versus optimal simulated metal concentration for (<b>a</b>) Co, (<b>b</b>) Cu, (<b>c</b>) Mo, (<b>d</b>) Ni.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Field Ground Data Collection
2.3. Vegetation Spectral Analysis
2.4. Statistical Analysis
3. Results
3.1. Metal Elements in Leaf and Root
3.2. Analysis of REP, PRI and RE-NDVI
3.3. Results of Continuum Removal Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- And, T.K.; Sommer, S. Estimate of heavy metal contamination in soils after a mining accident using reflectance spectroscopy. Environ. Sci. Technol. 2002, 36, 2742. [Google Scholar]
- Dobrota, C.; Lazar, L.; Baciu, C. Assessment of physiological state of Betula pendula and Carpinus betulus through leaf reflectance measurements. Flora Morphol. Distrib. Funct. Ecol. Plants 2015, 216, 26–34. [Google Scholar] [CrossRef]
- Zuzana, L.; Lukas, B.; Lucie, K.; Veronika, K.; Marketa, P.; Jan, M.; Ales, K.; Monika, K.; Jana, A. Detection of multiple stresses in Scots pine growing at post-mining sites using visible to near-infrared spectroscopy. Environ. Sci. Process. Impacts 2013, 15, 2004–2015. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.C.; Lai, H.Y.; Juang, K.W. Model evaluation of plant metal content and biomass yield for the phytoextraction of heavy metals by switchgrass. Ecotoxicol. Environ. Saf. 2012, 80, 393–400. [Google Scholar] [CrossRef] [PubMed]
- Nobi, E.P.; Dilipan, E.; Thangaradjou, T.; Sivakumar, K.; Kannan, L. Geochemical and geo-statistical assessment of heavy metal concentration in the sediments of different coastal ecosystems of Andaman Islands, India. Estuar. Coast. Shelf Sci. 2010, 87, 253–264. [Google Scholar] [CrossRef]
- Cornelius, M.; Phang, C.; Anand, R.R. Use of vegetation and soil in mineral exploration in areas of transported overburden, Yilgarn Craton, Western Australia: A contribution towards understanding metal transportation processes. In Proceedings of the Mexican International Conference on Computer Science, Morelia, Michoacan, Mexico, 24–28 September 2007; p. 3. [Google Scholar]
- Küpper, H.; Küpper, F.; Spiller, M. Environmental relevance of heavy metal-substituted chlorophylls using the example of water plants. J. Exp. Bot. 1996, 47, 259–266. [Google Scholar] [CrossRef] [Green Version]
- Sridhar, B.B.M.; Han, F.X.; Diehl, S.V.; Monts, D.L.; Su, Y. Spectral reflectance and leaf internal structure changes of barley plants due to phytoextraction of zinc and cadmium. Int. J. Remote Sens. 2007, 28, 1041–1054. [Google Scholar] [CrossRef]
- Slonecker, E.T. Analysis of the effects of heavy metals on vegetation hyperspectral reflectance properties. In Hyperspectral Remote Sensing of Vegetation; Thenkabail, A., Lyon, P.S., Huete, J.G., Eds.; CRC Press: Boca Raton, FL, USA, 2011; pp. 56–578. [Google Scholar]
- Sabins, F.F. Remote sensing for mineral exploration. Ore Geol. Rev. 1999, 14, 157–183. [Google Scholar] [CrossRef]
- Collins, W.; Chang, S.; Kuo, J.T. Detection of Hidden Mineral Deposits by Airborne Spectral Analysis of Forest Canopies; NASA Contract NSG-5222, Final Report; National Aeronautics and Space Administration: Washington, DC, USA, 1981; p. 61. [Google Scholar]
- Milton, N.M.; Ager, C.M.; Eiswerth, B.A.; Power, M.S. Arsenic- and selenium-induced changes in spectral reflectance and morphology of soybean plants. Remote Sens. Environ. 1990, 30, 263–269. [Google Scholar] [CrossRef]
- Horler, D.N.H.; Dockray, M.; Barber, J. The red edge of plant leaf reflectance. Int. J. Remote Sens. 1983, 4, 273–288. [Google Scholar] [CrossRef]
- Newete, S.W.; Erasmus, B.F.N.; Weiersbye, I.M.; Cho, M.A.; Byrne, M.J. Hyperspectral reflectance features of water hyacinth growing under feeding stresses of Neochetina spp. And different heavy metal pollutants. Int. J. Remote Sens. 2014, 35, 799–817. [Google Scholar] [CrossRef]
- Rathod, P.H. Spectral changes in the leaves of barley plant due to phytoremediation of metals—Results from a pot study. Eur. J. Remote Sens. 2015, 48, 283–302. [Google Scholar] [CrossRef]
- Dunagan, S.C.; Gilmore, M.S.; Varekamp, J.C. Effects of mercury on visible/near-infrared reflectance spectra of mustard spinach plants (Brassica rapa P.). Environ. Pollut. 2007, 148, 301–311. [Google Scholar] [CrossRef] [PubMed]
- Slonecker, T.; Haack, B.; Price, S. Spectroscopic analysis of arsenic uptake in Pteris ferns. Remote Sens. 2009, 1, 644–675. [Google Scholar] [CrossRef]
- Liu, Y.; Li, W.; Wu, G.; Xu, X. Feasibility of estimating heavy metal contaminations in floodplain soils using laboratory-based hyperspectral data—A case study along Le’an River, China. Int. J. Appl. Earth Obs. Geoinf. 2011, 14, 10–16. [Google Scholar] [CrossRef] [Green Version]
- Kooistra, L.; Salas, E.A.L.; Clevers, J.G.P.W.; Wehrens, R.; Leuven, R.S.E.W.; Nienhuis, P.H.; Buydens, L.M.C. Exploring field vegetation reflectance as an indicator of soil contamination in river floodplains. Environ. Pollut. 2004, 127, 281–290. [Google Scholar] [CrossRef]
- Zhu, L.; Chen, Z.; Wang, J.; Ding, J.; Yu, Y.; Li, J.; Xiao, N.; Jiang, L.; Zheng, Y.; Rimmington, G.M. Monitoring plant response to phenanthrene using the red edge of canopy hyperspectral reflectance. Mar. Pollut. Bull. 2014, 86, 332–341. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, X.; Liu, X.; Liu, M.; Wang, C.; Xia, X. A hyperspectral index sensitive to subtle changes in the canopy chlorophyll content under arsenic stress. Int. J. Appl. Earth Obs. Geoinf. 2015, 36, 41–53. [Google Scholar] [CrossRef]
- Shi, T.; Liu, H.; Chen, Y.; Wang, J.; Wu, G. Estimation of arsenic in agricultural soils using hyperspectral vegetation indices of rice. J. Hazard. Mater. 2016, 308, 243–252. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Liu, X.; Li, J.; Li, T. Estimating regional heavy metal concentrations in rice by scaling up a field-scale heavy metal assessment model. Int. J. Appl. Earth Obs. Geoinf. 2012, 19, 12–23. [Google Scholar] [CrossRef]
- Deng, D.M.; Shu, W.S.; Zhang, J.; Zou, H.L.; Lin, Z.; Ye, Z.H.; Wong, M.H. Zinc and cadmium accumulation and tolerance in populations of Sedum alfredii. Environ. Pollut. 2007, 147, 381–386. [Google Scholar] [CrossRef] [PubMed]
- Yoon, J.; Cao, X.; Zhou, Q.; Ma, L.Q. Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site. Sci. Total Environ. 2006, 368, 456–464. [Google Scholar] [CrossRef] [PubMed]
- Mutanga, O.; Skidmore, A.K. Red edge shift and biochemical content in grass canopies. ISPRS J. Photogramm. Remote Sens. 2007, 62, 34–42. [Google Scholar] [CrossRef]
- Sridhar, B.B.M.; Vincent, R.K.; Roberts, S.J.; Czajkowski, K. Remote sensing of soybean stress as an indicator of chemical concentration of biosolid amended surface soils. Int. J. Appl. Earth Obs. Geoinf. 2011, 13, 676–681. [Google Scholar] [CrossRef]
- Gamon, J.A.; Peñuelas, J.; Field, C.B. A narrow-waveband spectral index that tracks diurnal changes in photosynthetic efficiency. Remote Sens. Environ. 1992, 41, 35–44. [Google Scholar] [CrossRef]
- Liu, M.; Liu, X.; Ding, W.; Wu, L. Monitoring stress levels on rice with heavy metal pollution from hyperspectral reflectance data using wavelet-fractal analysis. Int. J. Appl. Earth Obs. Geoinf. 2011, 13, 246–255. [Google Scholar] [CrossRef]
- Gong, P.; Pu, R.; Biging, G.S.; Larrieu, M.R. Estimation of forest leaf area index using vegetation indices derived from Hyperion hyperspectral data. IEEE Trans. Geosci. Remote Sens. 2003, 41, 1355–1362. [Google Scholar] [CrossRef]
- Lee, K.S. Hyperspectral versus multispectral data for estimating leaf area index in four different biomes. Remote Sens. Environ. 2004, 91, 508–520. [Google Scholar] [CrossRef]
- Mutanga, O.; Skidmore, A.K.; Prins, H.H.T. Predicting in situ pasture quality in the Kruger National Park, South Africa, using continuum-removed absorption features. Remote Sens. Environ. 2004, 89, 393–408. [Google Scholar] [CrossRef]
- Meer, F.V.D. Indicator kriging applied to absorption band analysis in hyperspectral imagery: A case study from the Rodalquilar epithermal gold mining area, SE Spain. Int. J. Appl. Earth Obs. Geoinf. 2006, 8, 61–72. [Google Scholar] [CrossRef]
- Kokaly, R.F. Investigating a physical basis for spectroscopic estimates of leaf nitrogen concentration. Remote Sens. Environ. 2001, 75, 153–161. [Google Scholar] [CrossRef]
- Noomen, M.F.; Skidmore, A.K.; Meer, F.D.V.D.; Prins, H.H.T. Continuum removed band depth analysis for detecting the effects of natural gas, methane and ethane on maize reflectance. Remote Sens. Environ. 2006, 105, 262–270. [Google Scholar] [CrossRef]
- Huang, Z.; Turner, B.J.; Dury, S.J.; Wallis, I.R.; Foley, W.J. Estimating foliage nitrogen concentration from HYMAP data using continuum removal analysis. Remote Sens. Environ. 2004, 93, 18–29. [Google Scholar] [CrossRef]
- Darvishzadeh, R.; Skidmore, A.; Schlerf, M.; Atzberger, C.; Corsi, F.; Cho, M. LAI and chlorophyll estimation for a heterogeneous grassland using hyperspectral measurements. ISPRS J. Photogramm. Remote Sens. 2008, 63, 409–426. [Google Scholar] [CrossRef]
- Nguyen, H.T.; Lee, B.W. Assessment of rice leaf growth and nitrogen status by hyperspectral canopy reflectance and partial least square regression. Eur. J. Agron. 2006, 24, 349–356. [Google Scholar] [CrossRef]
- Ferwerda, J.G.; Skidmore, A.K.; Mutanga, O. Nitrogen detection with hyperspectral normalized ratio indices across multiple plant species. Int. J. Remote Sens. 2005, 26, 4083–4095. [Google Scholar] [CrossRef]
- Hansen, P.M.; Schjoerring, J.K. Reflectance measurement of canopy biomass and nitrogen status in wheat crops using normalized difference vegetation indices and partial least squares regression. Remote Sens. Environ. 2003, 86, 542–553. [Google Scholar] [CrossRef]
- Cho, M.A.; Skidmore, A.; Corsi, F.; Wieren, S.E.V.; Sobhan, I. Estimation of green grass/herb biomass from airborne hyperspectral imagery using spectral indices and partial least squares regression. Int. J. Appl. Earth Obs. Geoinf. 2007, 9, 414–424. [Google Scholar] [CrossRef]
- Næsset, E.; Bollandsås, O.M.; Gobakken, T. Comparing regression methods in estimation of biophysical properties of forest stands from two different inventories using laser scanner data. Remote Sens. Environ. 2005, 94, 541–553. [Google Scholar] [CrossRef]
- Chen, S.B.; Zhou, C.; Wang, J.N. Vegetation stress spectra and their relations with the contents of metal elements within the plant leaves in metal mines in Heilongjiang. Spectrosc. Spectr. Anal. 2012, 32, 1310–1315. [Google Scholar]
- Dawson, T.P.; Curran, P.J. Technical note. A new technique for interpolating the reflectance red edge position. Int. J. Remote Sens. 1998, 19, 2133–2139. [Google Scholar] [CrossRef]
- Elvidge, C.D. Visible and near infrared reflectance characteristics of dry plant materials. Int. J. Remote Sens. 1990, 11, 1775–1795. [Google Scholar] [CrossRef]
- Bonham-Carter, G.F. Numerical procedures and computer program for fitting an inverted Gaussian model to vegetation reflectance data. Comput. Geosci. 1988, 14, 339–356. [Google Scholar] [CrossRef]
- Guyot, G.; Baret, F. Utilisation de la haute resolution spectrale pour suivre l’etat des couverts vegetaux. Spectr. Signat. Objects Remote Sens. 1988, 287, 279. [Google Scholar]
- Cho, M.A.; Skidmore, A.K. A new technique for extracting the red edge position from hyperspectral data: The linear extrapolation method. Remote Sens. Environ. 2006, 101, 181–193. [Google Scholar] [CrossRef]
- Clevers, J.G.P.W.; Kooistra, L.; Salas, E.A.L. Study of heavy metal contamination in river floodplains using the red-edge position in spectroscopic data. Int. J. Remote Sens. 2004, 25, 3883–3895. [Google Scholar] [CrossRef]
- Götze, C.; Jung, A.; Merbach, I.; Wennrich, R.; Gläßer, C. Spectrometric analyses in comparison to the physiological condition of heavy metal stressed floodplain vegetation in a standardised experiment. Cent. Eur. J. Geosci. 2010, 2, 132–137. [Google Scholar] [CrossRef] [Green Version]
- Gitelson, A.; Merzlyak, M.N. Spectral reflectance changes associated with autumn senescence of Aesculus hippocastanum L. And Acer platanoides L. Leaves. Spectral features and relation to chlorophyll estimation. J. Plant Physiol. 1994, 143, 286–292. [Google Scholar] [CrossRef]
- Sims, D.A.; Gamon, J.A. Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sens. Environ. 2002, 81, 337–354. [Google Scholar] [CrossRef]
- Clevers, J.G.P.W. The use of imaging spectrometry for agricultural applications. ISPRS J. Photogramm. Remote Sens. 1999, 54, 299–304. [Google Scholar] [CrossRef]
- Curran, P.J. Remote sensing of foliar chemistry. Remote Sens. Environ. 1990, 30, 271–278. [Google Scholar] [CrossRef]
- Kokaly, R.F.; Clark, R.N. Spectroscopic determination of leaf biochemistry using band-depth analysis of absorption features and stepwise multiple linear regression. Remote Sens. Environ. 1999, 67, 267–287. [Google Scholar] [CrossRef]
- Arellano, P.; Tansey, K.; Balzter, H.; Boyd, D.S. Detecting the effects of hydrocarbon pollution in the amazon forest using hyperspectral satellite images. Environ. Pollut. 2015, 205, 225–239. [Google Scholar] [CrossRef] [PubMed]
- Wuensch, K.L. Straightforward statistics for the behavioral sciences by James D. Evans. J. Am. Stat. Assoc. 1996, 91, 1750. [Google Scholar] [CrossRef]
- Cai, J.; Zhang, Y.; Li, Y.; Liang, X.S.; Jiang, T. Analyzing the characteristics of soil moisture using gldas data: A case study in eastern china. Appl. Sci. 2017, 7, 566. [Google Scholar] [CrossRef]
- Ji, C.; Zhang, Y.; Cheng, Q.; Li, Y.; Jiang, T.; Liang, X.S. On the relationship between the early spring indian ocean’s sea surface temperature (SST) and the tibetan plateau atmospheric heat source in summer. Glob. Planet Chang. 2018, 164, 1–10. [Google Scholar] [CrossRef]
- Ji, C.; Zhang, Y.; Cheng, Q.; Tsou, J.Y.; Jiang, T.; Liang, X.S. Evaluating the impact of sea surface temperature (SST) on spatial distribution of chlorophyll- a concentration in the east china sea. Int. J. Appl. Earth Obs. Geoinf. 2018, 68, 252–261. [Google Scholar] [CrossRef]
- Schlerf, M.; Atzberger, C.; Hill, J. Remote sensing of forest biophysical variables using Hymap imaging spectrometer data. Remote Sens. Environ. 2005, 95, 177–194. [Google Scholar] [CrossRef]
- Efron, B.; Gong, G. A leisurely look at the bootstrap, the jackknife, and cross-validation. Am. Stat. 1983, 37, 36–48. [Google Scholar]
- Miphokasap, P.; Honda, K.; Vaiphasa, C.; Souris, M.; Nagai, M. Estimating canopy nitrogen concentration in sugarcane using field imaging spectroscopy. Remote Sens. 2012, 4, 1651–1670. [Google Scholar] [CrossRef]
- Wang, F.; Gao, J.; Zha, Y. Hyperspectral sensing of heavy metals in soil and vegetation: Feasibility and challenges. ISPRS J. Photogramm. Remote Sens. 2018, 136, 73–84. [Google Scholar] [CrossRef]
- Küpper, H.; Küpper, F.; Spiller, M. In situ detection of heavy metal substituted chlorophylls in water plants. Photosynth. Res. 1998, 58, 123–133. [Google Scholar] [CrossRef] [Green Version]
- Prasad, S.M.; Dwivedi, R.; Zeeshan, M. Growth, photosynthetic electron transport, and antioxidant responses of young soybean seedlings to simultaneous exposure of nickel and UV-B stress. Photosynthetica 2005, 43, 177–185. [Google Scholar] [CrossRef]
- Peñuelas, J.; Gamon, J.A.; Fredeen, A.L.; Merino, J.; Field, C.B. Reflectance indices associated with physiological changes in nitrogen- and water-limited sunflower leaves. Remote Sens. Environ. 1994, 48, 135–146. [Google Scholar] [CrossRef]
- Skidmore, A. Imaging spectrometry and vegetation science. In Imaging Spectrometry; Springer: Dordrecht, The Netherlands, 2002; Volume 4, pp. 111–155. [Google Scholar]
- Ren, H.Y.; Zhuang, D.F.; Pan, J.J.; Shi, X.Z.; Wang, H.J. Hyper-spectral remote sensing to monitor vegetation stress. J. Soils Sediments 2008, 8, 323–326. [Google Scholar] [CrossRef] [Green Version]
- Kabatapendias, A.; Pendias, H.K. Trace Elements in Soils and Plants; CRC Press: Boca Raton, FL, USA, 2011; pp. 951–974. [Google Scholar]
S0 | S1 | S2 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
White Birch | Mongolian Oak | Cotton Grass | White Birch | Mongolian Oak | Cotton Grass | WHITE BIRCH | Mongolian Oak | Cotton Grass | ||
Co | Leaf | 0.27 ± 0.07 | 0.17 ± 0.03 | 0.40 ± 0.09 | 0.75 ± 0.22 | 0.51 ± 0.14 | 0.52 ± 0.17 | 0.86 ± 0.17 | 0.58 ± 0.15 | 0.78 ± 0.26 |
Root | 0.24 ± 0.08 | 0.19 ± 0.04 | 0.55 ± 0.13 | 0.51 ± 0.16 | 0.42 ± 0.13 | 0.66 ± 0.24 | 0.56 ± 0.15 | 0.50 ± 0.15 | 1.19 ± 0.41 | |
Cu | Leaf | 7.87 ± 4.46 | 6.32 ± 2.57 | 8.07 ± 4.20 | 23.81 ± 11.20 | 21.11 ± 8.19 | 20.46 ± 7.71 | 25.96 ± 8.23 | 18.28 ± 2.48 | 25.75 ± 9.55 |
Root | 5.84 ± 3.30 | 5.48 ± 2.07 | 6.05 ± 2.82 | 16.28 ± 7.97 | 18.81 ± 9.51 | 15.67 ± 6.81 | 15.65 ± 5.88 | 15.71 ± 2.49 | 17.72 ± 7.75 | |
Mo | Leaf | 0.18 ± 0.05 | 0.21 ± 0.04 | 0.16 ± 0.04 | 0.66 ± 0.19 | 0.44 ± 0.14 | 0.48 ± 0.20 | 0.77 ± 0.25 | 0.45 ± 0.08 | 0.77 ± 0.33 |
Root | 0.15 ± 0.06 | 0.33 ± 0.81 | 0.13 ± 0.03 | 0.44 ± 0.13 | 0.54 ± 1.45 | 0.44 ± 0.23 | 0.51 ± 0.18 | 0.60 ± 0.17 | 0.65 ± 0.25 | |
Ni | Leaf | 1.73 ± 0.55 | 1.48 ± 0.30 | 0.93 ± 0.20 | 5.31 ± 1.88 | 5.30 ± 2.30 | 3.52 ± 0.93 | 5.77 ± 1.36 | 5.64 ± 1.40 | 4.22 ± 1.36 |
Root | 1.09 ± 0.33 | 1.22 ± 0.34 | 0.86 ± 0.32 | 2.88 ± 0.82 | 3.99 ± 1.48 | 2.71 ± 0.85 | 3.34 ± 0.86 | 4.09 ± 1.37 | 3.59 ± 1.50 |
S1 | S2 | ||||||
---|---|---|---|---|---|---|---|
White Birch | Mongolian Oak | Cotton Grass | White Birch | Mongolian Oak | Cotton Grass | ||
Co | r | 0.79 | 0.73 | 0.62 | 0.77 | 0.81 | 0.70 |
TF | 1.51 | 1.22 | 0.81 | 1.53 | 1.17 | 0.66 | |
Cu | r | 0.82 | 0.76 | 0.64 | 0.81 | 0.61 | 0.65 |
TF | 1.52 | 1.20 | 1.35 | 1.76 | 1.18 | 1.50 | |
Mo | r | 0.72 | 0.75 | 0.59 | 0.64 | 0.59 | 0.68 |
TF | 1.50 | 0.82 | 1.16 | 1.53 | 0.79 | 1.20 | |
Ni | r | 0.73 | 0.67 | 0.63 | 0.68 | 0.75 | 0.65 |
TF | 1.84 | 1.35 | 1.33 | 1.75 | 1.42 | 1.24 |
OR | BD | BDR | NBDI | |||||
---|---|---|---|---|---|---|---|---|
R2 | RMSECV | R2 | RMSECV | R2 | RMSECV | R2 | RMSECV | |
White birch (n = 30) | ||||||||
Co | 0.21 | 0.48 | 0.36 | 0.23 | 0.22 | 0.45 | 0.31 | 0.34 |
Cu | 0.39 | 10.88 | 0.58 | 5.84 | 0.49 | 7.76 | 0.47 | 8.05 |
Mo | 0.28 | 0.61 | 0.33 | 0.55 | 0.34 | 0.56 | 0.24 | 0.82 |
Ni | 0.39 | 3.06 | 0.49 | 1.84 | 0.44 | 2.23 | 0.34 | 4.11 |
Mongolian oak (n = 30) | ||||||||
Co | 0.23 | 0.38 | 0.35 | 0.21 | 0.36 | 0.21 | 0.21 | 0.45 |
Cu | 0.28 | 14.27 | 0.44 | 8.45 | 0.35 | 11.29 | 0.40 | 9.84 |
Mo | 0.33 | 0.56 | 0.43 | 0.37 | 0.38 | 0.50 | 0.30 | 0.76 |
Ni | 0.26 | 4.72 | 0.47 | 1.98 | 0.40 | 2.95 | 0.29 | 4.34 |
Cotton grass (n = 30) | ||||||||
Co | 0.34 | 0.28 | 0.41 | 0.17 | 0.37 | 0.24 | 0.26 | 0.41 |
Cu | 0.36 | 11.57 | 0.51 | 6.19 | 0.44 | 8.23 | 0.48 | 7.74 |
Mo | 0.26 | 0.64 | 0.39 | 0.43 | 0.36 | 0.48 | 0.29 | 0.72 |
Ni | 0.36 | 3.43 | 0.56 | 1.13 | 0.50 | 1.84 | 0.42 | 2.15 |
All vegetation samples (n = 90) | ||||||||
Co | 0.27 | 0.33 | 0.37 | 0.19 | 0.37 | 0.21 | 0.24 | 0.42 |
Cu | 0.37 | 11.32 | 0.53 | 6.05 | 0.43 | 8.74 | 0.45 | 8.26 |
Mo | 0.25 | 0.72 | 0.39 | 0.41 | 0.35 | 0.54 | 0.29 | 0.74 |
Ni | 0.34 | 3.49 | 0.51 | 1.63 | 0.43 | 2.52 | 0.37 | 3.04 |
OR | BD | BDR | NBDI | |||||
---|---|---|---|---|---|---|---|---|
R2 | RMSECV | R2 | RMSECV | R2 | RMSECV | R2 | RMSECV | |
White birch (n = 30) | ||||||||
Co | 0.35 | 0.32 | 0.48 | 0.22 | 0.43 | 0.23 | 0.39 | 0.27 |
Cu | 0.43 | 9.46 | 0.77 | 4.54 | 0.69 | 5.36 | 0.55 | 7.47 |
Mo | 0.32 | 0.59 | 0.45 | 0.46 | 0.51 | 0.29 | 0.37 | 0.55 |
Ni | 0.38 | 3.26 | 0.64 | 2.17 | 0.65 | 2.04 | 0.54 | 2.65 |
Mongolian oak (n = 30) | ||||||||
Co | 0.28 | 0.42 | 0.45 | 0.29 | 0.43 | 0.32 | 0.35 | 0.39 |
Cu | 0.41 | 9.87 | 0.68 | 5.74 | 0.63 | 6.75 | 0.49 | 8.73 |
Mo | 0.33 | 0.52 | 0.46 | 0.46 | 0.43 | 0.44 | 0.38 | 0.51 |
Ni | 0.45 | 2.42 | 0.74 | 1.24 | 0.68 | 1.83 | 0.52 | 2.67 |
Cotton grass (n = 30) | ||||||||
Co | 0.33 | 0.38 | 0.43 | 0.28 | 0.32 | 0.41 | 0.25 | 0.49 |
Cu | 0.47 | 8.48 | 0.69 | 5.37 | 0.71 | 4.85 | 0.53 | 8.02 |
Mo | 0.39 | 0.62 | 0.48 | 0.41 | 0.46 | 0.39 | 0.46 | 0.42 |
Ni | 0.35 | 3.89 | 0.65 | 2.15 | 0.67 | 2.08 | 0.48 | 3.41 |
All vegetation samples (n = 90) | ||||||||
Co | 0.32 | 0.37 | 0.46 | 0.26 | 0.40 | 0.37 | 0.33 | 0.41 |
Cu | 0.48 | 9.11 | 0.72 | 4.44 | 0.69 | 5.65 | 0.52 | 8.07 |
Mo | 0.35 | 0.59 | 0.49 | 0.41 | 0.47 | 0.48 | 0.41 | 0.50 |
Ni | 0.41 | 3.04 | 0.69 | 2.08 | 0.67 | 2.12 | 0.52 | 2.87 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, C.; Chen, S.; Zhang, Y.; Zhao, J.; Song, D.; Liu, D. Evaluating Metal Effects on the Reflectance Spectra of Plant Leaves during Different Seasons in Post-Mining Areas, China. Remote Sens. 2018, 10, 1211. https://doi.org/10.3390/rs10081211
Zhou C, Chen S, Zhang Y, Zhao J, Song D, Liu D. Evaluating Metal Effects on the Reflectance Spectra of Plant Leaves during Different Seasons in Post-Mining Areas, China. Remote Sensing. 2018; 10(8):1211. https://doi.org/10.3390/rs10081211
Chicago/Turabian StyleZhou, Chao, Shengbo Chen, Yuanzhi Zhang, Jianhua Zhao, Derui Song, and Dawei Liu. 2018. "Evaluating Metal Effects on the Reflectance Spectra of Plant Leaves during Different Seasons in Post-Mining Areas, China" Remote Sensing 10, no. 8: 1211. https://doi.org/10.3390/rs10081211