Characteristic and Driving Factors of Aerosol Optical Depth over Mainland China during 1980–2017
<p>Spatial distributions of CARSNET stations that were used in China.</p> "> Figure 2
<p>The humidity zones and temperate zones in China (<b>a</b>) for humidity zones, (<b>b</b>) for temperate zones).</p> "> Figure 3
<p>Validations of AOD products from MODIS and MERRA-2.</p> "> Figure 4
<p>The number of AOD records from MODIS during 2015 over mainland China.</p> "> Figure 5
<p>The annual mean values of the MERRA AOD during 1980–2017 over mainland China.</p> "> Figure 6
<p>The annual mean AOD values over mainland China.</p> "> Figure 7
<p>The monthly mean AOD values throughout China.</p> "> Figure 8
<p>The monthly mean AOD values in different climate zones (<b>a</b>) for climate zones, (<b>b</b>) for humidity zones).</p> "> Figure 9
<p>The MK and Sen Slope values for AOD throughout China during 1980–2017 (<b>a</b>) for MK values, (<b>b</b>) for Sen Slope values.</p> "> Figure 10
<p>The annual mean AODP over mainland China (<b>a</b>–<b>e</b> for BCAOD, DUAOD, OCAOD, SSAOD, and SO<sub>4</sub>AOD, respectively).</p> "> Figure 11
<p>The seasonal mean AODP values over mainland China during 1980–2017.</p> "> Figure 12
<p>The monthly mean AODP in different humid zones (<b>a</b>–<b>e</b> for BCAOD, DUAOD, OCAOD, SSAOD, and SO<sub>4</sub>AOD, respectively; A for humid; B for semi-humid; C for semi-arid; D for arid).</p> "> Figure 13
<p>The monthly mean AODP in different climate zones (<b>a</b>–<b>e</b> for BCAOD, DUAOD, OCAOD, SSAOD, and SO<sub>4</sub>AOD, respectively; I for cold-temperate; II for mid-temperate; III for warm-temperate; IV for the north subtropical zone; V for the mid-subtropics; VI for the south subtropics; VII for the edge of the tropical zone; HI for the sub-frigid zone in the plateau; HII for the temperature zone in the plateau; A for humid; B for semi-humid; C for semi-arid; D for arid. IIE for the mid-tropical zone with humid weather).</p> "> Figure 14
<p>The annual variations of the anthropogenic aerosol emissions in China during 1980–2017.</p> "> Figure 15
<p>Spatial variations of the anthropogenic aerosol emissions over mainland China (these data were derived from the MERRA-2 dataset).</p> "> Figure 16
<p>The spatial distributions of correlation coefficients between AOD and the anthropogenic aerosol emissions over mainland China.</p> "> Figure 17
<p>The correlation coefficient between the annual mean AOD and socioeconomic factors during 1988–2015.</p> "> Figure 18
<p>The annual mean AOD values in different land-use coverage during 1980–2015.</p> "> Figure A1
<p>The topographic zones over mainland China (IA1 for the Greater Khingan Range; IIA2 for the mountainous area in the eastern part of Northeast China; IIB3 for the foothills of the piedmont of SanheMountain; IIA3 for the piedmont plain in the eastern part of Northeast China; IIA1 for the SanjiangPlain; IIB2 for south of the Greater Khingan Range; IIB1 for the Central Songliao Plain; IIC3 for the Eastern Inner Mongolia high plain; IID4 for the Altai Mountains and the Tacheng Basin; IID3 for the Junggar Basin; IIC3 for the Eastern Inner Mongolia high plain; IIC2 for south of the Greater Khingan Range; IIC1 for the Southwestern Songliao Plain; IID5 for Ili Basin; IID1 for the Inner Mongolia High Plain; IIID1 for Tarim and Turpan Basins; IID2 for the Alashan and Hexi Corridor; HIID2 for the north wing of the Kunlun Mountains; IIIB3 for the mountains and hills in Northern China; IIIA1 for the hills in Jiaodong and Liaodong; IIIB2 for the North China Plain; HID1 for the Alpine Plateau in Kunlun; HIID1 for the Qaidam Basin; IIIC1 for the Jinzhong-Shaanxi-Gandong Plateau; HIIC1 for the Qilian Mountain Area; IIIA1 for the hills in Jiaodong and Liaodong; IIIB1 for the Shandong hilly area; IIIB4 for the Shanxi-Guanzhong Basin; HIID3 for Alishan Mountain; HIC1 for the Southern Qinghai Plateau Gully; HIC2 for the Qiangtang Plateau Lake Basin; IVA1 for Huainan and the middle and lower reaches of the Yangtze River; HIB1 for the GologNagquHilly Plateau; IVA2 for the Hanzhoung Basin; HIIAB1 for the deep alpine valley in Tibet, Sichuan Province; VA4 for the Sichuan Basin; VA2 for theJiangnan and Nanling Mountains; VA3 for the Guizhou Plateau; VA1 for the Chiang-nan Hilly Region; VA5 for the Yunnan Plateau; VA6 for the Southeast Himalayas;VIA2 for the Fujian and Guangdong Guangxi Hilly Plain;VIA1 for the mountains and plains in North-Central Taiwan; VIIA1 for the lowlands in Southern Taiwan; VIIA3 for the Hilly Valley in Southern Yunnan; VIIA2 for the hilly area in Qiong Lei; VIIIA1 for theQiong Lei Lowlands and Dongsha-Xisha-Nansha;and HIIC2 for the Zangnan mountain area).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Data
2.1.1. Observation Data
2.1.2. MODIS and MERRA-2 Products
2.1.3. Socioeconomic Data
2.1.4. Climate Zones and Terrain Features
2.2. Trend Analysis Method
2.2.1. Mann-Kendall Index
2.2.2. Sen’s Slope Index
2.3. Statistical Indicators
3. Results
3.1. Validation of AODProducts
3.2. Spatial and Temporal Variations of AODin China
3.2.1. Annual Variations of AOD in China
3.2.2. Spatial and Temporal Variations of AOD in China
3.2.3. Temporal Trends of AOD in China
4. Discussions
4.1. The Composition of AOD over Mainland China
4.2. The Effect of Anthropogenic Aerosol Emissionson AOD
4.3. The Socioeconomic Factors for AOD
4.4. The Effect of Land-Use and Land-Cover Change on AOD
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
Land-Use Type | 1980 | 1990 | 1995 | 2000 | 2005 | 2010 | 2015 |
---|---|---|---|---|---|---|---|
Paddy Land | 0.107 | 0.158 | 0.164 | 0.199 | 0.314 | 0.352 | 0.291 |
Dry Land | 0.106 | 0.159 | 0.156 | 0.206 | 0.276 | 0.328 | 0.286 |
Forestland | 0.071 | 0.103 | 0.102 | 0.140 | 0.206 | 0.236 | 0.211 |
Shrub Woodland | 0.061 | 0.106 | 0.106 | 0.138 | 0.213 | 0.260 | 0.211 |
Sparse Woodland | 0.087 | 0.136 | 0.140 | 0.174 | 0.276 | 0.316 | 0.260 |
Other Woodlands | 0.074 | 0.102 | 0.130 | 0.152 | 0.242 | 0.265 | 0.231 |
High Coverage Grassland | 0.152 | 0.174 | 0.182 | 0.212 | 0.224 | 0.254 | 0.243 |
Mid Coverage Grassland | 0.145 | 0.169 | 0.188 | 0.209 | 0.220 | 0.247 | 0.229 |
Low Coverage Grassland | 0.133 | 0.149 | 0.140 | 0.185 | 0.182 | 0.205 | 0.190 |
Canal Land | 0.219 | 0.263 | 0.266 | 0.307 | 0.390 | 0.430 | 0.387 |
Lake | 0.145 | 0.168 | 0.174 | 0.208 | 0.234 | 0.256 | 0.236 |
Reservoir Pit | 0.232 | 0.277 | 0.283 | 0.320 | 0.433 | 0.470 | 0.410 |
Permanent Glacier Snow | 0.124 | 0.140 | 0.139 | 0.179 | 0.178 | 0.198 | 0.192 |
Shoal | 0.221 | 0.254 | 0.148 | 0.278 | 0.367 | 0.394 | 0.349 |
Bottomland | 0.180 | 0.209 | 0.220 | 0.245 | 0.276 | 0.315 | 0.291 |
Urban Land | 0.234 | 0.279 | 0.283 | 0.333 | 0.424 | 0.469 | 0.423 |
Rural Settlements | 0.244 | 0.299 | 0.298 | 0.358 | 0.448 | 0.500 | 0.456 |
Other Constructive Land | 0.233 | 0.280 | 0.283 | 0.330 | 0.420 | 0.450 | 0.400 |
Sand | 0.200 | 0.219 | 0.249 | 0.262 | 0.253 | 0.302 | 0.275 |
Gobi | 0.168 | 0.180 | 0.190 | 0.210 | 0.198 | 0.229 | 0.202 |
Saline Alkali Land | 0.173 | 0.182 | 0.199 | 0.219 | 0.212 | 0.250 | 0.228 |
Marshland | 0.164 | 0.172 | 0.153 | 0.191 | 0.178 | 0.211 | 0.211 |
Bare Land | 0.174 | 0.190 | 0.184 | 0.216 | 0.206 | 0.238 | 0.214 |
Bare Rock Land | 0.137 | 0.147 | 0.158 | 0.188 | 0.183 | 0.208 | 0.194 |
Other | 0.099 | 0.109 | 0.094 | 0.142 | 0.135 | 0.147 | 0.132 |
Land-Use Type | 1980 | 1990 | 1995 | 2000 | 2005 | 2010 | 2015 |
---|---|---|---|---|---|---|---|
Paddy Land | 0.037 | 0.036 | 0.041 | 0.023 | 0.077 ** | 0.101 ** | 0.142 ** |
Dry Land | 0.111 ** | 0.107 ** | 0.121 ** | 0.109 ** | 0.138 ** | 0.149 ** | 0.163 ** |
Forestland | −0.004 | −0.062 ** | −0.071 ** | −0.126 ** | −0.169 ** | −0.152 ** | −0.110 ** |
Shrub Woodland | −0.101 ** | −0.047 * | −0.025 | −0.059 ** | −0.041 * | −0.062 ** | −0.108 ** |
Sparse Woodland | −0.205 ** | −0.260 ** | −0.225 ** | −0.279 ** | −0.270 ** | −0.246 ** | −0.202 ** |
Other Woodlands | −0.155 ** | −0.155 ** | −0.124 ** | −0.146 ** | −0.213 ** | −0.241 ** | −0.216 ** |
High Coverage Grassland | −0.418 ** | −0.392 ** | −0.281 ** | −0.380 ** | −0.360 ** | −0.364 ** | −0.380 ** |
Mid Coverage Grassland | −0.365 ** | −0.388 ** | −0.386 ** | −0.388 ** | −0.393 ** | −0.404 ** | −0.435 ** |
Low Coverage Grassland | −0.278 ** | −0.321 ** | −0.333 ** | −0.332 ** | −0.346 ** | −0.352 ** | −0.366 ** |
Canal Land | 0.178 ** | 0.200 ** | 0.178 ** | 0.216 ** | 0.210 ** | 0.213 ** | 0.227 ** |
Lake | 0.058 ** | 0.062 ** | 0.056 * | 0.080 ** | 0.080 ** | 0.079 ** | 0.100 ** |
Reservoir Pit | 0.227 ** | 0.250 ** | 0.223 ** | 0.262 ** | 0.291 ** | 0.296 ** | 0.299 ** |
Permanent Glacier Snow | −0.213 ** | −0.159 ** | −0.164 ** | −0.157 ** | −0.150 ** | −0.152 ** | −0.155 ** |
Shoal | 0.092 ** | 0.089 ** | 0.096 ** | 0.088 ** | 0.125 ** | 0.125 ** | 0.106 ** |
Bottomland | 0.017 | −0.02 | −0.024 | −0.014 | −0.054 ** | −0.015 | 0.012 |
Urban Land | 0.336 ** | 0.379 ** | 0.375 ** | 0.421 ** | 0.434 ** | 0.425 ** | 0.436 ** |
Rural Settlements | 0.218 ** | 0.192 ** | 0.162 ** | 0.149 ** | 0.153 ** | 0.184 ** | 0.232 ** |
Other Constructive Land | 0.254 ** | 0.283 ** | 0.289 ** | 0.331 ** | 0.352 ** | 0.347 ** | 0.329 ** |
Sand | −0.095 ** | −0.129 ** | −0.124 ** | −0.139 ** | −0.158 ** | −0.150 ** | −0.152 ** |
Gobi | −0.121 ** | −0.135 ** | −0.151 ** | −0.150 ** | −0.158 ** | −0.161 ** | −0.163 ** |
Saline Alkali Land | −0.080 ** | −0.123 ** | −0.110 ** | −0.146 ** | −0.158 ** | −0.155 ** | −0.144 ** |
Marshland | −0.065 ** | −0.101 ** | −0.125 ** | −0.118 ** | −0.155 ** | −0.142 ** | −0.114 ** |
Bare Land | −0.091 ** | −0.089 ** | −0.108 ** | −0.109 ** | −0.118 ** | −0.120 ** | −0.126 ** |
Bare Rock Land | −0.298 ** | −0.292 ** | −0.294 ** | −0.287 ** | −0.278 ** | −0.280 ** | −0.289 ** |
Other | −0.107 ** | −0.116 ** | −0.075 ** | −0.116 ** | −0.119 ** | −0.123 ** | −0.129 ** |
References
- Bellouin, N.; Boucher, O.; Haywood, J.; Reddy, M.S. Global estimate of aerosol direct radiative forcing from satellite measurements. Nature 2005, 438, 1138–1141. [Google Scholar] [CrossRef] [PubMed]
- Kirkevag, A.; Iversen, T. Global direct radiative forcing by process-parameterized aerosol optical properties. J. Geophys. Res.-Atmos. 2002, 107. [Google Scholar] [CrossRef] [Green Version]
- He, L.J.; Wang, L.C.; Lin, A.W.; Zhang, M.; Bilal, M.; Wei, J. Performance of the NPP-VIIRS and Aqua-MODIS aerosol optical depth products over the yangtze river basin. Remote Sens. 2018, 10, 117. [Google Scholar] [CrossRef]
- Zhang, W.H.; Xu, H.; Zheng, F.J. Aerosol optical depth retrieval over East Asia using Himawari-8/AHI data. Remote Sens. 2018, 10, 137. [Google Scholar] [CrossRef]
- Ma, X.; Yu, F.; Luo, G. Aerosol direct radiative forcing based on GEOS-Chem-APM and uncertainties. Atmos. Chem. Phys. 2012, 12, 5563–5581. [Google Scholar] [CrossRef] [Green Version]
- Hauser, A.; Oesch, D.; Foppa, N. Aerosol optical depth over land: Comparing AERONET, AVHRR and MODIS. Geophys. Res. Lett. 2005, 32. [Google Scholar] [CrossRef] [Green Version]
- Soni, K.; Parmar, K.S.; Kapoor, S.; Kumar, N. Statistical variability comparison in MODIS and AERONET derived aerosol optical depth over Indo-Gangetic Plains using time series modeling. Sci. Total Environ. 2016, 553, 258–265. [Google Scholar] [CrossRef] [PubMed]
- He, L.; Wang, L.; Lin, A.; Zhang, M.; Bilal, M.; Tao, M. Aerosol Optical Properties and Associated Direct Radiative Forcing over the Yangtze River Basin during 2001–2015. Remote Sens. 2017, 9, 746. [Google Scholar] [CrossRef]
- Che, H.Z.; Qi, B.; Zhao, H.J.; Xia, X.G.; Eck, T.F.; Goloub, P.; Dubovik, O.; Estelles, V.; Cuevas-Agullo, E.; Blarel, L.; et al. Aerosol optical properties and direct radiative forcing based on measurements from the China Aerosol Remote Sensing Network (CARSNET) in eastern China. Atmos. Chem. Phys. 2018, 18, 405–425. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.Y.; Chen, Q.L.; Che, H.Z.; Zhang, R.J.; Gui, K.; Zhang, H.; Zhao, T.L. Spatial distribution and temporal variation of aerosol optical depth in the Sichuan basin, China, the recent ten years. Atmos. Environ. 2016, 147, 434–445. [Google Scholar] [CrossRef]
- Xie, Y.; Zhang, Y.; Xiong, X.X.; Qu, J.J.; Che, H.Z. Validation of MODIS aerosol optical depth product over China using CARSNET measurements. Atmos. Environ. 2011, 45, 5970–5978. [Google Scholar] [CrossRef]
- Torres, O.; Bhartia, P.K.; Herman, J.R.; Sinyuk, A.; Ginoux, P.; Holben, B. A Long-Term record of aerosol optical depth from TOMS observations and comparison to AERONET measurements. J. Atmos. Sci. 2002, 59, 398–413. [Google Scholar] [CrossRef]
- Esposito, F.; Pavese, G.; Serio, C. A preliminary study on the correlation between TOMS aerosol index and ground-based measured aerosol optical depth. Atmos. Environ. 2001, 35, 5093–5098. [Google Scholar] [CrossRef]
- Blackmore, T.; O’Carroll, A.; Fennig, K.; Saunders, R. Correction of AVHRR Pathfinder SST data for volcanic aerosol effects using ATSR SSTs and TOMS aerosol optical depth. Remote Sens. Environ. 2012, 116, 107–117. [Google Scholar] [CrossRef]
- Che, Y.; Xue, Y.; Mei, L.; Guang, J.; She, L.; Guo, J.; Hu, Y.; Xu, H.; He, X.; Di, A. Intercomparison of three AATSR Level 2 (L2) AOD products over China. Atmos. Chem. Phys. 2016, 16, 9655–9674. [Google Scholar] [CrossRef]
- Grey, W.; North, P.; Los, S.O.; Mitchell, R.M. Aerosol optical depth and land surface reflectance from Multiangle AATSR measurements: Global validation and intersensor comparisons. IEEE Trans. Geosci. Remote Sens. 2006, 44, 2184–2197. [Google Scholar] [CrossRef]
- Bevan, S.L.; North, P.; Los, S.O.; Grey, W. A global data set of atmospheric aerosol optical depth and surface reflectance from AATSR. Remote Sens. Environ. 2012, 116, 199–210. [Google Scholar] [CrossRef]
- Sayer, A.M.; Hsu, N.C.; Bettenhausen, C.; Jeong, M.J.; Holben, B.N.; Zhang, J. Global and regional evaluation of over-land spectral aerosol optical depth retrievals from SeaWiFS. Atmos. Meas. Tech. 2012, 5, 1761–1778. [Google Scholar] [CrossRef] [Green Version]
- Hsu, N.C.; Gautam, R.; Sayer, A.M.; Bettenhausen, C.; Li, C.; Jeong, M.J.; Tsay, S.C.; Holben, B.N. Global and regional trends of aerosol optical depth over land and ocean using SeaWiFS measurements from 1997 to 2010. Atmos. Chem. Phys. 2012, 12, 8037–8053. [Google Scholar] [CrossRef] [Green Version]
- Melin, F.; Zibordi, G.; Djavidnia, S. Development and validation of a technique for merging satellite derived aerosol optical depth from SeaWiFS and MODIS. Remote Sens. Environ. 2007, 108, 436–450. [Google Scholar] [CrossRef]
- Hauser, A.; Oesch, D.; Foppa, N.; Wunderle, S. NOAA AVHRR derived aerosol optical depth over land. J. Geophys. Res. Atmos. 2005, 110. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Xue, Y.; de Leeuw, G.; Li, C.; Yang, L.; Hou, T.; Marir, F. Retrieval of aerosol optical depth and surface reflectance over land from NOAA AVHRR data. Remote. Sens. Environ. 2013, 133, 1–20. [Google Scholar] [CrossRef]
- Gao, L.; Li, J.; Chen, L.; Zhang, L.Y.; Heidinger, A.K. Retrieval and validation of atmospheric aerosol optical depth from AVHRR over china. IEEE Trans. Geosci. Remote Sens. 2016, 54, 6280–6291. [Google Scholar] [CrossRef]
- Liu, G.R.; Lin, T.H.; Kuo, T.H. Estimation of aerosol optical depth by applying the optimal distance number to NOAA AVHRR data. Remote Sens. Environ. 2002, 81, 247–252. [Google Scholar] [CrossRef]
- Nichol, J.E.; Bilal, M. Validation of MODIS 3 km Resolution Aerosol Optical Depth Retrievals over Asia. Remote Sens. 2016, 8, 328. [Google Scholar] [CrossRef]
- Ma, Y.; Li, Z.Q.; Li, Z.Z.; Xie, Y.S.; Fu, Q.Y.; Li, D.H.; Zhang, Y.; Xu, H.; Li, K.T. Validation of MODIS aerosol optical depth retrieval over mountains in central China based on a Sun-Sky radiometer site of SONET. Remote Sens. 2016, 8, 111. [Google Scholar] [CrossRef]
- He, Q.S.; Li, C.C.; Tang, X.; Li, H.L.; Geng, F.H.; Wu, Y.L. Validation of MODIS derived aerosol optical depth over the Yangtze River Delta in China. Remote Sens. Environ. 2010, 114, 1649–1661. [Google Scholar] [CrossRef]
- Zhang, Z.Y.; Wu, W.L.; Wei, J.; Song, Y.; Yan, X.T.; Zhu, L.D.; Wang, Q. Aerosol optical depth retrieval from visibility in China during 1973–2014. Atmos. Environ. 2017, 171, 38–48. [Google Scholar] [CrossRef]
- Tang, W.J.; Yang, K.; Qin, J.; Niu, X.L.; Lin, C.G.; Jing, X.W. A revisit to decadal change of aerosol optical depth and its impact on global radiation over China. Atmos. Environ. 2017, 150, 106–115. [Google Scholar] [CrossRef]
- He, Q.Q.; Zhang, M.; Huang, B. Spatio-temporal variation and impact factors analysis of satellite-based aerosol optical depth over China from 2002 to 2015. Atmos. Environ. 2016, 129, 79–90. [Google Scholar] [CrossRef]
- Wu, J.; Luo, J.G.; Zhang, L.Y.; Xia, L.; Zhao, D.M.; Tang, J.P. Improvement of aerosol optical depth retrieval using visibility data in China during the past 50years. J. Geophys. Res.-Atmos. 2014, 119, 13370–13387. [Google Scholar] [CrossRef]
- Xu, X.F.; Qiu, J.H.; Xia, X.G.; Sun, L.; Min, M. Characteristics of atmospheric aerosol optical depth variation in China during 1993–2012. Atmos. Environ. 2015, 119, 82–94. [Google Scholar] [CrossRef]
- Guo, J.P.; Zhang, X.Y.; Wu, Y.R.; Zhaxi, Y.Z.; Che, H.Z.; La, B.; Wang, W.; Li, X.W. Spatio-temporal variation trends of satellite-based aerosol optical depth in China during 1980–2008. Atmos. Environ. 2011, 45, 6802–6811. [Google Scholar] [CrossRef]
- Li, S.; Wang, T.J.; Xie, M.; Han, Y.; Zhuang, B.L. Observed aerosol optical depth and angstrom exponent in urban area of Nanjing, China. Atmos. Environ. 2015, 123, 350–356. [Google Scholar] [CrossRef]
- Wang, H.; Yang, L.K.; Deng, A.J.; Du, W.B.; Liu, P.; Sun, X.B. Remote sensing of aerosol optical depth using an airborne polarimeter over North China. Remote Sens. 2017, 9, 979. [Google Scholar] [CrossRef]
- Xie, J.X.; Xia, X.G. Long-term trend in aerosol optical depth from 1980 to 2001 in north China. Particuology 2008, 6, 106–111. [Google Scholar] [CrossRef]
- Li, S.S.; Chen, L.F.; Tao, J.H.; Han, D.; Wang, Z.T.; Su, L.; Fan, M.; Yu, C. Retrieval of aerosol optical depth over bright targets in the urban areas of North China during winter. Sci. China Earth Sci. 2012, 55, 1545–1553. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, Z.Q.; Qie, L.L.; Hou, W.Z.; Liu, Z.H.; Zhang, Y.; Xie, Y.S.; Chen, X.F.; Xu, H. Retrieval of aerosol optical depth using the empirical orthogonal functions (EOFs) based on PARASOL Multi-Angle intensity data. Remote Sens. 2017, 9, 578. [Google Scholar] [CrossRef]
- Zhu, J.; Xia, X.G.; Wang, J.; Che, H.Z.; Chen, H.B.; Zhang, J.Q.; Xu, X.G.; Levy, R.C.; Oo, M.; Holz, R.; et al. Evaluation of Aerosol Optical Depth and Aerosol Models from VIIRS Retrieval Algorithms over North China Plain. Remote Sens. 2017, 9, 432. [Google Scholar] [CrossRef] [PubMed]
- Qie, L.L.; Li, Z.Q.; Sun, X.B.; Sun, B.; Li, D.H.; Liu, Z.; Huang, W.; Wang, H.; Chen, X.F.; Hou, W.Z.; et al. Improving Remote Sensing of Aerosol Optical Depth over Land by Polarimetric Measurements at 1640 nm: Airborne Test in North China. Remote Sens. 2015, 7, 6240–6256. [Google Scholar] [CrossRef] [Green Version]
- Gelaro, R.; Mccarty, W.; Suárez, M.J.; Todling, R.; Molod, A.; Takacs, L.; Randles, C.A.; Darmenov, A.; Bosilovich, M.G.; Reichle, R. The Modern-Era retrospective analysis for research and applications, version 2 (MERRA-2). J. Clim. 2017, 30, 5419–5454. [Google Scholar] [CrossRef]
- Rienecker, M.M.; Suarez, M.J.; Gelaro, R.; Todling, R.; Bacmeister, J.; Liu, E.; Bosilovich, M.G.; Schubert, S.D.; Takacs, L.; Kim, G.K. MERRA: NASA’s Modern-Era retrospective analysis for research and applications. J. Clim. 2011, 24, 3624–3648. [Google Scholar] [CrossRef]
- National Bureau of Statistics of the People’s Republic of China. China City Statistical Yearbook. Available online: http://www.stats.gov.cn/tjsj/tjcbw/201706/t20170613_1502795.html (accessed on 4 July 2018).
- The Resource and Environment Science Data Center of Chinese Academy of Sciences. The climate and terrain regionalization in China. Available online: http://www.resdc.cn (accessed on 4 July 2018).
- Kendall, M.G. A new measure of rank correlation. Biometrika 1938, 30, 81–93. [Google Scholar] [CrossRef]
- Sen, P.K. Estimates of the Regression Coefficient Based on Kendall’s Tau. Publ. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Hay, J.; Darby, R. El Chichón—Influence on aerosol optical depth and direct, diffuse and total solar irradiances at Vancouver, B.C. Atmos.-Ocean. 1984, 22, 354–368. [Google Scholar] [CrossRef]
- Skouratov, S. Influence of the Pinatubo eruption on the aerosol optical depth in the Arctic in the summer of 1993. Atmos. Res. 1997, 44, 125–132. [Google Scholar] [CrossRef]
- Nagel, D.; Herber, A.; Thomason, L.W.; Leiterer, U. Vertical distribution of the spectral aerosol optical depth in the Arctic from 1993 to 1996. J.Geophys. Res.-Atmos. 1998, 103, 1857–1870. [Google Scholar] [CrossRef] [Green Version]
- Wang, R.; Tao, S.; Wang, W.; Liu, J.; Shen, H.; Shen, G.; Wang, B.; Liu, X.; Li, W.; Huang, Y. Black carbon emissions in China from 1949 to 2050. Environ. Sci. Technol. 2012, 46, 7595–7603. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Song, Y.; Zhao, C.; Cai, X.H.; Zhang, H.S.; Zhu, T. Direct Radiative Effect by Multicomponent Aerosol over China. J. Clim. 2015, 28, 3472–3495. [Google Scholar] [CrossRef]
Statistics | Lat (deg) | Lon (deg) | A (m) | P (hpa) | RH | SH (h) | T (°C) |
---|---|---|---|---|---|---|---|
max | 47.73° N | 126.77° E | 3648.9 | 1042.1 | 1.00 | 14.60 | 35.70 |
min | 22.63° N | 79.93° E | 2.5 | 638.9 | 0.05 | 0.00 | −33.10 |
mean | - | - | 856.9 | 922.7 | 0.56 | 6.59 | 11.49 |
std | - | - | 956.7 | 99.1 | 0.21 | 4.11 | 12.06 |
Dataset Name | Parameters | Spatial Resolution | Temporal Resolution | Temporal Range |
---|---|---|---|---|
MOD04_L2/MYD04_L2 | Aerosol optical depth (AOD, 550 nm) | 10 km | Instantaneously | 2002–2014 |
MOD08_D3/MYD08_D3 | Aerosol optical depth (AOD, 550 nm) | 1° (lat) × 1° (lon) | Instantaneously | 2002–2014 |
MERRA-2 | Aerosol optical depth (AOD, 550 nm) | 0.50° (lat) × 0.625° (lon) | Daily | 1980–2017 |
anthropogenic aerosol emissions (BCEMAN, OCEMAN, SO2MAN and SO4MAN) | ||||
AOD for dust aerosol (DUAOD, 550 nm) | ||||
AOD for black carbon aerosol (BCAOD, 550 nm) | ||||
AOD for organic carbon aerosol (OCAOD, 550 nm) | ||||
AOD for Sea salt aerosol (SSAOD, 550 nm) | ||||
AOD for SO4 aerosol (SO4AOD, 550 nm) |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qin, W.; Liu, Y.; Wang, L.; Lin, A.; Xia, X.; Che, H.; Bilal, M.; Zhang, M. Characteristic and Driving Factors of Aerosol Optical Depth over Mainland China during 1980–2017. Remote Sens. 2018, 10, 1064. https://doi.org/10.3390/rs10071064
Qin W, Liu Y, Wang L, Lin A, Xia X, Che H, Bilal M, Zhang M. Characteristic and Driving Factors of Aerosol Optical Depth over Mainland China during 1980–2017. Remote Sensing. 2018; 10(7):1064. https://doi.org/10.3390/rs10071064
Chicago/Turabian StyleQin, Wenmin, Ying Liu, Lunche Wang, Aiwen Lin, Xiangao Xia, Huizheng Che, Muhammad Bilal, and Ming Zhang. 2018. "Characteristic and Driving Factors of Aerosol Optical Depth over Mainland China during 1980–2017" Remote Sensing 10, no. 7: 1064. https://doi.org/10.3390/rs10071064
APA StyleQin, W., Liu, Y., Wang, L., Lin, A., Xia, X., Che, H., Bilal, M., & Zhang, M. (2018). Characteristic and Driving Factors of Aerosol Optical Depth over Mainland China during 1980–2017. Remote Sensing, 10(7), 1064. https://doi.org/10.3390/rs10071064