Real-Time Observations of Dust–Cloud Interactions Based on Polarization and Raman Lidar Measurements
"> Figure 1
<p>In situ measurements of the diurnal variations in PM<sub>10</sub>, PM<sub>2.5</sub>, and relative humidity (RH) near the ground surface in Chungli, Taiwan during 13–16 March 2009. The red and black lines represent the mass concentrations of PM<sub>10</sub> and PM<sub>2.5</sub>, respectively, and the blue line shows the variation in RH. The peak of PM<sub>10</sub> is indicated by a vertical red line.</p> "> Figure 2
<p>Left panel: vertical structure of the dust aerosols and clouds observed by ground-based PR lidar in Chungli, Taiwan beginning at 20:45 LST on 14 March 2009; Right panel: mean profiles of range-corrected lidar backscatter signal (black), linear depolarization ratio (red) and water vapor mixing ratio (blue) from the PR lidar observation. Errors are estimated based on Chiang et al. [<a href="#B47-remotesensing-10-01017" class="html-bibr">47</a>].</p> "> Figure 3
<p>Probability density function (PDF) calculated for approximately 500 single backward trajectories obtained from the HYSPLIT model for the altitude range from 100 to 3500 m during the period of 12:00 to 24:00 LST on 14 March 2009. The time interval and the altitude resolution are 1 h and 100 m, respectively. The resolution of each latitude/longitude grid is 0.5° × 0.5°.</p> "> Figure 4
<p>Left panel: vertical structure of the dust aerosols and clouds observed by the CALIPSO lidar over eastern China beginning at 13:09 LST on 14 March 2009. Right panel: mean profiles of total attenuated backscatter at 532 nm (black), depolarization ratio (red) and color ratio (blue) from CALIPSO lidar observation around 13:40 14 March over Eastern China (32°N–38°N, 112°E–116°E). Error bars are standard deviations computed from the vertical bins of each profile. The colored bar of the vertical feature mask (VFM) represents the type of particle layer: 0 = invalid, 1 = clear air, 2 = cloud, 3 = dust, 4 = stratospheric layer, 5 = surface, 6 = subsurface, and 7 = totally attenuated.</p> "> Figure 5
<p>Vertical structure of the dust aerosols and clouds observed by the satellite CALIPSO lidar at 01:33 LST on 15 March 2009. The black dotted line (right panel) indicates the location of CALIPSO that is closest to the ground lidar site.</p> "> Figure 6
<p>Schematic illustration of three stages of heterogeneous process, during which long-range transported dust aerosols are converted into water cloud under moist conditions in the atmosphere. Brown dots represent dust aerosols. The x-axis shows the evolution of the process estimated mainly from lidar measurements. Shadings show gradual change of water vapor at the altitude of the dust layer, and green and red colors represent low and high values of water vapor content, respectively.</p> "> Figure 7
<p>Scatter plot of the DR and RH estimated from combined Raman lidar data and radiosonde temperature at nearby sounding station, between 1.5 and 1.7 km above the ground. The red, green, and blue dots represent different observation periods, corresponding to Stage I, Stage II, and Stage III, as shown in <a href="#remotesensing-10-01017-f006" class="html-fig">Figure 6</a>, respectively.</p> "> Figure 8
<p>Global distribution of dusty clouds estimated from the combined CALIPSO/CloudSat observations from 2007 to 2010 in Spring.</p> ">
Abstract
:1. Introduction
2. Instruments and Data
2.1. Ground-Based Polarization/Raman (PR) Lidar
2.2. Spaceborne Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) Lidar
2.3. Others
3. Results and Discussions
3.1. Formation of Dusty Water Cloud Observed by Lidars
3.2. Stages of Long-Range Transported Dust Aerosols Converted into Water Cloud
3.3. Microphysics of Marine Water Cloud Affected by Asian Dust
3.4. Global Distribution of Dusty Cloud in Spring
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ginoux, P.; Chin, M.; Tegen, I.; Prospero, J.M.; Holben, B.; Dubovik, O.; Lin, S.-J. Sources and distributions of dust aerosols simulated with the GOCART model. J. Geophys. Res. Atmos. 2001, 106, 20255–20273. [Google Scholar] [CrossRef] [Green Version]
- Chin, M.; Diehl, T.; Ginoux, P.; Malm, W. Intercontinental transport of pollution and dust aerosols: Implications for regional air quality. Atmos. Chem. Phys. 2007, 7, 5501–5517. [Google Scholar] [CrossRef]
- Seinfeld, J.H.; Carmichael, G.R.; Arimoto, R.; Conant, W.C.; Brechtel, F.J.; Bates, T.S.; Cahill, T.A.; Clarke, A.D.; Doherty, S.J.; Flatau, P.J.; et al. ACE-ASIA: Regional climatic and atmospheric chemical effects of Asian dust and pollution. Bull. Am. Meteorol. Soc. 2004, 85, 367–380. [Google Scholar] [CrossRef]
- Huang, J.; Minnis, P.; Chen, B.; Huang, Z.; Liu, Z.; Zhao, Q.; Yi, Y.; Ayers, J.K. Long-range transport and vertical structure of Asian dust from CALIPSO and surface measurements during PACDEX. J. Geophys. Res. Atmos. 2008, 113. [Google Scholar] [CrossRef] [Green Version]
- Huang, J.; Zhang, W.; Zuo, J.; Bi, J.; Shi, J.; Wang, X.; Chang, Z.; Huang, Z.; Yang, S.; Zhang, B.; et al. An overview of the semi-arid climate and environment research observatory over the Loess Plateau. Adv. Atmos. Sci. 2008, 25, 1–16. [Google Scholar] [CrossRef]
- Huang, J.; Fu, Q.; Su, J.; Tang, Q.; Minnis, P.; Hu, Y.; Yi, Y.; Zhao, Q. Taklimakan dust aerosol radiative heating derived from CALIPSO observations using the Fu-Liou radiation model with CERES constraints. Atmos. Chem. Phys. 2009, 9, 4011–4021. [Google Scholar] [CrossRef] [Green Version]
- Bi, J.; Huang, J.; Fu, Q.; Wang, X.; Shi, J.; Zhang, W.; Huang, Z.; Zhang, B. Toward characterization of the aerosol optical properties over Loess Plateau of Northwestern China. J. Quant. Spectrosc. Radiat. Transf. 2011, 112, 346–360. [Google Scholar] [CrossRef]
- Li, Z.; Li, C.; Chen, H.; Tsay, S.C.; Holben, B.; Huang, J.; Li, B.; Maring, H.; Qian, Y.; Shi, G.; et al. East Asian Studies of Tropospheric Aerosols and their Impact on Regional Climate (EAST-AIRC): An overview. J. Geophys. Res. Atmos. 2011, 116. [Google Scholar] [CrossRef] [Green Version]
- Chun, Y.; Boo, K.; Kim, J.; Park, S.; Lee, M. Synopsis, transport, and physical characteristics of Asian dust in Korea. J. Geophys. Res. 2001, 106, 461–469. [Google Scholar] [CrossRef]
- Kim, S.; Chun, Y. Physical and chemical features of asian dust aerosol mixed with haze during 14–19 March 2009. Asia-Pac. J. Atmos. Sci. 2013, 49, 543–550. [Google Scholar] [CrossRef]
- Murayama, T.; Sugimoto, N.; Uno, I.; Kinoshita, K.; Aoki, K.; Hagiwara, N.; Liu, Z.; Matsui, I.; Sakai, T.; Shibata, T.; et al. Ground-based network observation of Asian dust events of April 1998 in East Asia. J. Geophys. Res. 2001, 106, 345–359. [Google Scholar] [CrossRef]
- Sugimoto, N.; Huang, Z.; Nishizawa, T.; Matsui, I.; Tatarov, B. Fluorescence from atmospheric aerosols observed with a multi-channel lidar spectrometer. Opt. Express 2012, 20, 20800. [Google Scholar] [CrossRef] [PubMed]
- Thulasiraman, S.; O’Neill, N.T.; Royer, A.; Holben, B.N.; Westphal, D.L.; McArthur, L.J.B. Sunphotometric observations of the 2001 Asian dust storm over Canada and the U.S. Geophys. Res. Lett. 2002, 29, 96-1–96-4. [Google Scholar] [CrossRef]
- Creamean, J.M.; Suski, K.J.; Rosenfeld, D.; Cazorla, A.; DeMott, P.J.; Sullivan, R.C.; White, A.B.; Ralph, F.M.; Minnis, P.; Comstock, J.M.; et al. Dust and biological aerosols from the Sahara and Asia influence precipitation in the Western U.S. Science 2013, 339, 1572–1578. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Huang, J.; Hayasaka, T.; Wang, S.; Zhou, T.; Jin, H. Short-cut transport path for Asian dust directly to the Arctic: A case study. Environ. Res. Lett. 2015, 10, 114018. [Google Scholar] [CrossRef]
- Uno, I.; Eguchi, K.; Yumimoto, K.; Takemura, T.; Shimizu, A.; Uematsu, M.; Liu, Z.; Wang, Z.; Hara, Y.; Sugimoto, N. Asian dust transported one full circuit around the globe. Nat. Geosci. 2009, 2, 557–560. [Google Scholar] [CrossRef]
- Kaufman, Y.J.; Koren, I.; Remer, L.A.; Rosenfeld, D.; Rudich, Y. The effect of smoke, dust, and pollution aerosol on shallow cloud development over the Atlantic Ocean. Proc. Natl. Acad. Sci. USA 2005, 102, 11207–11212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andreae, M.O.; Rosenfeld, D. Aerosol-cloud-precipitation interactions. Part 1. The nature and sources of cloud-active aerosols. Earth-Sci. Rev. 2008, 89, 13–41. [Google Scholar] [CrossRef]
- DeMott, P.J.; Cziczo, D.J.; Prenni, A.J.; Murphy, D.M.; Kreidenweis, S.M.; Thomson, D.S.; Borys, R.; Rogers, D.C. Measurements of the concentration and composition of nuclei for cirrus formation. Proc. Natl. Acad. Sci. USA 2003, 100, 14655–14660. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, J.; Lin, B.; Minnis, P.; Wang, T.; Wang, X.; Hu, Y.; Yi, Y.; Ayers, J.K. Satellite-based assessment of possible dust aerosols semi-direct effect on cloud water path over East Asia. Geophys. Res. Lett. 2006, 33. [Google Scholar] [CrossRef] [Green Version]
- Huang, J.; Minnis, P.; Lin, B.; Wang, T.; Yi, Y.; Hu, Y.; Sun-Mack, S.; Ayers, K. Possible influences of Asian dust aerosols on cloud properties and radiative forcing observed from MODIS and CERES. Geophys. Res. Lett. 2006, 33. [Google Scholar] [CrossRef] [Green Version]
- Isono, K.; Komabayasi, M.; Ono, A. The nature and origin of ice nuclei in the atmosphere. J. Meteorol. Soc. Jpn. 1959, 37, 211–233. [Google Scholar] [CrossRef]
- Roberts, P.; Hallett, J. A laboratory study of the ice nucleating properties of some mineral particulates. Q. J. R. Meteorol. Soc. 1968, 94, 25–34. [Google Scholar] [CrossRef]
- Ansmann, A.; Tesche, M.; Althausen, D.; Müller, D.; Seifert, P.; Freudenthaler, V.; Heese, B.; Wiegner, M.; Pisani, G.; Knippertz, P.; et al. Influence of Saharan dust on cloud glaciation in southern Morocco during the Saharan Mineral Dust Experiment. J. Geophys. Res. Atmos. 2008, 113. [Google Scholar] [CrossRef] [Green Version]
- Levi, L.; Rosenfeld, D. Ice Nuclei, Rainwater Chemical Composition, and Static Cloud Seeding Effects in Israel. J. Appl. Meteorol. 1996, 35, 1494–1501. [Google Scholar] [CrossRef] [Green Version]
- Sassen, K. Dusty ice clouds over Alaska. Nature 2005, 434, 456. [Google Scholar] [CrossRef] [PubMed]
- Jordan, C.; Dibb, J.; Anderson, B.; Fuelberg, H. Uptake of nitrate and sulfate on dust aerosols during TRACE-P. J. Geophys. Res. 2003, 108, 8817. [Google Scholar] [CrossRef]
- Trochkine, D.; Iwasaka, Y.; Matsuki, A.; Yamada, M.; Kim, Y.-S.; Nagatani, T.; Zhang, D.; Shi, G.-Y.; Shen, Z. Mineral aerosol particles collected in Dunhuang, China, and their comparison with chemically modified particles collected over Japan. J. Geophys. Res. 2003, 108, 8642. [Google Scholar] [CrossRef]
- Zhang, D.; Iwasaka, Y. Size change of Asian dust particles caused by sea salt interaction: Measurements in southwestern Japan. Geophys. Res. Lett. 2004, 31. [Google Scholar] [CrossRef] [Green Version]
- Eastwood, M.L.; Cremel, S.; Wheeler, M.; Murray, B.J.; Girard, E.; Bertram, A.K. Effects of sulfuric acid and ammonium sulfate coatings on the ice nucleation properties of kaolinite particles. Geophys. Res. Lett. 2009, 36. [Google Scholar] [CrossRef] [Green Version]
- Laskin, A.; Iedema, M.J.; Ichkovich, A.; Graber, E.R.; Taraniuk, I.; Rudich, Y. Direct observation of completely processed calcium carbonate dust particles. Faraday Discuss. 2005, 130, 453. [Google Scholar] [CrossRef] [PubMed]
- Tobo, Y.; Zhang, D.; Matsuki, A.; Iwasaka, Y. Asian dust particles converted into aqueous droplets under remote marine atmospheric conditions. Proc. Natl. Acad. Sci. USA 2010, 107, 17905–17910. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tobo, Y.; Zhang, D.; Nakata, N.; Yamada, M.; Ogata, H.; Hara, K.; Iwasaka, Y. Hygroscopic mineral dust particles as influenced by chlorine chemistry in the marine atmosphere. Geophys. Res. Lett. 2009, 36. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Okada, K. Water-Insoluble Particles in Spring Snow at Mt. Tateyama, Japan: Characteristics of the Shape Factors and Size Distribution in Relation with Their Origin and Transportation. J. Meteorol. Soc. Jpn. 2007, 85, 137–149. [Google Scholar] [CrossRef] [Green Version]
- Sakai, T.; Shibata, T.; Kwon, S.-A.; Kim, Y.-S.; Tamura, K.; Iwasaka, Y. Free tropospheric aerosol backscatter, depolarization ratio, and relative humidity measured with the Ranam lidar at Nagoya in 1994-1997: Contributions of aerosols from the Asian Continent and the Pacific Ocean. Atmos. Environ. 2000, 34, 431–442. [Google Scholar] [CrossRef]
- Freudenthaler, V.; Esselborn, M.; Wiegner, M.; Heese, B.; Tesche, M.; Ansmann, A.; Müller, D.; Althausen, D.; Wirth, M.; Fix, A.; et al. Depolarization ratio profiling at several wavelengths in pure Saharan dust during SAMUM 2006. Tellus B Chem. Phys. Meteorol. 2009, 61, 165–179. [Google Scholar] [CrossRef] [Green Version]
- Nee, J.B.; Chiang, C.W.; Hu, H.L.; Hu, S.X.; Yu, J.Y. Lidar measurements of Asian dust storms and dust cloud interactions. J. Geophys. Res. Atmos. 2007, 112. [Google Scholar] [CrossRef] [Green Version]
- Chiang, C.W.; Chen, W.N.; Liang, W.A.; Das, S.K.; Nee, J.B. Optical properties of tropospheric aerosols based on measurements of lidar, sun-photometer, and visibility at Chung-Li (25°N, 121°E). Atmos. Environ. 2007, 41, 4128–4137. [Google Scholar] [CrossRef]
- Huang, Z.; Huang, J.; Bi, J.; Wang, G.; Wang, W.; Fu, Q.; Li, Z.; Tsay, S.-C.; Shi, J. Dust aerosol vertical structure measurements using three MPL lidars during 2008 China-U.S. joint dust field experiment. J. Geophys. Res. 2010, 115, D00K15. [Google Scholar] [CrossRef]
- Winker, D.M.; Hunt, W.H.; McGill, M.J. Initial performance assessment of CALIOP. Geophys. Res. Lett. 2007, 34. [Google Scholar] [CrossRef] [Green Version]
- Hu, Y.; Vaughan, M.; Liu, Z.; Lin, B.; Yang, P.; Flittner, D.; Hunt, B.; Kuehn, R.; Huang, J.; Wu, D.; et al. The depolarization-attenuated backscatter relation: CALIPSO lidar measurements vs. theory. Opt. Express 2007, 15, 5327. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Omar, A.; Vaughan, M.; Hair, J.; Kittaka, C.; Hu, Y.; Powell, K.; Trepte, C.; Winker, D.; Hostetler, C.; et al. CALIPSO lidar observations of the optical properties of Saharan dust: A case study of long-range transport. J. Geophys. Res. Atmos. 2008, 113. [Google Scholar] [CrossRef] [Green Version]
- Zhou, T.; Huang, J.; Huang, Z.; Liu, J.; Wang, W.; Lin, L. The depolarization–attenuated backscatter relationship for dust plumes. Opt. Express 2013, 21, 15195. [Google Scholar] [CrossRef] [PubMed]
- Draxler, R.R.; Hess, G.D. An Overview of the HYSPLIT_4 Modelling System for Trajectories, Dispersion, and Deposition. Aust. Meteorol. Mag. 1998, 47, 295–308. [Google Scholar]
- Liu, J.; Zheng, Y.; Li, Z.; Flynn, C.; Welton, E.J.; Cribb, M. Transport, vertical structure and radiative properties of dust events in southeast China determined from ground and space sensors. Atmos. Environ. 2011, 45, 6469–6480. [Google Scholar] [CrossRef]
- Sugimoto, N.; Huang, Z. Lidar methods for observing mineral dust. J. Meteorol. Res. 2014, 28, 173–184. [Google Scholar] [CrossRef]
- Chiang, C.W.; Das, S.K.; Nee, J.B.; Hu, S.X.; Hu, H.L. Simultaneous measurement of humidity and temperature in the lower troposphere over Chung-Li, Taiwan. J. Atmos. Sol. Terr. Phys. 2009, 71, 1389–1396. [Google Scholar] [CrossRef]
- Logan, T.; Xi, B.; Dong, X. Aerosol properties and their influences on marine boundary layer cloud. condensation nuclei at the ARM mobile facility over the Azores. J. Geophys. Res. Atmos. 2014, 119. [Google Scholar] [CrossRef]
- Logan, T.; Dong, X.; Xi, B. Aerosol properties and their impacts on surface CCN at the ARM Southern Great Plains site during the 2011 Midlatitude Continental Convective Clouds Experiment. Adv. Atmos. Sci. 2018, 35, 224–233. [Google Scholar] [CrossRef]
- Song, Y.; Eom, H.; Jung, H.; Malek, M. Investigation of aged Asian dust particles by the combined use of quantitative ED-EPMA and ATR-FTIR imaging. Atmos. Chem. Phys. 2013, 13, 3463–3480. [Google Scholar] [CrossRef]
- Gasteiger, J.; Wiegner, M.; Groß, S.; Freudenthaler, V.; Toledano, C.; Tesche, M.; Kandler, K. Modelling lidar-relevant optical properties of complex mineral dust aerosols. Tellus B Chem. Phys. Meteorol. 2011, 63, 725–741. [Google Scholar] [CrossRef] [Green Version]
- Okada, K.; Heintzenberg, J.; Kai, K.; Qin, Y. Shape of atmospheric mineral particles collected in three Chinese arid-regions. Geophys. Res. Lett. 2001, 28, 3123–3126. [Google Scholar] [CrossRef] [Green Version]
- Sun, X.M.; Wang, H.H.; Shen, J.; Liu, W. Depolarization and polarization of light scattering by dustlike tropospheric aerosols. J. Electromagn. Waves Appl. 2010, 24, 1353–1364. [Google Scholar] [CrossRef]
- Hu, Y.; Vaughan, M.; McClain, C.; Behrenfeld, M.; Maring, H.; Anderson, D.; Sun-Mack, S.; Flittner, D.; Huang, J.; Wielicki, B.; et al. Global statistics of liquid water content and effective number concentration of water clouds over ocean derived from combined CALIPSO and MODIS measurements. Atmos. Chem. Phys. 2007, 7, 3353–3359. [Google Scholar] [CrossRef] [Green Version]
- Saito, T.; Hayasaka, T. Effects of dust aerosols on warm cloud properties over east Asia and the Sahara from satellite data. J. Meteorol. Soc. Jpn. 2014, 92A, 109–123. [Google Scholar] [CrossRef]
- Wang, W.; Huang, J.; Minnis, P.; Hu, Y.; Li, J.; Huang, Z.; Ayers, J.K.; Wang, T. Dusty cloud properties and radiative forcing over dust source and downwind regions derived from A-Train data during the Pacific Dust Experiment. J. Geophys. Res. Atmos. 2010, 115. [Google Scholar] [CrossRef] [Green Version]
- Jin, H.; Yi, Y.; Nasiri, S.L.; Liu, C.; Wang, W.; Li, J.; Chen, Y.; Wang, T. Impacts of Asian dust on the determination of cloud thermodynamic phase from satellite observations. Environ. Res. Lett. 2015, 10. [Google Scholar] [CrossRef]
- Wurzler, S.; Reisin, T.G.; Levin, Z. Modification of mineral dust particles by cloud processing and subsequent effects on drop size distributions. J. Geophys. Res. Atmos. 2000, 105, 4501–4512. [Google Scholar] [CrossRef] [Green Version]
- Doherty, O.M.; Evan, A.T. Identification of a new dust-stratocumulus indirect effect over the tropical North Atlantic. Geophys. Res. Lett. 2014, 41, 6935–6942. [Google Scholar] [CrossRef] [Green Version]
Cloud Type | Date & Time (LST) | Location | Cloud Base Height (km) | Thickness (km) | Cloud Microphysics * | ||
---|---|---|---|---|---|---|---|
COD | σ (km−1) | Re/Re0 ** | |||||
Dusty cloud | 15 March 2009 01:33 | 20°N–25°N 122°E–124°E | 1~3 | 1.80 | 3.55 | 1.97 | 1.0 |
19 March 2009 01:23 | 24°N–26°N 129°E–131°E | 1.5~4 | 1.60 | 2.67 | 1.67 | 1.1 | |
24 March 2009 01:42 | 23°N–25°N 124°E–125°E | 1.5~3.5 | 2.00 | 3.82 | 1.91 | 0.9 | |
Mean | 1.80 | 3.35 | 1.85 | 1.0 | |||
Pure cloud | 14 March 2009 01:04 | 20°N–23°N 133°E–134°E | 1~3 | 1.10 | 3.00 | 2.73 | 2.7 |
17 March 2009 01:35 | 21°N–23°N 125°E–126°E | 0.5~2 | 0.90 | 2.66 | 2.96 | 1.9 | |
02 April 2009 01:37 | 21°N–23°N 125°E–126°E | 1.5~3.5 | 1.00 | 2.92 | 2.92 | 1.8 | |
22 April 2009 01:01 | 24°N–26°N 132°E–133°E | 1~2.5 | 0.90 | 2.98 | 3.31 | 4.7 | |
1 June 2009 01:53 | 23°N–27°N 120°E–121°E | 2.5~5 | 0.90 | 3.29 | 3.65 | 4.8 | |
Mean | 0.96 | 2.97 | 3.11 | 3.18 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, Z.; Nee, J.-B.; Chiang, C.-W.; Zhang, S.; Jin, H.; Wang, W.; Zhou, T. Real-Time Observations of Dust–Cloud Interactions Based on Polarization and Raman Lidar Measurements. Remote Sens. 2018, 10, 1017. https://doi.org/10.3390/rs10071017
Huang Z, Nee J-B, Chiang C-W, Zhang S, Jin H, Wang W, Zhou T. Real-Time Observations of Dust–Cloud Interactions Based on Polarization and Raman Lidar Measurements. Remote Sensing. 2018; 10(7):1017. https://doi.org/10.3390/rs10071017
Chicago/Turabian StyleHuang, Zhongwei, Jan-Bai Nee, Chih-Wei Chiang, Shuang Zhang, Hongchun Jin, Wencai Wang, and Tian Zhou. 2018. "Real-Time Observations of Dust–Cloud Interactions Based on Polarization and Raman Lidar Measurements" Remote Sensing 10, no. 7: 1017. https://doi.org/10.3390/rs10071017