Assessment of Forest Above-Ground Biomass Estimation from PolInSAR in the Presence of Temporal Decorrelation
"> Figure 1
<p>Flowchart of the methodology used in this study.</p> "> Figure 2
<p>Location of field plots on Remningstorp area image. Google earth V 6.0. Remningstorp, Sweden. The center coordinates are <math display="inline"> <semantics> <mrow> <msup> <mn>58</mn> <mo>∘</mo> </msup> <msup> <mn>30</mn> <mo>′</mo> </msup> </mrow> </semantics> </math>N and <math display="inline"> <semantics> <mrow> <msup> <mn>13</mn> <mo>∘</mo> </msup> <msup> <mn>40</mn> <mo>′</mo> </msup> </mrow> </semantics> </math>E, and the area is 1200 ha. Eye alt 3.58 km.</p> "> Figure 3
<p>Predicted biomass map using Lidar data provided within campaign field data [<a href="#B39-remotesensing-10-00815" class="html-bibr">39</a>].</p> "> Figure 4
<p>Available CHM from Lidar of the Remningstorp area. Dark circles show the location of field plots.</p> "> Figure 5
<p>Distribution of forest plot biomass for the 214 plots at the test site.</p> "> Figure 6
<p>Relation between measured and predicted biomass using Lidar data with <math display="inline"> <semantics> <mrow> <msup> <mi>R</mi> <mn>2</mn> </msup> <mo>=</mo> <mn>0</mn> <mo>.</mo> <mn>60</mn> </mrow> </semantics> </math> and RMSE = 0.68 ton ha<math display="inline"> <semantics> <msup> <mrow/> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </semantics> </math>. The points marked with dark circles are possibly the measurement errors.</p> "> Figure 7
<p>Resulting height map from the RMoG<math display="inline"> <semantics> <msub> <mrow/> <mi>L</mi> </msub> </semantics> </math> model.</p> "> Figure 8
<p>Relation (in red) between PolInSAR height resulting from (<b>a</b>) the RVoG model (<math display="inline"> <semantics> <mrow> <msup> <mi>R</mi> <mn>2</mn> </msup> <mo>=</mo> <mn>0</mn> <mo>.</mo> <mn>50</mn> </mrow> </semantics> </math>, RMSE = 0.67 m), (<b>b</b>) the RMoG model (<math display="inline"> <semantics> <mrow> <msup> <mi>R</mi> <mn>2</mn> </msup> <mo>=</mo> <mn>0</mn> <mo>.</mo> <mn>69</mn> </mrow> </semantics> </math>, RMSE = 0.60 m), and (<b>c</b>) the RMoG<math display="inline"> <semantics> <msub> <mrow/> <mi>L</mi> </msub> </semantics> </math> model (<math display="inline"> <semantics> <mrow> <msup> <mi>R</mi> <mn>2</mn> </msup> <mo>=</mo> <mn>0</mn> <mo>.</mo> <mn>78</mn> </mrow> </semantics> </math>, RMSE = 0.55 m) with the corresponding averaged height values from Lidar. The black line presents 1:1 line.</p> "> Figure 9
<p>Relation between logarithm of measured biomass and RMoG<math display="inline"> <semantics> <msub> <mrow/> <mi>L</mi> </msub> </semantics> </math> height resulting of the (<b>a</b>) polynomial (<math display="inline"> <semantics> <mrow> <msup> <mi>R</mi> <mn>2</mn> </msup> <mo>=</mo> <mn>0</mn> <mo>.</mo> <mn>42</mn> </mrow> </semantics> </math>), (<b>b</b>) exponential (<math display="inline"> <semantics> <mrow> <msup> <mi>R</mi> <mn>2</mn> </msup> <mo>=</mo> <mn>0</mn> <mo>.</mo> <mn>67</mn> </mrow> </semantics> </math>) with prediction bounds within a 95% confidence interval calculated by the LAR method (<b>c</b>) power series models (<math display="inline"> <semantics> <mrow> <msup> <mi>R</mi> <mn>2</mn> </msup> <mo>=</mo> <mn>0</mn> <mo>.</mo> <mn>54</mn> </mrow> </semantics> </math>), and (<b>d</b>) piece-wise linear model (<math display="inline"> <semantics> <mrow> <msup> <mi>R</mi> <mn>2</mn> </msup> <mo>=</mo> <mn>0</mn> <mo>.</mo> <mn>60</mn> </mrow> </semantics> </math>). The biomass values on vertical axis represent <math display="inline"> <semantics> <mrow> <mi>l</mi> <mi>n</mi> <mo>(</mo> <mi>B</mi> <mo>)</mo> </mrow> </semantics> </math>.</p> "> Figure 10
<p>Relation between measured biomass by PolInSAR data and predicted biomass by Lidar data for the test dataset: (<b>a</b>) the RVoG model with <math display="inline"> <semantics> <mrow> <msup> <mi>R</mi> <mn>2</mn> </msup> <mo>=</mo> <mn>0</mn> <mo>.</mo> <mn>60</mn> </mrow> </semantics> </math> and RMSE = 30.85 (ton ha<math display="inline"> <semantics> <msup> <mrow/> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </semantics> </math>), (<b>b</b>) the RMoG model with <math display="inline"> <semantics> <mrow> <msup> <mi>R</mi> <mn>2</mn> </msup> <mo>=</mo> <mn>0</mn> <mo>.</mo> <mn>73</mn> </mrow> </semantics> </math> and RMSE = 30.73 (ton ha<math display="inline"> <semantics> <msup> <mrow/> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </semantics> </math>), and (<b>c</b>) the RMoG<math display="inline"> <semantics> <msub> <mrow/> <mi>L</mi> </msub> </semantics> </math> model with <math display="inline"> <semantics> <mrow> <msup> <mi>R</mi> <mn>2</mn> </msup> <mo>=</mo> <mn>0</mn> <mo>.</mo> <mn>92</mn> </mrow> </semantics> </math> and RMSE = 30.64 (ton ha<math display="inline"> <semantics> <msup> <mrow/> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </semantics> </math>).</p> "> Figure 11
<p>The relationship (<b>a</b>) between the PolInSAR height from the RMoG<math display="inline"> <semantics> <msub> <mrow/> <mi>L</mi> </msub> </semantics> </math> model and the basal area with <math display="inline"> <semantics> <mrow> <msup> <mi>R</mi> <mn>2</mn> </msup> <mo>=</mo> <mn>0</mn> <mo>.</mo> <mn>61</mn> </mrow> </semantics> </math> and (<b>b</b>) between this height and the mean diameter with <math display="inline"> <semantics> <mrow> <msup> <mi>R</mi> <mn>2</mn> </msup> <mo>=</mo> <mn>0</mn> <mo>.</mo> <mn>81</mn> </mrow> </semantics> </math> in red.</p> "> Figure 12
<p>Resulting biomass map from the RMoG<math display="inline"> <semantics> <msub> <mrow/> <mi>L</mi> </msub> </semantics> </math> model.</p> "> Figure 13
<p>Relation between predicted biomass by PolInSAR data and measured biomass in field data: (<b>a</b>) the RVoG model with <math display="inline"> <semantics> <mrow> <msup> <mi>R</mi> <mn>2</mn> </msup> <mo>=</mo> <mn>0</mn> <mo>.</mo> <mn>55</mn> </mrow> </semantics> </math> and RMSE = 30.97 (ton ha<math display="inline"> <semantics> <msup> <mrow/> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </semantics> </math>), (<b>b</b>) the RMoG model with <math display="inline"> <semantics> <mrow> <msup> <mi>R</mi> <mn>2</mn> </msup> <mo>=</mo> <mn>0</mn> <mo>.</mo> <mn>69</mn> </mrow> </semantics> </math> and RMSE = 30.76 (ton ha<math display="inline"> <semantics> <msup> <mrow/> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </semantics> </math>), and (<b>c</b>) the RMoG<math display="inline"> <semantics> <msub> <mrow/> <mi>L</mi> </msub> </semantics> </math> model with <math display="inline"> <semantics> <mrow> <msup> <mi>R</mi> <mn>2</mn> </msup> <mo>=</mo> <mn>0</mn> <mo>.</mo> <mn>74</mn> </mrow> </semantics> </math> and RMSE = 30.69 (ton ha<math display="inline"> <semantics> <msup> <mrow/> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </semantics> </math>). Red line is 1:1 line.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Field and Lidar Data
2.3. PolInSAR Data
2.4. Tree Height Estimation Using PolInSAR Data
2.4.1. The RVoG Model
2.4.2. The RMoG Model
2.4.3. The RMoG Model
2.5. Biomass Estimation Using PolInSAR Data
2.5.1. Data Splitting
2.6. Accuracy Assessment
3. Results
4. Discussion
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Le Quéré, C.; Moriarty, R.; Andrew, R.M.; Canadell, J.G.; Sitch, S.; Korsbakken, J.I.; Friedlingstein, P.; Peters, G.P.; Andres, R.J.; Boden, T.A.; et al. Global carbon budget 2015. Earth Syst. Sci. Data 2015, 7, 349–396. [Google Scholar] [CrossRef] [Green Version]
- Houghton, R.A.; House, J.; Pongratz, J.; Van der Werf, G.; DeFries, R.; Hansen, M.; Quéré, C.L.; Ramankutty, N. Carbon emissions from land use and land-cover change. Biogeosciences 2012, 9, 5125–5142. [Google Scholar] [CrossRef]
- Stocker, T.F.; Qin, D.; Plattner, G.K.; Tignor, M.; Allen, S.K.; Boschung, J.; Nauels, A.; Xia, Y.; Bex, V.; Midgley, P.M.; et al. Climate change 2013: The physical science basis. In Intergovernmental Panel on Climate Change, Working Group I Contribution to the IPCC Fifth Assessment Report (AR5); Cambridge University Press: New York, NY, USA, 2013. [Google Scholar]
- Lu, D. The potential and challenge of remote sensing-based biomass estimation. Int. J. Remote Sens. 2006, 27, 1297–1328. [Google Scholar] [CrossRef]
- Roy, P.; Ravan, S.A. Biomass estimation using satellite remote sensing data—An investigation on possible approaches for natural forest. J. Biosci. 1996, 21, 535–561. [Google Scholar] [CrossRef]
- Drake, J.B.; Knox, R.G.; Dubayah, R.O.; Clark, D.B.; Condit, R.; Blair, J.B.; Hofton, M. Above-ground biomass estimation in closed canopy neotropical forests using lidar remote sensing: Factors affecting the generality of relationships. Glob. Ecol. Biogeogr. 2003, 12, 147–159. [Google Scholar] [CrossRef]
- Le Toan, T.; Beaudoin, A.; Riom, J.; Guyon, D. Relating forest biomass to SAR data. IEEE Trans. Geosci. Remote Sens. 1992, 30, 403–411. [Google Scholar] [CrossRef]
- Yu, Y.; Saatchi, S. Sensitivity of L-Band SAR Backscatter to Aboveground Biomass of Global Forests. Remote Sens. 2016, 8, 522. [Google Scholar] [CrossRef]
- Gizachew, B.; Solberg, S.; Næsset, E.; Gobakken, T.; Bollandsås, O.M.; Breidenbach, J.; Zahabu, E.; Mauya, E.W. Mapping and estimating the total living biomass and carbon in low-biomass woodlands using Landsat 8 CDR data. Carbon Balance Manag. 2016, 11, 13. [Google Scholar] [CrossRef] [PubMed]
- Lu, D. Aboveground biomass estimation using Landsat TM data in the Brazilian Amazon. Int. J. Remote Sens. 2005, 26, 2509–2525. [Google Scholar] [CrossRef]
- Muukkonen, P.; Heiskanen, J. Biomass estimation over a large area based on standwise forest inventory data and ASTER and MODIS satellite data: A possibility to verify carbon inventories. Remote Sens. Environ. 2007, 107, 617–624. [Google Scholar] [CrossRef]
- Rauste, Y. Multi-temporal JERS SAR data in boreal forest biomass mapping. Remote Sens. Environ. 2005, 97, 263–275. [Google Scholar] [CrossRef]
- Montesano, P.; Cook, B.; Sun, G.; Simard, M.; Nelson, R.; Ranson, K.; Zhang, Z.; Luthcke, S. Achieving accuracy requirements for forest biomass mapping: A spaceborne data fusion method for estimating forest biomass and LiDAR sampling error. Remote Sens. Environ. 2013, 130, 153–170. [Google Scholar] [CrossRef]
- Santoro, M.; Beaudoin, A.; Beer, C.; Cartus, O.; Fransson, J.E.; Hall, R.J.; Pathe, C.; Schmullius, C.; Schepaschenko, D.; Shvidenko, A.; et al. Forest growing stock volume of the northern hemisphere: Spatially explicit estimates for 2010 derived from Envisat ASAR. Remote Sens. Environ. 2015, 168, 316–334. [Google Scholar] [CrossRef]
- Garestier, F.; Champion, I.; Dubois-Fernandez, P.; Paillou, P.; Dupuis, X. Polar and PolInSAR analysis of pine forest at L and P band on high resolution data. In Proceedings of the 2005 IGARSS’05 IEEE International Geoscience and Remote Sensing Symposium, Seoul, Korea, 25–29 July 2005; Volume 2, pp. 1093–1096. [Google Scholar]
- Dubayah, R.O.; Sheldon, S.; Clark, D.B.; Hofton, M.; Blair, J.B.; Hurtt, G.C.; Chazdon, R.L. Estimation of tropical forest height and biomass dynamics using lidar remote sensing at La Selva, Costa Rica. J. Geophys. Res. Biogeosci. 2010, 115. [Google Scholar] [CrossRef]
- Yao, T.; Yang, X.; Zhao, F.; Wang, Z.; Zhang, Q.; Jupp, D.; Lovell, J.; Culvenor, D.; Newnham, G.; Ni-Meister, W.; et al. Measuring forest structure and biomass in New England forest stands using Echidna ground-based lidar. Remote Sens. Environ. 2011, 115, 2965–2974. [Google Scholar] [CrossRef]
- Mette, T.; Papathanassiou, K.; Hajnsek, I.; Pretzsch, H.; Biber, P. Applying a common allometric equation to convert forest height from Pol-InSAR data to forest biomass. In Proceedings of the 2004 IEEE International IGARSS’04 Geoscience and Remote Sensing Symposium, Anchorage, AK, USA, 20–24 September 2004; Volume 1. [Google Scholar]
- Sexton, J.O.; Bax, T.; Siqueira, P.; Swenson, J.J.; Hensley, S. A comparison of lidar, radar, and field measurements of canopy height in pine and hardwood forests of southeastern North America. For. Ecol. Manag. 2009, 257, 1136–1147. [Google Scholar] [CrossRef]
- Næsset, E. Predicting forest stand characteristics with airborne scanning laser using a practical two-stage procedure and field data. Remote Sens. Environ. 2002, 80, 88–99. [Google Scholar] [CrossRef]
- Ni-Meister, W.; Lee, S.; Strahler, A.H.; Woodcock, C.E.; Schaaf, C.; Yao, T.; Ranson, K.J.; Sun, G.; Blair, J.B. Assessing general relationships between aboveground biomass and vegetation structure parameters for improved carbon estimate from lidar remote sensing. J. Geophys. Res. Biogeosci. 2010, 115, G2. [Google Scholar] [CrossRef]
- Nelson, R.; Margolis, H.; Montesano, P.; Sun, G.; Cook, B.; Andersen, H.E.; Pellat, F.P.; Fickel, T.; Kauffman, J.; Prisley, S.; et al. Lidar-based estimates of aboveground biomass in the continental US and Mexico using ground, airborne, and satellite observations. Remote Sens. Environ. 2017, 188, 127–140. [Google Scholar] [CrossRef]
- Lavalle, M.; Solimini, D.; Pottier, E.; Desnos, Y.L. PolInSAR for forest biomass retrieval: PALSAR observations and model analysis. In Proceedings of the IGARSS 2008 IEEE International Geoscience and Remote Sensing Symposium, Boston, MA, USA, 8–11 July 2008; Volume 3, p. 302. [Google Scholar]
- Neumann, M.; Saatchi, S.S.; Ulander, L.M.; Fransson, J.E. Parametric and non-parametric forest biomass estimation from PolInSAR data. In Proceedings of the 2011 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Vancouver, BC, Canada, 24–29 July 2011; pp. 420–423. [Google Scholar]
- Cloude, S.R.; Papathanassiou, K.P. Polarimetric SAR interferometry. IEEE Trans. Geosci. Remote Sens. 1998, 36, 1551–1565. [Google Scholar] [CrossRef]
- Hyde, P.; Nelson, R.; Kimes, D.; Levine, E. Exploring LiDAR–RaDAR synergy—Predicting aboveground biomass in a southwestern ponderosa pine forest using LiDAR, SAR and InSAR. Remote Sens. Environ. 2007, 106, 28–38. [Google Scholar] [CrossRef]
- Rahlf, J.; Breidenbach, J.; Solberg, S.; Næsset, E.; Astrup, R. Comparison of four types of 3D data for timber volume estimation. Remote Sens. Environ. 2014, 155, 325–333. [Google Scholar] [CrossRef]
- Neeff, T.; Dutra, L.V.; dos Santos, J.R.; Freitas, C.D.C.; Araujo, L.S. Tropical forest measurement by interferometric height modeling and P-band radar backscatter. For. Sci. 2005, 51, 585–594. [Google Scholar]
- Rombach, M.; Moreira, J. Description and applications of the multipolarized dual band OrbiSAR-1 InSAR sensor. In Proceedings of the 2003 International IEEE, Radar Conference, Adelaide, Australia, 3–5 September 2003; pp. 245–250. [Google Scholar]
- Minh, D.H.T.; Le Toan, T.; Rocca, F.; Tebaldini, S.; d’Alessandro, M.M.; Villard, L. Relating P-band synthetic aperture radar tomography to tropical forest biomass. IEEE Trans. Geosci. Remote Sens. 2014, 52, 967–979. [Google Scholar] [CrossRef]
- Minh, D.H.T.; Le Toan, T.; Rocca, F.; Tebaldini, S.; Villard, L.; Réjou-Méchain, M.; Phillips, O.L.; Feldpausch, T.R.; Dubois-Fernandez, P.; Scipal, K.; et al. SAR tomography for the retrieval of forest biomass and height: Cross-validation at two tropical forest sites in French Guiana. Remote Sens. Environ. 2016, 175, 138–147. [Google Scholar] [CrossRef] [Green Version]
- Sun, G.; Ranson, K.J.; Guo, Z.; Zhang, Z.; Montesano, P.; Kimes, D. Forest biomass mapping from lidar and radar synergies. Remote Sens. Environ. 2011, 115, 2906–2916. [Google Scholar] [CrossRef]
- Lavalle, M.; Hensley, S. Extraction of structural and dynamic properties of forests from polarimetric-interferometric SAR data affected by temporal decorrelation. IEEE Trans. Geosci. Remote Sens. 2015, 53, 4752–4767. [Google Scholar] [CrossRef]
- Le Toan, T.; Quegan, S.; Davidson, M.; Balzter, H.; Paillou, P.; Papathanassiou, K.; Plummer, S.; Rocca, F.; Saatchi, S.; Shugart, H.; et al. The BIOMASS mission: Mapping global forest biomass to better understand the terrestrial carbon cycle. Remote Sens. Environ. 2011, 115, 2850–2860. [Google Scholar] [CrossRef]
- Ahmed, R.; Siqueira, P.; Hensley, S.; Chapman, B.; Bergen, K. A survey of temporal decorrelation from spaceborne L-Band repeat-pass InSAR. Remote Sens. Environ. 2011, 115, 2887–2896. [Google Scholar] [CrossRef]
- Zebker, H.A.; Villasenor, J. Decorrelation in interferometric radar echoes. IEEE Trans. Geosci. Remote Sens. 1992, 30, 950–959. [Google Scholar] [CrossRef]
- Lavalle, M.; Simard, M.; Hensley, S. A temporal decorrelation model for polarimetric radar interferometers. IEEE Trans. Geosci. Remote Sens. 2012, 50, 2880–2888. [Google Scholar] [CrossRef]
- Ghasemi, N.; Lavalle, M.; Tolpekin, V.; Stein, A. Estimating tree heights using multi-baseline PolInSAR data with compensation for temporal decorrelation, case study: AfriSAR campaign data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, in press. [Google Scholar]
- Ulander, L.; Gustavsson, A.; Flood, B.; Murdin, D.; Dubois-Fernandez, P.; Depuis, X.; Sandberg, G.; Soja, M.; Eriksson, L.; Fransson, J.; et al. BioSAR 2010: Technical Assistance for the Development of Airborne SAR and Geophysical Measurements during the BioSAR 2010 Experiment: Final Report; Technical Report Contract No. 4000102285/10/NL/JA/ef; European Space Agency (ESA): Paris, France, 2011. [Google Scholar]
- Reitermanova, Z. Data splitting. WDS 2010, 10, 31–36. [Google Scholar]
- Askne, J.I.; Fransson, J.E.; Santoro, M.; Soja, M.J.; Ulander, L.M. Model-based biomass estimation of a hemi-boreal forest from multitemporal TanDEM-X acquisitions. Remote Sens. 2013, 5, 5574–5597. [Google Scholar] [CrossRef]
- Wikström, P.; Edenius, L.; Elfving, B.; Eriksson, L.O.; Lämås, T.; Sonesson, J.; Öhman, K.; Wallerman, J.; Waller, C.; Klintebäck, F. The Heureka forestry decision support system: An overview. Math. Comput. For. Nat. Resour. Sci. 2011, 3, 87–95. [Google Scholar]
- Picard, N.; Saint-André, L.; Henry, M. Manual for Building Tree Volume and Biomass Allometric Equations: From Field Measurement to Prediction; FAO/CIRAD: Rome, Italy, 2012. [Google Scholar]
- Goldstein, R.M.; Zebker, H.A.; Werner, C.L. Satellite radar interferometry: Two-dimensional phase unwrapping. Radio Sci. 1988, 23, 713–720. [Google Scholar] [CrossRef]
- Lee, J.S.; Pottier, E. Polarimetric Radar Imaging: From Basics to Applications; CRC Press: Boca Raton, FL, USA, 2009. [Google Scholar]
- Dobson, M.C.; Ulaby, F.T.; Pierce, L.E.; Sharik, T.L.; Bergen, K.M.; Kellndorfer, J.; Kendra, J.R.; Li, E.; Lin, Y.C.; Nashashibi, A.; et al. Estimation of forest biophysical characteristics in northern Michigan with SIR-C/X-SAR. IEEE Trans. Geosci. Remote Sens. 1995, 33, 877–895. [Google Scholar] [CrossRef]
- Cloude, S.; Papathanassiou, K. Three-stage inversion process for polarimetric SAR interferometry. IEE Proc. Radar Sonar Navig. 2003, 150, 125–134. [Google Scholar] [CrossRef]
- Cloude, S. Polarisation: Applications in Remote Sensing; Oxford University Press: Oxford, UK, 2010. [Google Scholar]
- Cloude, S.R. Polarization coherence tomography. Radio Sci. 2006, 41, 1–27. [Google Scholar] [CrossRef]
- Chen, G.; Ren, Z.L.; Sun, H.Z. Curve Fitting in Least-Square Method and Its Realization with Matlab. Ordnance Ind. Autom. 2005, 3, 063. [Google Scholar]
- Least-Squares Fitting. 2017. Available online: http:/nl.mathworks.com/help/curvefit/least-squares-fitting.html (accessed on 7 May 2018).
- Solberg, S.; Hansen, E.H.; Gobakken, T.; Næssset, E.; Zahabu, E. Biomass and InSAR height relationship in a dense tropical forest. Remote Sens. Environ. 2017, 192, 166–175. [Google Scholar] [CrossRef]
- Rousseeuw, P.J.; Leroy, A.M. Robust Regression and Outlier Detection; John Wiley & Sons: Hoboken, NJ, USA, 2005. [Google Scholar]
- Picard, R.R.; Berk, K.N. Data splitting. Am. Stat. 1990, 44, 140–147. [Google Scholar]
- Massey, F.J., Jr. The Kolmogorov-Smirnov test for goodness of fit. J. Am. Stat. Assoc. 1951, 46, 68–78. [Google Scholar] [CrossRef]
- Strikholm, B. Determining the Number of Breaks in a Piecewise Linear Regression Model; Technical Report; SSE/EFI Working Paper Series in Economics and Finance; The Economic Research Institute: Niigata City, Japan, 2006. [Google Scholar]
- Soja, M.J.; Sandberg, G.; Ulander, L.M. Regression-based retrieval of boreal forest biomass in sloping terrain using P-band SAR backscatter intensity data. IEEE Trans. Geosci. Remote Sens. 2013, 51, 2646–2665. [Google Scholar] [CrossRef]
- Lu, D.; Chen, Q.; Wang, G.; Liu, L.; Li, G.; Moran, E. A survey of remote sensing-based aboveground biomass estimation methods in forest ecosystems. Int. J. Digit. Earth 2016, 9, 63–105. [Google Scholar] [CrossRef]
- Hansen, E.H.; Gobakken, T.; Bollandsås, O.M.; Zahabu, E.; Næsset, E. Modeling aboveground biomass in dense tropical submontane rainforest using airborne laser scanner data. Remote Sens. 2015, 7, 788–807. [Google Scholar] [CrossRef] [Green Version]
- Askne, J.; Santoro, M. Experiences in boreal forest stem volume estimation from multitemporal C-band InSAR. In Recent Interferometry Applications in Topography and Astronomy; InTech: London, UK, 2012. [Google Scholar]
- Sandberg, G.; Ulander, L.M.; Fransson, J.; Holmgren, J.; Le Toan, T. L-and P-band backscatter intensity for biomass retrieval in hemiboreal forest. Remote Sens. Environ. 2011, 115, 2874–2886. [Google Scholar] [CrossRef]
- Arnaubec, A.; Dubois-Fernandez, P. Analysis of PolInSAR precision for forest and ground parameters estimation in tropical context. In Proceedings of the 2012 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Munich, Germany, 22–27 July 2012; pp. 7585–7588. [Google Scholar]
- Woodhouse, I.; Cloude, S.; Papathanassiou, K.; Hutchinson, C. Evaluating PolInSAR tree height and topography retrievals in glen affric. In Proceedings of the Workshop Applications of SAR Polarimetry and Polarimetric Interferometry, Frascati, Italy, 14–16 January 2003; Volume 529. [Google Scholar]
- Papathanassiou, K.; Mette, T.; Hajnsek, I. Model based forest height estimation from single baseline polinSAR data: The fichtelgebirge test case. In Proceedings of the Workshop Applications of SAR Polarimetry and Polarimetric Interferometry, Frascati, Italy, 14–16 January 2003; Volume 529. [Google Scholar]
- Fu, H.; Wang, C.; Zhu, J.; Xie, Q.; Zhang, B. Estimation of pine forest height and underlying DEM using multi-baseline P-band PolInSAR data. Remote Sens. 2016, 8, 820. [Google Scholar] [CrossRef]
- Noble, I.; Bolin, B.; Ravindranath, N.; Verardo, D.; Dokken, D. Land Use, Land Use Change, and Forestry; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
Parameters | Mean | Range |
---|---|---|
Biomass (ton ha) | 120.04 | 1.2–315.96 |
Basal area (m ha) | 26.34 | 1.35–77.81 |
Mean diameter (m) | 2.39 | 0.52–5.05 |
H100 (m) | 28.24 | 13.77–34.77 |
(Constant Term) | RMSE (ton ha) | Adjusted | ||||
---|---|---|---|---|---|---|
RVoG | −0.028 | −0.063 | 0.498 | 4.630 | 30.87 | 0.50 |
RMoG | −0.014 | −0.083 | 0.498 | 3.660 | 30.80 | 0.62 |
RMoGL | 0.005 | −0.102 | 0.467 | 2.694 | 30.75 | 0.73 |
RMSE (ton ha) | Adjusted | |||
---|---|---|---|---|
RVoG | 5.15 | 0.13 | 30.87 | 0.54 |
RMoG | 5.10 | 0.17 | 30.75 | 0.56 |
RMoG | 5.10 | 0.18 | 30.61 | 0.61 |
RMSE (ton ha) | Adjusted | |||
---|---|---|---|---|
RVoG | 2.068 | 0.277 | 40.01 | 0.56 |
RMoG | 2.194 | 0.274 | 30.93 | 0.60 |
RMoG | 2.224 | 0.276 | 30.87 | 0.65 |
Piece-Wise Regression | Slope | Intercept | Average RMSE (ton ha) | Adjusted R |
---|---|---|---|---|
H < 8 m | 1.73 | 0 | 30.91 | 0.90 |
8 m ≤ H | 0.04 | 3.20 | 30.64 | 0.62 |
(ton ha) | (ton ha) | RMSE (ton ha) | Adjusted R | Relative Error (%) | |
---|---|---|---|---|---|
RVoG | 36.81 | 0.72 | 62.06 | 0.45 | 46 |
RMoG | 27.12 | 1.97 | 55.44 | 0.74 | 37 |
RMoG | 15.97 | 2.09 | 46.65 | 0.82 | 30 |
h | p | D | |
---|---|---|---|
RVoG | 0 | 0.001 | 0.41 |
RMoG | 0 | 0.000 | 0.31 |
RMoG | 0 | 0.000 | 0.21 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghasemi, N.; Tolpekin, V.; Stein, A. Assessment of Forest Above-Ground Biomass Estimation from PolInSAR in the Presence of Temporal Decorrelation. Remote Sens. 2018, 10, 815. https://doi.org/10.3390/rs10060815
Ghasemi N, Tolpekin V, Stein A. Assessment of Forest Above-Ground Biomass Estimation from PolInSAR in the Presence of Temporal Decorrelation. Remote Sensing. 2018; 10(6):815. https://doi.org/10.3390/rs10060815
Chicago/Turabian StyleGhasemi, Nafiseh, Valentyn Tolpekin, and Alfred Stein. 2018. "Assessment of Forest Above-Ground Biomass Estimation from PolInSAR in the Presence of Temporal Decorrelation" Remote Sensing 10, no. 6: 815. https://doi.org/10.3390/rs10060815
APA StyleGhasemi, N., Tolpekin, V., & Stein, A. (2018). Assessment of Forest Above-Ground Biomass Estimation from PolInSAR in the Presence of Temporal Decorrelation. Remote Sensing, 10(6), 815. https://doi.org/10.3390/rs10060815