Assessing Texture Features to Classify Coastal Wetland Vegetation from High Spatial Resolution Imagery Using Completed Local Binary Patterns (CLBP)
<p>The location of the study area.</p> "> Figure 2
<p>The vegetation types for classification and their image characteristics.</p> "> Figure 3
<p>An example of encoding process of <span class="html-italic">LBP</span> (<span class="html-italic">P</span> = 8, <span class="html-italic">R</span> = 1).</p> "> Figure 4
<p>An example of encoding process of <span class="html-italic">CLBP_s</span> and <span class="html-italic">CLBP_m</span> (<span class="html-italic">P</span> = 8, <span class="html-italic">R</span> = 1).</p> "> Figure 5
<p>Classification results: (<b>a</b>) Spectral textures; (<b>b</b>) Spectral and GLCM textures; (<b>c</b>) Spectral and CLBP_S textures; (<b>d</b>) Spectral and CLBP_M textures; (<b>e</b>) Spectral and CLBP_M/S textures; and (<b>f</b>) Spectral and CLBP_M/S/C textures.</p> ">
Abstract
:1. Introduction
2. Study Area and Data
2.1. Study Area
2.2. Data
2.3. Field Data Collection and Sample Dataset Construction
2.4. Texture Feature Extraction
2.5. Texture Feature Parameters
2.6. Image Segmentation
2.7. Object-Based Classification
3. Experimental Results and Discussion
3.1. Texture Parameter Selection
3.2. Classification Results and Discussion
3.2.1. Classification Results Using Spectral Data Alone
3.2.2. Classification Results by GLCM Texture Features
3.2.3. Classification Results by Combining CLBP Texture Features
4. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Gorham, E. Northern peatlands: Role in the carbon cycle and probable responses to climatic warming. Ecol. Appl. 1991, 1, 182–195. [Google Scholar] [CrossRef] [PubMed]
- Gibbs, J.P. Wetland loss and biodiversity conservation. Conserv. Biol. 2000, 14, 314–317. [Google Scholar] [CrossRef]
- Wright, C.; Gallant, A. Improved wetland remote sensing in Yellowstone national park using classification trees to combine tm imagery and ancillary environmental data. Remote Sens. Environ. 2007, 107, 582–605. [Google Scholar] [CrossRef]
- Mutanga, O.; Adam, E.; Cho, M.A. High density biomass estimation for wetland vegetation using worldview-2 imagery and random forest regression algorithm. Int. J. Appl. Earth Obs. Geoinf. 2012, 18, 399–406. [Google Scholar] [CrossRef]
- Maclean, I.; Hassall, M.; Boar, R.R.; Lake, I.R. Effects of disturbance and habitat loss on papyrus-dwelling passerines. Biol. Conserv. 2006, 131, 349–358. [Google Scholar] [CrossRef]
- Mafabi, P. The role of wetland policies in the conservation of waterbirds: The case of uganda. Ostrich 2000, 71, 96–98. [Google Scholar] [CrossRef]
- Owino, A.O.; Ryan, P.G. Recent papyrus swamp habitat loss and conservation implications in western Kenya. Wetl. Ecol. Manag. 2007, 15, 1–12. [Google Scholar] [CrossRef]
- Liu, C.Y.; Jiang, H.X.; Hou, Y.Q.; Zhang, S.Q.; Su, L.Y.; Li, X.F.; Pan, X.; Wen, Z. Habitat changes for breeding waterbirds in Yancheng National Nature Reserve, China: A remote sensing study. Wetlands 2010, 30, 879–888. [Google Scholar] [CrossRef]
- Zhang, Y.; SUN, Y.; Lu, C.H.; Zhang, Y.L.; Lv, S.C. Pattern of Wintering Bird Community in Three Habitats after Invasion of Spartina alterniflora in Yancheng National Nature Reserve. Wetl. Sci. 2017, 15, 433–441. [Google Scholar]
- Tan, Q.; Liu, H.; Zhang, H.; Wang, C.; Hou, M. Classification of vegetation coverage of wetland landscape based on remote sensing in the coastal area of Jiangsu Province. Remote Sens. Technol. Appl. 2013, 28, 934–940. [Google Scholar]
- Liu, X.; Xu, M. Beach vegetation ecological character in north Jiangsu shoal of east china and its succession. J. Nanjing Norm. Univ. 2015, 38, 107–113. [Google Scholar]
- Simard, M.; Saatchi, S.S.; De Grandi, G. The use of decision tree and multiscale texture for classification of JERS-1 SAR data over tropical forest. IEEE Trans. Geosci. Remote Sens. 2000, 38, 2310–2321. [Google Scholar] [CrossRef]
- Yu, Q.; Gong, P.; Clinton, N.; Biging, G.; Kelly, M.; Schirokauer, D. Object-based detailed vegetation classification with airborne high spatial resolution remote sensing imagery. Photogramm. Eng. Remote Sens. 2006, 72, 799–811. [Google Scholar] [CrossRef]
- Maillard, P. Comparing texture analysis methods through classification. Photogramm. Eng. Remote Sens. 2003, 69, 357–367. [Google Scholar] [CrossRef]
- Beguet, B.; Chehata, N.; Boukir, S.; Guyon, D. Classification of forest structure using very high resolution Pleiades image texture. In Proceedings of the 2014 IEEE International Geoscience and Remote Sensing Symposium, Quebec City, QC, Canada, 13–18 July 2014; Volume 2014, pp. 2324–2327. [Google Scholar]
- Szantoi, Z.; Escobedo, F.J.; Abd-Elrahman, A.; Pearlstine, L.; Dewitt, B.; Smith, S. Classifying spatially heterogeneous wetland communities using machine learning algorithms and spectral and textural features. Environ. Monit. Assess. 2015, 187, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Cabezas, J.; Galleguillos, M.; Perez-Quezada, J.F. Predicting vascular plant richness in a heterogeneous wetland using spectral and textural features and a random forest algorithm. IEEE Geosci. Remote Sens. Lett. 2016, 13, 646–650. [Google Scholar] [CrossRef]
- Berberoğlu, S.; Akin, A.; Atkinson, P.M.; Curran, P.J. Utilizing image texture to detect land-cover change in Mediterranean coastal wetlands. Int. J. Remote Sens. 2010, 31, 2793–2815. [Google Scholar] [CrossRef]
- Arzandeh, S.; Wang, J. Texture evaluation of Radarsat imagery for wetland mapping. Can. J. Remote Sens. 2002, 28, 653–666. [Google Scholar] [CrossRef]
- Kamarul, H.G.; Aini, H. Machine vision system for automatic weeding strategy using image processing technique. Am.-Eurasian J. Agric. Environ. Sci. 2008, 3, 451–458. [Google Scholar]
- Chowdhury, S.; Verma, B.; Stockwell, D. A novel texture feature based multiple classifier technique for roadside vegetation classification. Expert Syst. Appl. 2015, 42, 5047–5055. [Google Scholar] [CrossRef]
- Musci, M.; Feitosa, R.Q.; Velloso, M.L.F.; Novack, T. An evaluation of texture descriptors based on local binary patterns for classifications of remote sensing images. Bol. Cienc. Geodesicas 2011, 17, 549–570. [Google Scholar]
- Singh, S.; Maurya, R.; Mittal, A. Application of Complete Local Binary Pattern Method for facial expression recognition. In Proceedings of the International Conference on Intelligent Human Computer Interaction, Kharagpur, India, 27–29 December 2012; Volume 2013, pp. 1–4. [Google Scholar]
- Xu, H.; Zhu, G.Q.; Wang, L.; Bao, H. Design of nature reserve system for red-crowned crane in china. Biodivers. Conserv. 2005, 14, 2275–2289. [Google Scholar] [CrossRef]
- Wang, J.; Liu, Z. Protection and sustainable utilization for the biodiversity of Yancheng seashore. Chin. J. Ecol. 2005, 24, 1090–1094. [Google Scholar]
- Lu, Y. The Role of Local Knowledge in Yancheng National Nature Reserve Management. Ph.D. Thesis, University of Otago, Dunedin, New Zealand, 2016. [Google Scholar]
- Ke, C.Q. Analyzing coastal wetland change in the Yancheng National Nature Reserve, China. Reg. Environ. Chang. 2011, 11, 161–173. [Google Scholar] [CrossRef]
- Sun, J.; Han, L.J.; Sun, D.Y.; Yuan, Z.H. The studies on anti-drought of seaweed extracts. Mar. Sci. 2006, 30, 40–45. [Google Scholar]
- Cooley, T.; Anderson, G.P.; Felde, G.W.; Hoke, M.L. FLAASH, a MODTRAN4-based atmospheric correction algorithm, its application and validation. In Proceedings of the 2002 IEEE International Geoscience and Remote Sensing Symposium (IGARSS ’02), Toronto, ON, Canada, 24–28 June 2002; pp. 1414–1418. [Google Scholar]
- Cheng, L.; Youhua, M.A.; Huang, Y.; Zhi, X.; Juan, Z.U.; Zhongwen, M.A. Comparison of atmospheric correction between ENVI FLAASH and ERDAS ATCOR2. Agric. Netw. Inf. 2011, 12, 007. [Google Scholar]
- Wang, M.Y.; Fei, X.Y.; Xie, H.Q.; Liu, F.; Zhang, H. Study of Fusion Algorithms with High Resolution Remote Sensing Image for Urban Green Space Information Extraction. Bull. Surv. Mapp. 2017, 36–40. [Google Scholar] [CrossRef]
- Ojala, T.; Pietikäinen, M.; Harwood, D. A comparative study of texture measures with classification based on feature distributions. Pattern Recognit. 1996, 29, 51–59. [Google Scholar]
- Guo, Z.; Zhang, L.; Zhang, D. A completed modeling of local binary pattern operator for texture classification. IEEE Trans. Image Process. 2010, 19, 1657–1663. [Google Scholar] [PubMed]
- Bruzzone, L.; Roli, F.; Serpico, S.B. An extension of the Jeffreys-Matusita distance to multiclass cases for feature selection. IEEE Trans. Geosci. Remote Sens. 1995, 33, 1318–1321. [Google Scholar] [CrossRef]
- Duro, D.C.; Franklin, S.E.; Dubé, M.G. A comparison of pixel-based and object-based image analysis with selected machine learning algorithms for the classification of agricultural landscapes using SPOT-5 HRG imagery. Remote Sens. Environ. 2012, 118, 259–272. [Google Scholar] [CrossRef]
- Wulder, M.A.; Chubey, M.S.; Franklin, S.E. Object-based analysis of ikonos-2 imagery for extraction of forest inventory parameters. Photogramm. Eng. Remote Sens. 2006, 72, 383–394. [Google Scholar]
- Mountrakis, G.; Im, J.; Ogole, C. Support vector machines in remote sensing: A review. ISPRS J. Photogramm. Remote Sens. 2011, 66, 247–259. [Google Scholar] [CrossRef]
- Song, B.Q.; Li, P.J. The application of extended lbp texture in high resolution remote sensing image classification. Remote Sens. Land Resour. 2010, 25, 40–45. [Google Scholar]
- Dubey, S.R.; Jalal, A.S. Detection and Classification of Apple Fruit Diseases Using Complete Local Binary Patterns. In Proceedings of the Third International Conference on Computer and Communication Technology, Allahabad, India, 23–25 November 2012; IEEE Computer Society: Washington, DC, USA, 2012; pp. 346–351. [Google Scholar]
Band | Wavelength (nm) | Spectral Region |
---|---|---|
1 | 430–550 | Blue |
2 | 490–610 | Green |
3 | 600–720 | Red |
4 | 750–950 | Near Infrared |
Objects (Scale) | Optimum Segmented Images | Color/Shape | Smoothness/Compactness | Features |
---|---|---|---|---|
Water (600) | 0.9/0.1 | 0.5/0.5 | The features used to perform image segmentation correspond to each procedure of classification | |
Phragmites (300) | ||||
Mixed Spartina alterniflora and Suaeda glauca (200) |
Separability of Mean Texture Feature | |||||
Classes | PC | SA | SG | PC & SG | SA & SG |
PC | |||||
SA | 2.000 | ||||
SG | 1.985 | 2.000 | |||
PC & SG | 1.999 | 1.945 | 1.992 | ||
SA & SG | 1.905 | 1.936 | 0.811 | 1.564 | |
Separability of ASM Texture Feature | |||||
PC | |||||
SA | 2.000 | ||||
SG | 1.980 | 2.000 | |||
PC & SG | 1.999 | 1.957 | 1.992 | ||
SA & SG | 1.946 | 1.921 | 0.866 | 1.134 | |
Separability of Entropy Texture Feature | |||||
PC | |||||
SA | 2.000 | ||||
SG | 1.980 | 2.000 | |||
PC & SG | 1.999 | 1.953 | 1.992 | ||
SA & SG | 1.965 | 1.921 | 0.941 | 1.136 |
Separability of CLBP_M | |||||
Classes | PC | SA | SG | PC & SG | SA & SG |
PC | |||||
SA | 2.000 | ||||
SG | 1.992 | 1.999 | |||
PC & SG | 1.995 | 1.937 | 1.985 | ||
SA & SG | 1.896 | 1.893 | 1.209 | 1.571 | |
Separability of CLBP_S | |||||
PC | |||||
SA | 2.000 | ||||
SG | 1.821 | 1.991 | |||
PC & SG | 1.981 | 1.309 | 1.987 | ||
SA & SG | 1.899 | 1.917 | 1.118 | 1.562 |
Water | Ground | PC | SA | SG | PC & SG | SA & SG | Sum | User Accuracy | |
---|---|---|---|---|---|---|---|---|---|
Water | 17 | 3 | 0 | 0 | 0 | 0 | 1 | 21 | 80.95% |
Ground | 0 | 26 | 0 | 1 | 2 | 2 | 0 | 31 | 83.87% |
Pc | 0 | 1 | 30 | 3 | 0 | 1 | 0 | 35 | 85.71% |
SA | 0 | 1 | 0 | 14 | 0 | 2 | 3 | 20 | 70.00% |
SG | 0 | 2 | 3 | 0 | 18 | 2 | 3 | 28 | 78.57% |
PC & SG | 0 | 1 | 6 | 0 | 1 | 15 | 1 | 24 | 79.17% |
SA & SG | 0 | 1 | 0 | 1 | 1 | 0 | 15 | 18 | 83.33% |
Sum | 17 | 35 | 39 | 19 | 22 | 22 | 23 | 177 | |
Producer Accuracy | 100.00% | 74.29% | 76.92% | 73.68% | 81.82% | 68.18% | 65.22% | ||
Overall Accuracy = 76.27% |
Water | Ground | P | SA | SG | PC & SG | SA & SG | Sum | User Accuracy | |
---|---|---|---|---|---|---|---|---|---|
Water | 24 | 3 | 0 | 0 | 0 | 0 | 1 | 28 | 85.71% |
Ground | 1 | 25 | 0 | 1 | 2 | 0 | 2 | 31 | 80.65% |
P | 0 | 1 | 27 | 2 | 0 | 2 | 0 | 32 | 84.38% |
SA | 0 | 2 | 0 | 22 | 0 | 2 | 2 | 28 | 78.57% |
SG | 0 | 0 | 1 | 0 | 26 | 1 | 2 | 30 | 81.25% |
PC & SG | 0 | 1 | 0 | 1 | 1 | 13 | 0 | 16 | 73.33% |
SA & SG | 0 | 1 | 0 | 2 | 0 | 0 | 13 | 16 | 81.25% |
Sum | 25 | 33 | 28 | 28 | 29 | 18 | 20 | 181 | |
Producer Accuracy | 96.00% | 75.76% | 96.43% | 78.57% | 89.66% | 72.22% | 65.00% | ||
Overall Accuracy = 82.87% |
Water | Ground | P | SA | SG | PC & SG | SA & SG | Sum | User Accuracy | ||
S | Water | 19 | 2 | 0 | 0 | 0 | 0 | 1 | 22 | 86.36% |
Ground | 0 | 21 | 0 | 0 | 2 | 2 | 2 | 27 | 77.77% | |
P | 0 | 0 | 36 | 1 | 0 | 2 | 0 | 39 | 89.74% | |
SA | 0 | 1 | 0 | 21 | 0 | 1 | 3 | 26 | 80.77% | |
SG | 0 | 0 | 1 | 0 | 25 | 2 | 2 | 30 | 86.67% | |
PC & SG | 0 | 0 | 1 | 0 | 1 | 12 | 1 | 15 | 85.71% | |
SA & SG | 0 | 1 | 0 | 1 | 1 | 0 | 16 | 19 | 84.21% | |
Sum | 19 | 25 | 38 | 23 | 29 | 19 | 25 | 178 | ||
Producer Accuracy | 100.00% | 84.00% | 94.74% | 91.30% | 86.21% | 63.16% | 64.00% | |||
Overall Accuracy = 84.27% | ||||||||||
Water | Ground | P | SA | SG | PC & SG | SA & SG | Sum | User Accuracy | ||
M | Water | 16 | 2 | 0 | 0 | 0 | 0 | 1 | 19 | 84.21% |
Ground | 0 | 26 | 0 | 0 | 3 | 1 | 0 | 30 | 86.67% | |
P | 0 | 0 | 30 | 2 | 0 | 0 | 2 | 34 | 88.24% | |
SA | 0 | 0 | 0 | 28 | 0 | 1 | 2 | 31 | 90.32% | |
SG | 0 | 3 | 1 | 0 | 23 | 2 | 1 | 30 | 76.67% | |
PC & SG | 0 | 1 | 1 | 0 | 1 | 13 | 0 | 16 | 81.25% | |
SA & SG | 0 | 1 | 0 | 1 | 1 | 0 | 17 | 20 | 85.00% | |
Sum | 16 | 33 | 32 | 31 | 28 | 17 | 23 | 180 | ||
Producer Accuracy | 100.00% | 78.79% | 93.75% | 90.32% | 82.14% | 76.47% | 73.91% | |||
Overall Accuracy = 85.00% | ||||||||||
Water | Ground | P | SA | SG | PC & SG | SA & SG | Sum | User Accuracy | ||
M/S | Water | 19 | 3 | 0 | 0 | 0 | 0 | 1 | 23 | 82.61% |
Ground | 1 | 24 | 0 | 1 | 1 | 1 | 2 | 30 | 80.00% | |
P | 0 | 1 | 33 | 1 | 0 | 3 | 0 | 38 | 86.41% | |
SA | 0 | 1 | 0 | 27 | 0 | 1 | 2 | 31 | 87.10% | |
SG | 0 | 0 | 1 | 0 | 23 | 0 | 2 | 26 | 88.46% | |
PC & SG | 0 | 0 | 1 | 1 | 0 | 13 | 0 | 15 | 86.67% | |
SA & SG | 0 | 0 | 0 | 0 | 0 | 2 | 12 | 14 | 85.71% | |
Sum | 20 | 29 | 35 | 30 | 24 | 18 | 21 | 177 | ||
Producer Accuracy | 95.00% | 82.76% | 94.29% | 90.00% | 95.83% | 72.22% | 57.14% | |||
Overall Accuracy = 85.31% | ||||||||||
Water | Ground | P | SA | SG | PC & SG | SA & SG | Sum | User Accuracy | ||
S/M/C | Water | 18 | 2 | 0 | 0 | 0 | 0 | 1 | 21 | 85.71% |
Ground | 1 | 22 | 0 | 0 | 1 | 1 | 2 | 27 | 81.48% | |
P | 0 | 1 | 29 | 1 | 0 | 3 | 0 | 34 | 85.29% | |
SA | 0 | 1 | 0 | 24 | 0 | 1 | 2 | 28 | 85.71% | |
SG | 0 | 0 | 0 | 0 | 24 | 1 | 1 | 26 | 92.37% | |
PC & SG | 0 | 0 | 3 | 0 | 1 | 15 | 1 | 20 | 75.00% | |
SA & SG | 0 | 0 | 0 | 1 | 0 | 0 | 14 | 15 | 93.33% | |
Sum | 19 | 26 | 32 | 26 | 26 | 22 | 21 | 171 | ||
Producer Accuracy | 94.74% | 84.62% | 90.63% | 92.31% | 92.31% | 68.18% | 66.67% | |||
Overall Accuracy = 85.38% |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, M.; Fei, X.; Zhang, Y.; Chen, Z.; Wang, X.; Tsou, J.Y.; Liu, D.; Lu, X. Assessing Texture Features to Classify Coastal Wetland Vegetation from High Spatial Resolution Imagery Using Completed Local Binary Patterns (CLBP). Remote Sens. 2018, 10, 778. https://doi.org/10.3390/rs10050778
Wang M, Fei X, Zhang Y, Chen Z, Wang X, Tsou JY, Liu D, Lu X. Assessing Texture Features to Classify Coastal Wetland Vegetation from High Spatial Resolution Imagery Using Completed Local Binary Patterns (CLBP). Remote Sensing. 2018; 10(5):778. https://doi.org/10.3390/rs10050778
Chicago/Turabian StyleWang, Minye, Xianyun Fei, Yuanzhi Zhang, Zhou Chen, Xiaoxue Wang, Jin Yeu Tsou, Dawei Liu, and Xia Lu. 2018. "Assessing Texture Features to Classify Coastal Wetland Vegetation from High Spatial Resolution Imagery Using Completed Local Binary Patterns (CLBP)" Remote Sensing 10, no. 5: 778. https://doi.org/10.3390/rs10050778