Evaluation of Three Techniques for Correcting the Spatial Scaling Bias of Leaf Area Index
"> Figure 1
<p>Schematic flowchart for the up-scaling process: <span class="html-italic">f</span> is a function relating <span class="html-italic">y</span> to <span class="html-italic">x</span>; <span class="html-italic">x<sub>i</sub></span> (<span class="html-italic">i</span> = 1, 2, 3, 4) is the value of each pixel at the original high resolution and <span class="html-italic">X</span> is their average. Suppose <span class="html-italic">x</span><sub>1</sub> = <span class="html-italic">x</span><sub>2</sub> = <span class="html-italic">VI<sub>a</sub></span>, <span class="html-italic">x</span><sub>3</sub> = <span class="html-italic">x</span><sub>4</sub> = <span class="html-italic">VI<sub>b</sub></span>, then <span class="html-italic">X</span> is <span class="html-italic">VI<sub>m</sub></span> representing the vegetation index value of the coarse spatial resolution pixel, and <span class="html-italic">y<sub>i</sub></span> is the corresponding LAI value. The subscript <span class="html-italic">exa</span> means the exact value and <span class="html-italic">app</span> represents the approximated value of the coarse resolution pixel.</p> "> Figure 2
<p>Location of the study area in Huai’an, Jiangsu Province (<b>b</b>), China (<b>a</b>) and 2-m resolution GF-1 satellite image of the study area (<b>c</b>). The band combination of this false color composite image is NIR (0.77 μm to 0.89 μm), R (0.63 μm to 0.69 μm), and G (0.52 μm to 0.59 μm). Shown on the right of the satellite image (<b>c</b>) is the layout of subsamples in each sample.</p> "> Figure 3
<p>Relationships between field-measured NDVI and LAI as represented by four fitting functions.</p> "> Figure 4
<p>Mapping of leaf area index (LAI) from the GF-1 satellite image: (<b>a</b>) the land use map of the study area; (<b>b</b>) the NDVI image derived from the GF-1 image; and (<b>c</b>) the LAI map generated from the power function relating LAI to NDVI (<a href="#remotesensing-10-00221-t002" class="html-table">Table 2</a>).</p> "> Figure 5
<p>The relationship of model non-linearity with scaling bias. (<b>a</b>) The non-linearity of LAI estimation model (<span class="html-italic">LAI</span> = <span class="html-italic">a<sup>NDVI</sup></span>) represented by the base number <span class="html-italic">a</span>. (<b>b</b>) The relationship between base number <span class="html-italic">a</span> and the scaling bias. The grey lines represent the simulations of 10,000 groups and the black line represent the average scaling bias.</p> "> Figure 6
<p>Correction of the scaling bias caused by model non-linearity using the three techniques TT, WF, and FT. The non-linearity of LAI estimation model (<span class="html-italic">LAI</span> = <span class="html-italic">a<sup>NDVI</sup></span>) was represented by the base number <span class="html-italic">a</span>.</p> "> Figure 7
<p>The relationship between scaling bias and the proportion of class (<span class="html-italic">NDVI</span><sub>1</sub>) within coarse pixels for four types of LAI estimation models.</p> "> Figure 8
<p>The relationship between scaling bias and differences of classes (<span class="html-italic">NDVI</span><sub>1</sub> and <span class="html-italic">NDVI</span><sub>2</sub>) within a coarse pixel.</p> "> Figure 9
<p>Correction of the scaling bias mainly caused by spatial heterogeneity (<math display="inline"> <semantics> <mrow> <msub> <mi>σ</mi> <mrow> <mi>v</mi> <mi>i</mi> </mrow> </msub> </mrow> </semantics> </math>) using the three techniques (TT, WF, and FT) for LAI estimation models of (<b>a</b>) power function, (<b>b</b>) exponential function, (<b>c</b>) logarithmic function, and (<b>d</b>) polynomial function.</p> "> Figure 10
<p>Correction of scaling bias with the four LAI estimation models at different spatial resolutions using the three techniques. The LAI estimation models are: (<b>a</b>) power model; (<b>b</b>) exponential model; (<b>c</b>) logarithmic model; and (<b>d</b>) polynomial model. The three techniques used to correct scaling bias are: TT (Taylor’s theorem), WF (Wavelet-Fractal technique), and FT (Fractal theory). The spatial scales are: 4 m, 8 m, 16 m, 32 m, 64 m, and 128 m.</p> "> Figure 11
<p>Correction of scaling bias with the four LAI estimation models at 32-m spatial resolution using the three techniques. The LAI estimation models are: (<b>a</b>) power model; (<b>b</b>) exponential model; (<b>c</b>) logarithmic model; and (<b>d</b>) polynomial model. The three techniques used to correct scaling bias are: (<b>d-1</b>) Taylor’s theorem (TT); (<b>d-2</b>) Wavelet-Fractal technique (WF); and (<b>d-3</b>) Fractal theory (FT). <span class="html-italic">LAI<sub>app</sub></span> is the approximated LAI before correction, and <span class="html-italic">LAI<sub>cor</sub></span> is the corrected LAI. The unit for RMSE is m<sup>2</sup>/m<sup>2</sup>.</p> "> Figure 12
<p>Comparison of LAI scaling bias correction in the extreme case of spatial heterogeneity. (<b>a</b>) The spatial heterogeneity of study area at 32-m resolution was obtained by the standard deviation of <span class="html-italic">NDVI</span> (<math display="inline"> <semantics> <mrow> <msub> <mi>σ</mi> <mrow> <mi>v</mi> <mi>i</mi> </mrow> </msub> </mrow> </semantics> </math>). Within each pixel, there are 16 × 16 subpixels with spatial resolution of 2 m. NDVI distribution in the pixel of: (<b>b</b>) minimum <math display="inline"> <semantics> <mrow> <msub> <mi>σ</mi> <mrow> <mi>v</mi> <mi>i</mi> </mrow> </msub> </mrow> </semantics> </math>; and (<b>c</b>) maximum <math display="inline"> <semantics> <mrow> <msub> <mi>σ</mi> <mrow> <mi>v</mi> <mi>i</mi> </mrow> </msub> </mrow> </semantics> </math>. The classes in the pixel of: (<b>d</b>) minimum <math display="inline"> <semantics> <mrow> <msub> <mi>σ</mi> <mrow> <mi>v</mi> <mi>i</mi> </mrow> </msub> </mrow> </semantics> </math>; and (<b>e</b>) maximum <math display="inline"> <semantics> <mrow> <msub> <mi>σ</mi> <mrow> <mi>v</mi> <mi>i</mi> </mrow> </msub> </mrow> </semantics> </math>. By using TT (Taylor’s theorem), WF (Wavelet-Fractal technique), and FT (Fractal theory), the correction results of pixels with: (<b>f</b>) minimum <math display="inline"> <semantics> <mrow> <msub> <mi>σ</mi> <mrow> <mi>v</mi> <mi>i</mi> </mrow> </msub> </mrow> </semantics> </math>; and (<b>g</b>) maximum <math display="inline"> <semantics> <mrow> <msub> <mi>σ</mi> <mrow> <mi>v</mi> <mi>i</mi> </mrow> </msub> </mrow> </semantics> </math> for the four LAI estimation models (power, exponential, logarithmic model and polynomial models) were obtained.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Principle of Scaling Effect
2.2. Experimental Data
2.2.1. Real Data
2.2.2. Simulated Data
- Experiment 1, model non-linearity. We designed a simulation experiment encompassing 10,000 groups of matrices in the dimension of 16 × 16. These matrices comprised randomly generated numbers from 0 to 1 as NDVI values and represented subpixel images of the coarse pixels. We used the exponential function model (f: LAI = aNDVI) and the base number a to characterize the variation in linearity of the LAI estimation model. For random pixels of each group, the results were calculated by both “estimation-aggregation” (Path_1) and “aggregation-estimation” (Path_2) as shown in Figure 1. The difference was the scaling bias.
- Experiment 2, the class-specific proportion. We set 16 × 16 subpixels with two classes (NDVI1 = 0.2, NDVI2 = 0.8) within a coarse pixel. Then, we changed the proportion (p1) of NDVI1 from 0 to 100% with the step of 0.4%.
- Experiment 3, the between-class spectral difference. A coarse pixel contained two classes (NDVI1, NDVI2) with the same proportions (p1, p2) of 50%. The spectral values of the two classes were different, but the sum of spectral values remained the same (NDVI1 + NDVI2 = 1). It meant the value of the coarse pixel (average values of fine subpixels) was unchanged.
- Experiment 4, the number of classes. Three classes were defined as NDVI1, NDVI2 and NDVI3, with the value of 0.01, 0.5 and 0.9 respectively. Firstly, calculating the scaling bias of pixels with two classes (NDVI1&NDVI2, NDVI1&NDVI3, and NDVI2&NDVI3). Then, we added the third class to this coarse pixel and maintained the equal proportion of each class (pi = 33.33%). Such that, the number of classes within the coarse pixel increased to three (NDVI1&NDVI2&NDVI3).
2.3. Correction Techniques
2.3.1. The Taylor’s Theorem Technique (TT)
2.3.2. The Wavelet-Fractal Technique (WF)
2.3.3. The Fractal Theory Technique (FT)
2.4. Performance Assessment
3. Results
3.1. Numerical Simulation Experiments on Scaling Effect
3.1.1. Model Non-Linearity
3.1.2. Spatial Heterogeneity
The Class-Specific Proportion within A Coarse Pixel
The Between-Class Spectral Difference within a Coarse Pixel
The Number of Classes within a Coarse Pixel
Correction of Scaling Bias Caused by Spatial Heterogeneity
3.2. Performance Comparison between the Three Techniques on the Real Data
3.2.1. Image Level
3.2.2. Pixel Level
3.2.3. Subpixel Level
4. Discussion
4.1. The Influences of Model Non-Linearity and Spatial Heterogeneity on Scaling Effect
4.2. The Reliability and Practicability of the Three Techniques
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Chen, J.M.; Black, T.A. Defining leaf area index for non-flat leaves. Plant Cell Environ. 2010, 15, 421–429. [Google Scholar] [CrossRef]
- Liu, F.; Liu, X.; Zhao, L.; Ding, C.; Jiang, J.; Wu, L. The dynamic assessment model for monitoring cadmium stress levels in rice based on the assimilation of remote sensing and the wofost model. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 8, 1330–1338. [Google Scholar] [CrossRef]
- Ding, C.; Liu, X.; Huang, F. Temporal interpolation of satellite-derived leaf area index time series by introducing spatial-temporal constraints for heterogeneous grasslands. Remote Sens. 2017, 9, 968. [Google Scholar] [CrossRef]
- Clevers, J.; Kooistra, L.; Marnix, V.D.B. Using sentinel-2 data for retrieving LAI and leaf and canopy chlorophyll content of a potato crop. Remote Sens. 2017, 9, 405. [Google Scholar] [CrossRef]
- Wang, H.; Zhu, Y.; Li, W.; Cao, W.; Tian, Y. Integrating remotely sensed leaf area index and leaf nitrogen accumulation with rice grow model based on particle swarm optimization algorithm for rice grain yield assessment. J. Appl. Remote Sens. 2014, 8, 083674. [Google Scholar] [CrossRef]
- Huang, J.; Sedano, F.; Huang, Y.; Ma, H.; Li, X.; Liang, S.; Tian, L.; Zhang, X.; Fan, J.; Wu, W. Assimilating a synthetic kalman filter leaf area index series into the wofost model to improve regional winter wheat yield estimation. Agric. For. Meteorol. 2016, 216, 188–202. [Google Scholar] [CrossRef]
- Huang, J.; Tian, L.; Liang, S.; Ma, H.; Becker-Reshef, I.; Huang, Y.; Su, W.; Zhang, X.; Zhu, D.; Wu, W. Improving winter wheat yield estimation by assimilation of the leaf area index from landsat tm and modis data into the wofost model. Agric. For. Meteorol. 2015, 204, 106–121. [Google Scholar] [CrossRef]
- Huang, J.; Ma, H.; Su, W.; Zhang, X.; Huang, Y.; Fan, J.; Wu, W. Jointly assimilating modis LAI and et products into the swap model for winter wheat yield estimation. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 4060–4071. [Google Scholar] [CrossRef]
- Xiaowen, L.I.; Zhao, H.; Zhang, H.; Wang, J. Global change study and quantitative remote sensing for land surface parameters. Earth Sci. Front. 2002, 9, 365–370. [Google Scholar]
- Wenjie, F.; Yingying, G.; Xiru, X.; Binyan, Y. The spatial scaling effect of discrete canopy effective leaf area index retrieved by remote sensing. Sci. China Earth Sci. 2013, 56, 1548–1554. [Google Scholar]
- Garrigues, S.; Allard, D.; Baret, F.; Weiss, M. Influence of landscape spatial heterogeneity on the non-linear estimation of leaf area index from moderate spatial resolution remote sensing data. Remote Sens. Environ. 2006, 105, 286–298. [Google Scholar] [CrossRef]
- Zhang, R.H.; Jing, T.; Li, Z.L.; Su, H.B.; Chen, S.H.; Tang, X.Z. Principles and methods for the validation of quantitative remote sensing products. Sci. China Earth Sci. 2010, 53, 741–751. [Google Scholar] [CrossRef]
- Kamal, M.; Phinn, S.; Johansen, K. Assessment of multi-resolution image data for mangrove leaf area index mapping. Remote Sens. Environ. 2016, 176, 242–254. [Google Scholar] [CrossRef]
- Hua, W.U.; Jiang, X.G.; Xiao-Huan, X.I.; Chuan-Rong, L.I. Comparison and analysis of two general scaling methods for remotely sensed information. J. Remote Sens. 2009, 13, 183–193. [Google Scholar]
- Yin, G.; Li, J.; Liu, Q.; Li, L.; Zeng, Y.; Xu, B.; Yang, L.; Zhao, J. Improving leaf area index retrieval over heterogeneous surface by integrating textural and contextual information: A case study in the heihe river basin. IEEE Geosci. Remote Sens. Lett. 2015, 12, 359–363. [Google Scholar]
- Wu, H.; Tang, B.; Li, Z. Impact of nonlinearity and discontinuity on the spatial scaling effects of the leaf area index retrieved from remotely sensed data. Int. J. Remote Sens. 2013, 34, 3503–3519. [Google Scholar] [CrossRef]
- Abuelgasim, A.A.; Fernandes, R.A.; Leblanc, S.G. Evaluation of national and global LAI products derived from optical remote sensing instruments over Canada. IEEE Trans. Geosci. Remote Sens. 2006, 44, 1872–1884. [Google Scholar] [CrossRef]
- Zhang, X.; Yan, G.; Li, Q.; Li, Z.L.; Wan, H.; Guo, Z. Evaluating the fraction of vegetation cover based on NDVI spatial scale correction model. Int. J. Remote Sens. 2006, 27, 5359–5372. [Google Scholar] [CrossRef]
- Zhi, H.; Liu, X.; Ming, J.; Chao, D.; Jiang, J.; Ling, W. Deriving the characteristic scale for effectively monitoring heavy metal stress in rice by assimilation of GF-1 data with the wofost model. Sensors 2016, 16, 340. [Google Scholar]
- Baret, F.; Guyot, G. Potentials and limits of vegetation indices for LAI and apar assessment. Remote Sens. Environ. 1991, 35, 161–173. [Google Scholar] [CrossRef]
- Aman, A.; Randriamanantena, H.P.; Podaire, A.; Frouin, R. Upscale integration of normalized difference vegetation index: The problem of spatial heterogeneity. IEEE Trans. Geosci. Remote Sens. 2002, 30, 326–338. [Google Scholar] [CrossRef]
- Bonan, G.B.; Pollard, D.; Thompson, S.L. Influence of subgrid-scale heterogeneity in leaf area index, stomatal resistance, and soil moisture on grid-scale land-atmosphere interactions. J. Clim. 1993, 6, 1882–1897. [Google Scholar] [CrossRef]
- Ehleringer, J.R.; Field, C.B. Scaling Physiological Processes: Leaf to Globe; Academic Press: Cambridge, MA, USA, 1993; 388p. [Google Scholar]
- Hu, Z.; Islam, S. A framework for analyzing and designing scale invariant remote sensing algorithms. IEEE Trans. Geosci. Remote Sens. 1997, 35, 747–755. [Google Scholar]
- Tian, Y.; Wang, Y.; Yu, Z.; Knyazikhin, Y.; Bogaert, J.; Myneni, R.B. Radiative transfer based scaling of LAI retrievals from reflectance data of different resolutions. Remote Sens. Environ. 2003, 84, 143–159. [Google Scholar] [CrossRef]
- Xu, X.R.; Fan, W.J.; Tao, X. The spatial scaling effect of continuous canopy leaves area index retrieved by remote sensing. Sci. China D Earth Sci. 2009, 52, 393–401. [Google Scholar] [CrossRef]
- Milne, B.T.; Cohen, W.B. Multiscale assessment of binary and continuous landcover variables for modis validation, mapping, and modeling applications. Remote Sens. Environ. 1999, 70, 82–98. [Google Scholar] [CrossRef]
- Jian, C.; Xiang, N.S.; Jing, L.J.; Tong, W.U. Scaling effect and spatial variability in retrieval of vegetation LAI from remotely sensed data. Acta Ecol. Sin. 2006, 26, 1502–1508. [Google Scholar]
- Zhu, X.; Feng, X.; Zhao, Y. Scale effect and error analysis of crop LAI inversion. J. Remote Sens. 2010, 14, 579–592. [Google Scholar]
- Liu, Y.; Wang, J.; Zhou, H.; Xue, H. Upscaling approach for validation of LAI products derived from remote sensing observation. J. Remote Sens. 2014, 18, 1189–1198. [Google Scholar]
- Artan, G.A.; Neale, C.M.U.; Tarboton, D.G. Characteristic length scale of input data in distributed models: Implications for modeling grid size. J. Hydrol. 2000, 227, 128–139. [Google Scholar] [CrossRef]
- Miller, J.R.; Chen, J.M.; Rubinstein, I.G. Evaluating image-based estimates of leaf area index in boreal conifer stands over a range of scales using high-resolution CASI imagery. Remote Sens. Environ. 2004, 89, 200–216. [Google Scholar]
- Jin, Z.; Tian, Q.; Chen, J.M.; Chen, M. Spatial scaling between leaf area index maps of different resolutions. J. Environ. Manag. 2007, 85, 628–637. [Google Scholar] [CrossRef] [PubMed]
- Martínez, B.; Garcíaharo, F.J.; Camachode Coca, F. Derivation of high-resolution leaf area index maps in support of validation activities: Application to the cropland barrax site. Agric. For. Meteorol. 2009, 149, 130–145. [Google Scholar] [CrossRef]
- Raffy, M. Change of scale in models of remote sensing: A general method for spatialization of models. Remote Sens. Environ. 1992, 40, 101–112. [Google Scholar] [CrossRef]
- Chen, J.M. Spatial scaling of a remotely sensed surface parameter by contexture - three land-atmospheric modeling experiments. Remote Sens. Environ. 1999, 69, 30–42. [Google Scholar] [CrossRef]
- Wu, H.; Li, Z.L. Scale issues in remote sensing: A review on analysis, processing and modeling. Sensors 2009, 9, 1768–1793. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.; Liu, X.; Liu, C.; Wu, L.; Xia, X.; Liu, M.; Du, Z. Analyzing the spatial scaling bias of rice leaf area index from hyperspectral data using wavelet–fractal technique. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 3068–3080. [Google Scholar] [CrossRef]
- Mandelbrot, B. How long is the coast of Britain? Statistical self-similarity and fractional dimension. Science 1967, 156, 636–638. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Liu, X.; Zheng, X.; Qin, Q.; Ren, H.; Sun, Y. Spatial scaling transformation modeling based on fractal theory for the leaf area index retrieved from remote sensing imagery. J. Appl. Remote Sens. 2015, 9, 096015. [Google Scholar] [CrossRef]
- Wu, L.; Qin, Q.; Liu, X.; Ren, H.; Wang, J.; Zheng, X.; Ye, X.; Sun, Y. Spatial up-scaling correction for leaf area index based on the fractal theory. Remote Sens. 2016, 8, 197. [Google Scholar] [CrossRef]
- Chen, S.S.; Keller, J.M.; Crownover, R.M. On the calculation of fractal features from images. IEEE Trans. Pattern Anal. Mach. Intell. 1993, 15, 1087–1090. [Google Scholar] [CrossRef]
- Mandelbrot, B.B. The Fractal Geometry of Nature; W.H. Freeman: New York, NY, USA, 1983; 468p. [Google Scholar]
- Cohen, W.B.; Maiersperger, T.K.; Yang, Z.; Gower, S.T.; Turner, D.P.; Ritts, W.D.; Berterretche, M.; Running, S.W. Comparisons of land cover and LAI estimates derived from ETM+ and MODIS for four sites in north America: A quality assessment of 2000/2001 provisional modis products. Remote Sens. Environ. 2003, 88, 233–255. [Google Scholar] [CrossRef]
- Tian, Y.H.; Woodcock, C.E.; Wang, Y.J.; Privette, J.L.; Shabanov, N.V.; Zhou, L.M.; Zhang, Y.; Buermann, W.; Dong, J.R.; Veikkanen, B.; et al. Multiscale analysis and validation of the MODIS LAI product: I. Uncertainty assessment. Remote Sens. Environ. 2002, 83, 414–430. [Google Scholar] [CrossRef]
Model | Formula | R2 |
---|---|---|
Power | LAI = 6.352(NDVI + 0.18)2.302 | 0.887 |
Exponential | LAI = 0.519e3.106NDVI | 0.872 |
Logarithmic | LAI = 7.512 ln(NDVI + 0.18) + 6.031 | 0.775 |
Polynomial | LAI = 5.901NDVI2 + 3.465NDVI − 0.465 | 0.803 |
Experiment | Description | ||
---|---|---|---|
Parameters * | Model | ||
1 | Model non-linearity | NDVI = 0.0–1.0 a = 1, 2, ..., 10 | LAI = aNDVI |
2 | Class-specific proportion | NDVI1 = 0.2, NDVI2 = 0.8 p1, p2 = 0−100%, p1 + p2 = 100% | LAI = 6.352 (NDVI + 0.18)2.302 LAI = 0.519e3.106NDVI LAI = 7.512 ln(NDVI + 0.18) + 6.031 LAI = 5.901NDVI2 + 3.465NDVI − 0.465 |
3 | Between-class spectral difference | p1 = p2 = 100% NDVI1, NDVI2 = 0.0−1.0, NDVI1 + NDVI2 = 1.0 | The same as above |
4 | The number of classes | NDVIi = 0.01, 0.5, 0.9 Two classes: pi = 50% Three classes: pi = 33.33% | The same as above |
Classes (NDVI1, NDVI2, NDVI3) | Model | Scaling Bias (m2/m2) | ||
---|---|---|---|---|
Two-Class | Three-Class | Difference | ||
(0.01, 0.5, 0.9) | Power | 0.44 | 1.09 | +0.65 |
Exponential | 0.35 | 1.59 | +1.24 | |
Logarithmic | 1.43 | 1.70 | +0.27 | |
Polynomial | 0.35 | 0.78 | +0.43 | |
(0.01, 0.5, 0.9) | Power | 1.63 | 1.09 | −0.54 |
Exponential | 2.38 | 1.59 | −0.79 | |
Logarithmic | 2.54 | 1.70 | −0.84 | |
Polynomial | 1.17 | 0.78 | −0.39 | |
(0.01, 0.5, 0.9) | Power | 0.37 | 1.09 | +0.27 |
Exponential | 0.91 | 1.59 | +0.68 | |
Logarithmic | 0.20 | 1.70 | +1.50 | |
Polynomial | 0.24 | 0.78 | +0.54 |
Taylor’s Theorem (TT) | Wavelet-Fractal Technique (WF) | Fractal Theory (FT) | |
---|---|---|---|
Advantages | for model non-linearity for spatial heterogeneity for continuous scales | for model non-linearity for spatial heterogeneity with high universality (for physical models) | for spatial heterogeneity for continuous scales |
Disadvantages | the second-order stationarity hypothesis | not for continuous scales | not consider model non-linearity universality needed to be tested |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, J.; Ji, X.; Yao, X.; Tian, Y.; Zhu, Y.; Cao, W.; Cheng, T. Evaluation of Three Techniques for Correcting the Spatial Scaling Bias of Leaf Area Index. Remote Sens. 2018, 10, 221. https://doi.org/10.3390/rs10020221
Jiang J, Ji X, Yao X, Tian Y, Zhu Y, Cao W, Cheng T. Evaluation of Three Techniques for Correcting the Spatial Scaling Bias of Leaf Area Index. Remote Sensing. 2018; 10(2):221. https://doi.org/10.3390/rs10020221
Chicago/Turabian StyleJiang, Jiale, Xusheng Ji, Xia Yao, Yongchao Tian, Yan Zhu, Weixing Cao, and Tao Cheng. 2018. "Evaluation of Three Techniques for Correcting the Spatial Scaling Bias of Leaf Area Index" Remote Sensing 10, no. 2: 221. https://doi.org/10.3390/rs10020221