A Bibliometric Analysis of Research Examining How Space Radiation Affects Human and Rodent Cognition, 1990–2023
<p>Topic set 1 term map for 2010–2019. Cluster 1 is represented by the red region, with 154 terms. Cluster 2 is the green region, with 119 terms. Cluster 3 is the blue region, with 112 terms. Cluster 4 is the yellow region, with 73 terms. Cluster 5 is the purple region, with 64 terms. Cluster 6 is represented by the teal region, with 60 terms.</p> "> Figure 2
<p>Topic set 2 term map for 1990–1999. Cluster 1 is represented by the red region, with 34 terms. Cluster 2 is the green region, with 22 terms. Cluster 3 is the blue region, with 11 terms. Cluster 4 is the yellow region, with 9 terms.</p> "> Figure 3
<p>Topic set 2 term map for 2010–2019. Cluster 1 is represented by the red region, with 29 terms. Cluster 2 is the green region, with 28 terms. Cluster 3 is the blue region, with 24 terms. Cluster 4 is the yellow region, with 320 terms. Cluster 5 is the purple region, with 20 terms.</p> "> Figure 4
<p>Topic set 2 term map for 2020–2023. Cluster 1 is represented by the red region, with 42 terms. Cluster 2 is the green region, with 36 terms. Cluster 3 is the blue region, with 31 terms. Cluster 4 is the yellow region, with 20 terms. Cluster 5 is the purple region, with 18 terms.</p> "> Figure 5
<p>Clustered bar graph of the top ten most productive authors of topic set 1 from 1990 to 2023 showing how many articles each author has published (<b>a</b>). Pie chart of the top ten most productive authors of topic set 1 from 1990 to 2023 shows the percentage of studies each author has produced amongst their peers (<b>b</b>).</p> "> Figure 6
<p>Clustered bar graph of the top ten most productive authors of topic set 2 from 1990 to 2023 showing how many articles each author has published (<b>a</b>). Pie chart of the top ten most productive authors of topic set 2 from 1990 to 2023 showing the percentage of studies each author has produced amongst their peers (<b>b</b>).</p> "> Figure 7
<p>Clustered bar graph of the top ten most productive institutions of topic set 1 from 1990 to 2023 showing how many articles each institution has published (<b>a</b>). Pie chart of the top ten most productive institutions of topic set 1 from 1990 to 2023 showing the percentage of studies each institution has produced amongst their peers (<b>b</b>).</p> "> Figure 8
<p>Clustered bar graph of the top ten most productive institutions of topic set 2 from 1990 to 2023 showing how many articles each institution has published (<b>a</b>). Pie chart of the top ten most productive institutions of topic set 2 from 1990 to 2023 showing the percentage of studies each institution has produced amongst their peers (<b>b</b>).</p> "> Figure 9
<p>Line graph that shows the exponential growth trend in publication output per year for topic set 1 from 1990 to 2023. Orange line: Data Points of Publication for Each Year. Blue line: Line of Best Fit, represented by R<sup>2</sup> equation.</p> "> Figure 10
<p>Line graph that shows the exponential growth trend in publication output per year for topic set 2 from 1990 to 2023. Orange line: Data Points of Publication for Each Year. Blue line: Line of Best Fit, represented by R<sup>2</sup> equation.</p> "> Figure 11
<p>Topic set 1 term map from 1990 to 1999. Cluster 1 is represented by the red region, with 42 terms. Cluster 2 is the green region, with 33 terms. Cluster 3 is the blue region, with 16 terms.</p> "> Figure 12
<p>Topic set 1 term map for 2000–2009. Cluster 1 is represented by the red region, with 65 terms. Cluster 2 is the green region, with 50 terms. Both cluster 3 and 4, blue and yellow, respectively, have 48 terms. Cluster 5 is represented by the purple region, with 38 terms. Cluster 6 is the teal region, with 37 terms.</p> "> Figure 13
<p>Topic set 2 term map for 2000–2009. Clusters 1, 2, and 3, represented by the red, green, and blue regions, respectively, have 42 terms each. Cluster 4 is the yellow region, with 39 terms.</p> "> Figure 14
<p>Topic set 1 term map for 2020–2023. Cluster 1 is represented by the red region, with 146 terms. Cluster 2 is the green region, with 112 terms. Cluster 3 is the blue region, with 95 terms. Cluster 4 is the yellow region, with 77 terms. Cluster 5 is the purple region, with 64 terms. Cluster 6 is represented by the teal region, with 58 terms.</p> ">
1. Introduction
2. Methods
2.1. Data Search Analysis
- Topic set 1 = (((space radiation) or mars or (galactic cosmic rays)) and cognition) and (humans).
- Topic set 2 = (((space radiation) or mars or (galactic cosmic rays)) and cognition) and (mice or rats).
2.2. Data Analysis
3. Results
3.1. Evolution of Bibliographic Terms for Space Radiation, Mars, Galactic Cosmic Rays, Cognition, and Humans from 1990 to 1999
3.2. Evolution of Bibliographic Terms for Space Radiation, Mars, Galactic Cosmic Rays, Cognition, and Humans from 2000 to 2009
3.3. Evolution of Bibliographic Terms for Space Radiation, Mars, Galactic Cosmic Rays, Cognition, and Humans from 2010 to 2019
3.4. Evolution of Bibliographic Terms for Space Radiation, Mars, Galactic Cosmic Rays, Cognition, and Humans from 2020 to 2023
3.5. Evolution of Bibliographic Terms for Space Radiation, Mars, Galactic Cosmic Rays, Cognition, and Mice or Rats from 1990 to 1999
3.6. Evolution of Bibliographic Terms for Space Radiation, Mars, Galactic Cosmic Rays, Cognition, and Mice or Rats from 2000 to 2009
3.7. Evolution of Bibliographic Terms for Space Radiation, Mars, Galactic Cosmic Rays, Cognition, and Mice or Rats from 2010 to 2019
3.8. Evolution of Bibliographic Terms for Space Radiation, Mars, Galactic Cosmic Rays, Cognition, and Mice or Rats from 2020 to 2023
3.9. Evolution of Publication Output for Space Radiation, Mars, Galactic Cosmic Rays, Cognition, and Humans in Relation to Countries of Origin from 1990 to 2023
3.10. Evolution of Publication Output for Space Radiation, Mars, Galactic Cosmic Rays, Cognition, and Mice or Rats in Relation to Countries of Origin from 1990 to 2023
3.11. Profile of the Most Productive and Most Cited Authors for Space Radiation, Mars, Galactic Cosmic Rays, Cognition, and Humans from 1990 to 2023
3.12. Profile of the Most Productive and Most Cited Authors for Space Radiation, Mars, Galactic Cosmic Rays, Cognition, and Mice or Rats from 1990 to 2023
3.13. Profile of the Most Productive and Most Cited Institutions for Space Radiation, Mars, Galactic Cosmic Rays, Cognition, and Humans from 1990 to 2023
3.14. Profile of the Most Productive and Most Cited Institutions for Space Radiation, Mars, Galactic Cosmic Rays, Cognition, and Mice or Rats from 1990 to 2023
3.15. Analysis of Growth Trends in Publications for Space Radiation, Mars, Galactic Cosmic Rays, Cognition, and Humans from 1990 to 2023
3.16. Analysis of Growth Trends in Publications for Space Radiation, Mars, Galactic Cosmic Rays, Cognition, and Mice or Rats from 1990 to 2023
4. Discussion
4.1. A Comparison Between Trips to Space and Publication Output from the Respective Country
4.2. Advancements in Technology and Accelerator-Based Research in Relation to Publication Output
4.3. Institutional Analysis for Topic Sets 1 and 2 as They Correspond with Top Producing Countries
4.4. Highlights of Research by Top Authors by Publication Output in Topic Sets 1 and 2
4.5. The Evolution of Bibliographic Terms for Topic Sets 1 and 2 over Each Corresponding Decade
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Prasad, B.; Richter, P.; Vadakedath, N.; Mancinelli, R.; Kruger, M.; Strauch, S.M.; Grimm, D.; Darriet, P.; Chapel, J.P.; Cohen, J.; et al. Exploration of space to achieve scientific breakthroughs. Biotechnol. Adv. 2020, 43, 107572. [Google Scholar] [CrossRef] [PubMed]
- Chancellor, J.C.; Blue, R.S.; Cengel, K.A.; Aunon-Chancellor, S.M.; Rubins, K.H.; Katzgraber, H.G.; Kennedy, A.R. Limitations in predicting the space radiation health risk for exploration astronauts. NPJ Microgravity 2018, 4, 8. [Google Scholar] [CrossRef] [PubMed]
- Aglietti, G.S. Current Challenges and Opportunities for Space Technologies. Front. Space Technol. 2020, 1, 1. [Google Scholar] [CrossRef]
- Pendergraft, J.G.; Carter, D.R.; Tseng, S.; Landon, L.B.; Slack, K.J.; Shuffler, M.L. Learning From the Past to Advance the Future: The Adaptation and Resilience of NASA’s Spaceflight Multiteam Systems Across Four Eras of Spaceflight. Front. Psychol. 2019, 10, 1633. [Google Scholar] [CrossRef]
- Ganapathy, K.; da Rosa, M.; Russomano, T. Neurological changes in outer space. Neurol. India 2019, 67, 37–43. [Google Scholar] [CrossRef]
- Furukawa, S.; Nagamatsu, A.; Nenoi, M.; Fujimori, A.; Kakinuma, S.; Katsube, T.; Wang, B.; Tsuruoka, C.; Shirai, T.; Nakamura, A.J.; et al. Space Radiation Biology for “Living in Space”. Biomed. Res. Int. 2020, 2020, 4703286. [Google Scholar] [CrossRef]
- Axpe, E.; Chan, D.; Abegaz, M.F.; Schreurs, A.S.; Alwood, J.S.; Globus, R.K.; Appel, E.A. A human mission to Mars: Predicting the bone mineral density loss of astronauts. PLoS ONE 2020, 15, e0226434. [Google Scholar] [CrossRef]
- Hupfeld, K.E.; McGregor, H.R.; Reuter-Lorenz, P.A.; Seidler, R.D. Microgravity effects on the human brain and behavior: Dysfunction and adaptive plasticity. Neurosci. Biobehav. Rev. 2021, 122, 176–189. [Google Scholar] [CrossRef]
- Sobel, A.; Duncan, R. Aerospace Environmental Health: Considerations and Countermeasures to Sustain Crew Health Through Vastly Reduced Transit Time to/From Mars. Front. Public Health 2020, 8, 327. [Google Scholar] [CrossRef]
- Chancellor, J.C.; Scott, G.B.; Sutton, J.P. Space Radiation: The Number One Risk to Astronaut Health beyond Low Earth Orbit. Life 2014, 4, 491–510. [Google Scholar] [CrossRef]
- Kokhan, V.S.; Matveeva, M.I.; Mukhametov, A.; Shtemberg, A.S. Risk of defeats in the central nervous system during deep space missions. Neurosci. Biobehav. Rev. 2016, 71, 621–632. [Google Scholar] [CrossRef]
- Pariset, E.; Malkani, S.; Cekanaviciute, E.; Costes, S.V. Ionizing radiation-induced risks to the central nervous system and countermeasures in cellular and rodent models. Int. J. Radiat. Biol. 2021, 97, S132–S150. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Rollins, J.; Yan, E. Web of Science use in published research and review papers 1997–2017: A selective, dynamic, cross-domain, content-based analysis. Scientometrics 2018, 115, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Zhang, J.; Ma, R. The Prediction of Infectious Diseases: A Bibliometric Analysis. Int. J. Environ. Res. Public Health 2020, 17, 6218. [Google Scholar] [CrossRef]
- Guo, Y.-M.; Huang, Z.-L.; Guo, J.; Li, H.; Guo, X.-R.; Nkeli, M.J. Bibliometric Analysis on Smart Cities Research. Sustainability 2019, 11, 3606. [Google Scholar] [CrossRef]
- Novikova, N.; De Boever, P.; Poddubko, S.; Deshevaya, E.; Polikarpov, N.; Rakova, N.; Coninx, I.; Mergeay, M. Survey of environmental biocontamination on board the International Space Station. Res. Microbiol. 2006, 157, 5–12. [Google Scholar] [CrossRef] [PubMed]
- Neubert, T.; Østgaard, N.; Reglero, V.; Blanc, E.; Chanrion, O.; Oxborrow, C.A.; Orr, A.; Tacconi, M.; Hartnack, O.; Bhanderi, D.D.V. The ASIM Mission on the International Space Station. Space Sci. Rev. 2019, 215, 26. [Google Scholar] [CrossRef]
- Galeev, A.A. Russian program of planetary missions. Acta Astronaut. 1996, 39, 9–14. [Google Scholar] [CrossRef]
- Kozlovskaya, I.B.; Yarmanova, E.N.; Yegorov, A.D.; Stepantsov, V.I.; Fomina, E.V.; Tomilovaskaya, E.S. Russian Countermeasure Systems for Adverse Effects of Microgravity on Long-Duration ISS Flights. Aerosp. Med. Hum. Perform. 2015, 86, A24–A31. [Google Scholar] [CrossRef]
- Graf, A. International Space Station Visitors by Country. Available online: https://www.nasa.gov/international-space-station/space-station-visitors-by-country/ (accessed on 18 November 2024).
- Pei, W.; Hu, W.; Chai, Z.; Zhou, G. Current status of space radiobiological studies in China. Life Sci. Space Res. 2019, 22, 1–7. [Google Scholar] [CrossRef]
- Zhu, H. Scientific experiments on Tiangong-2, the predecessor of the China Space Station. Natl. Sci. Rev. 2022, 9, nwac189. [Google Scholar] [CrossRef] [PubMed]
- Thariat, J.; Habrand, J.L.; Lesueur, P.; Chaikh, A.; Kammerer, E.; Lecomte, D.; Batalla, A.; Balosso, J.; Tessonnier, T. Why proton therapy? And how? Bull. Cancer 2018, 105, 315–326. [Google Scholar] [CrossRef] [PubMed]
- Wagner, H.N., Jr. A brief history of positron emission tomography (PET). Semin. Nucl. Med. 1998, 28, 213–220. [Google Scholar] [CrossRef]
- Johnson, M.B.; McMahan, M.A.; Gimpel, T.L.; Tiffany, W.S. Berkeley Accelerator Space Effects (BASE) Light Ion Facility Upgrade. In Proceedings of the 2006 IEEE Radiation Effects Data Workshop, Ponte Vedra Beach, FL, USA, 17–21 July 2006. [Google Scholar] [CrossRef]
- Pearton, S.J.; Haque, A.; Khachatrian, A.; Ildefonso, A.; Chernyak, L.; Ren, F. Review—Opportunities in Single Event Effects in Radiation-Exposed SiC and GaN Power Electronics. ECS J. Solid State Sci. Technol. 2021, 10, 075004. [Google Scholar] [CrossRef]
- Smith, K. 88-Inch Cyclotron/Berkeley Accelerator Space Effects Facility. Available online: https://www.nasa.gov/setmo/facilities/88-inch-cyclotron-berkeley-accelerator-space-effects-facility/ (accessed on 18 November 2024).
- Castaneda, C.M. Crocker Nuclear Laboratory (CNL) Radiation Effects Measurement and Test Facility. In Proceedings of the 2001 IEEE Radiation Effects Data Workshop. NSREC 2001. Workshop Record. Held in conjunction with IEEE Nuclear and Space Radiation Effects Conference (Cat. No.01TH8588), Vancouver, BC, Canada, 16–20 July 2001. [Google Scholar] [CrossRef]
- Slater, J.D. Development and operation of the Loma Linda University Medical Center proton facility. Technol. Cancer Res. Treat. 2007, 6, 67–72. [Google Scholar] [CrossRef]
- Miller, J. Proton and heavy ion acceleration facilities for space radiation research. Gravit. Space Biol. Bull. 2003, 16, 19–28. [Google Scholar]
- Benton, E.R.; Benton, E.V.; Frank, A.L. Characterization of the Radiation Shelding Properties of US and Russian EVA Suits; Eril Research, Inc.: San Rafael, CA, USA, 2001. [Google Scholar]
- La Tessa, C.; Sivertz, M.; Chiang, I.H.; Lowenstein, D.; Rusek, A. Overview of the NASA space radiation laboratory. Life Sci. Space Res. 2016, 11, 18–23. [Google Scholar] [CrossRef]
- Miller, J.; Zeitlin, C. Twenty years of space radiation physics at the BNL AGS and NASA Space Radiation Laboratory. Life Sci. Space Res. 2016, 9, 12–18. [Google Scholar] [CrossRef]
- Simonsen, L.C.; Slaba, T.C.; Guida, P.; Rusek, A. NASA’s first ground-based Galactic Cosmic Ray Simulator: Enabling a new era in space radiobiology research. PLoS Biol. 2020, 18, e3000669. [Google Scholar] [CrossRef]
- Hajdas, W.; Adams, L.; Nickson, B.; Zehnder, A. The Proton Irradiation Facility at the Paul Scherrer Institute. Nucl. Instrum. Methods Phys. Res. B 1996, 113, 54–58. [Google Scholar] [CrossRef]
- Craddock, M. 40 Years On—Reflections on the History of TRIUMF from Conception to the First Beam. Phys. Can. 2019, 75, 72–78. [Google Scholar]
- Blackmore, E.; Trinczek, M.; Jiang, K.; Sachdev, M.; Wright, D. SRAM Dosimeter for Characterizing the TRIUMF Proton and Neutron Beams. IEEE Trans. Nucl. Sci. 2019, 66, 276–281. [Google Scholar] [CrossRef]
- Iguchi, T.; Fukahori, T. JAERI-Conf 96-008, Proceedings of the 1995 Symposium on Nuclear Data, Tokai, Japan, 16–17 November 1995; Japan Atomic Energy Research Institute: Ibaraki, Japan, 1996. [Google Scholar]
- Benton, E.R.; Berger, T.; Uchihori, Y.; Kitamura, H. Intercomparison of Radiation Detectors and Dosimeters for Use in Manned Space Flight. Radioisotopes 2019, 68, 411–418. [Google Scholar] [CrossRef]
- Nagamiya, S. Introduction to J-PARC. Prog. Theor. Exp. Phys. 2012, 2012, 02B001. [Google Scholar] [CrossRef]
- Schuy, C.; Weber, U.; Durante, M. Hybrid Active-Passive Space Radiation Simulation Concept for GSI and the Future FAIR Facility. Front. Phys. 2020, 8, 337. [Google Scholar] [CrossRef]
- Hong, B. Status of the RAON project in Korea. AAPPS Bull. 2023, 33, 3. [Google Scholar] [CrossRef]
- Cucinotta, F.A.; Wilson, J.W. Initiation-promotion model of tumor prevalence in mice from space radiation exposures. Radiat. Environ. Biophys. 1995, 34, 145–149. [Google Scholar] [CrossRef]
- Wilson, J.W.; Thibeault, S.A.; Cucinotta, F.A.; Shinn, J.L.; Kim, M.; Kiefer, R.; Badavi, F.F. Issues in protection from galactic cosmic rays. Radiat. Environ. Biophys. 1995, 34, 217–222. [Google Scholar] [CrossRef]
- Simonsen, L.C.; Wilson, J.W.; Kim, M.H.; Cucinotta, F.A. Radiation exposure for human Mars exploration. Health Phys. 2000, 79, 515–525. [Google Scholar] [CrossRef]
- Wilson, J.W.; Cucinotta, F.A.; Miller, J.; Shinn, J.L.; Thibeault, S.A.; Singleterry, R.C.; Simonsen, L.C.; Kim, M.H. Approach and issues relating to shield material design to protect astronauts from space radiation. Mater. Des. 2001, 22, 541–554. [Google Scholar] [CrossRef]
- Cucinotta, F.A.; Durante, M. Cancer risk from exposure to galactic cosmic rays: Implications for space exploration by human beings. Lancet Oncol. 2006, 7, 431–435. [Google Scholar] [CrossRef] [PubMed]
- Cucinotta, F.A. Once we know all the radiobiology we need to know, how can we use it to predict space radiation risks and achieve fame and fortune? Phys. Med. 2001, 17 (Suppl. S1), 5–12. [Google Scholar] [PubMed]
- Cucinotta, F.A.; Schimmerling, W.; Wilson, J.W.; Peterson, L.E.; Saganti, P.B.; Dicello, J.F. Uncertainties in estimates of the risks of late effects from space radiation. Adv. Space Res. 2004, 34, 1383–1389. [Google Scholar] [CrossRef] [PubMed]
- Alp, M.; Cucinotta, F.A. Biophysics Model of Heavy-Ion Degradation of Neuron Morphology in Mouse Hippocampal Granular Cell Layer Neurons. Radiat. Res. 2018, 189, 312–325. [Google Scholar] [CrossRef]
- Kim, M.H.; Rusek, A.; Cucinotta, F.A. Issues for Simulation of Galactic Cosmic Ray Exposures for Radiobiological Research at Ground-Based Accelerators. Front. Oncol. 2015, 5, 122. [Google Scholar] [CrossRef]
- Cucinotta, F.A.; Cacao, E.; Kim, M.-H.Y.; Saganti, P.B. Cancer and circulatory disease risks for a human mission to Mars: Private mission considerations. Acta Astronaut. 2020, 166, 529–536. [Google Scholar] [CrossRef]
- Cucinotta, F.A.; Cacao, E.; Kim, M.Y.; Saganti, P.B. Benchmarking risk predictions and uncertainties in the NSCR model of GCR cancer risks with revised low let risk coefficients. Life Sci. Space Res. 2020, 27, 64–73. [Google Scholar] [CrossRef]
- Wright, E.G. Manifestations and mechanisms of non-targeted effects of ionizing radiation. Mutat. Res. 2010, 687, 28–33. [Google Scholar] [CrossRef]
- Cucinotta, F.A.; Saganti, P.B. Race and ethnic group dependent space radiation cancer risk predictions. Sci. Rep. 2022, 12, 2028. [Google Scholar] [CrossRef]
- Nelson, G.A.; Schubert, W.W.; Marshall, T.M. Radiobiological studies with the nematode Caenorhabditis elegans. Genetic and developmental effects of high LET radiation. Int. J. Rad. Appl. Instrum. D 1992, 20, 227–232. [Google Scholar] [CrossRef]
- Pecaut, M.J.; Gridley, D.S.; Nelson, G.A. Long-term effects of low-dose proton radiation on immunity in mice: Shielded vs. unshielded. Aviat. Space Environ. Med. 2003, 74, 115–124. [Google Scholar] [PubMed]
- Hamilton, S.A.; Pecaut, M.J.; Gridley, D.S.; Travis, N.D.; Bandstra, E.R.; Willey, J.S.; Nelson, G.A.; Bateman, T.A. A murine model for bone loss from therapeutic and space-relevant sources of radiation. J. Appl. Physiol. 2006, 101, 789–793. [Google Scholar] [CrossRef]
- Rola, R.; Fishman, K.; Baure, J.; Rosi, S.; Lamborn, K.R.; Obenaus, A.; Nelson, G.A.; Fike, J.R. Hippocampal neurogenesis and neuroinflammation after cranial irradiation with (56)Fe particles. Radiat. Res. 2008, 169, 626–632. [Google Scholar] [CrossRef]
- Ramadan, S.S.; Sridharan, V.; Koturbash, I.; Miousse, I.R.; Hauer-Jensen, M.; Nelson, G.A.; Boerma, M. A priming dose of protons alters the early cardiac cellular and molecular response to (56)Fe irradiation. Life Sci. Space Res. 2016, 8, 8–13. [Google Scholar] [CrossRef] [PubMed]
- Boerma, M.; Nelson, G.A.; Sridharan, V.; Mao, X.W.; Koturbash, I.; Hauer-Jensen, M. Space radiation and cardiovascular disease risk. World J. Cardiol. 2015, 7, 882–888. [Google Scholar] [CrossRef] [PubMed]
- Rudobeck, E.; Nelson, G.A.; Sokolova, I.V.; Vlkolinsky, R. (28)silicon radiation impairs neuronal output in CA1 neurons of mouse ventral hippocampus without altering dendritic excitability. Radiat. Res. 2014, 181, 407–415. [Google Scholar] [CrossRef]
- Britten, R.A.; Duncan, V.D.; Fesshaye, A.; Rudobeck, E.; Nelson, G.A.; Vlkolinsky, R. Altered Cognitive Flexibility and Synaptic Plasticity in the Rat Prefrontal Cortex after Exposure to Low (≤15 cGy) Doses of (28)Si Radiation. Radiat. Res. 2020, 193, 223–235. [Google Scholar] [CrossRef]
- Nemec-Bakk, A.S.; Sridharan, V.; Seawright, J.W.; Nelson, G.A.; Cao, M.; Singh, P.; Cheema, A.K.; Singh, B.; Li, Y.; Koturbash, I.; et al. Effects of proton and oxygen ion irradiation on cardiovascular function and structure in a rabbit model. Life Sci. Space Res. 2023, 37, 78–87. [Google Scholar] [CrossRef]
- Sridharan, V.; Seawright, J.W.; Landes, R.D.; Cao, M.; Singh, P.; Davis, C.M.; Mao, X.W.; Singh, S.P.; Zhang, X.; Nelson, G.A.; et al. Effects of single-dose protons or oxygen ions on function and structure of the cardiovascular system in male Long Evans rats. Life Sci. Space Res. 2020, 26, 62–68. [Google Scholar] [CrossRef]
- Chistiakov, D.A.; Killingsworth, M.C.; Myasoedova, V.A.; Orekhov, A.N.; Bobryshev, Y.V. CD68/macrosialin: Not just a histochemical marker. Lab. Investig. 2017, 97, 4–13. [Google Scholar] [CrossRef]
- Meli, A.; Perrella, G.; Curcio, F.; Ambesi-Impiombato, F.S. In vitro cultured cells as probes for space radiation effects on biological systems. Mutat. Res./Fundam. Mol. Mech. Mutagen. 1999, 430, 229–234. [Google Scholar] [CrossRef] [PubMed]
- Buckey, J.C. Preparing for Mars: The physiologic and medical challenges. Eur. J. Med. Res. 1999, 4, 353–356. [Google Scholar] [PubMed]
- Kondo, H.; Yumoto, K.; Alwood, J.S.; Mojarrab, R.; Wang, A.; Almeida, E.A.; Searby, N.D.; Limoli, C.L.; Globus, R.K. Oxidative stress and gamma radiation-induced cancellous bone loss with musculoskeletal disuse. J. Appl. Physiol. 2010, 108, 152–161. [Google Scholar] [CrossRef]
- Cucinotta, F.A.; Schimmerling, W.; Wilson, J.W.; Peterson, L.E.; Badhwar, G.D.; Saganti, P.B.; Dicello, J.F. Space radiation cancer risks and uncertainties for Mars missions. Radiat. Res. 2001, 156, 682–688. [Google Scholar] [CrossRef]
- Hellweg, C.E.; Baumstark-Khan, C. Getting ready for the manned mission to Mars: The astronauts’ risk from space radiation. Naturwissenschaften 2007, 94, 517–526. [Google Scholar] [CrossRef]
- Joseph, J.A.; Shukitt-Hale, B.; McEwen, J.; Rabin, B.M. CNS-induced deficits of heavy particle irradiation in space: The aging connection. Adv. Space Res. 2000, 25, 2057–2064. [Google Scholar] [CrossRef]
- Miry, O.; Zhang, X.L.; Vose, L.R.; Gopaul, K.R.; Subah, G.; Moncaster, J.A.; Wojnarowicz, M.W.; Fisher, A.M.; Tagge, C.A.; Goldstein, L.E.; et al. Life-long brain compensatory responses to galactic cosmic radiation exposure. Sci. Rep. 2021, 11, 4292. [Google Scholar] [CrossRef]
- Grigor’ev, A.I.; Krasavin, E.A.; Ostrovskiǐ, M.A. Galactic heavy charged particles damaging effect on biological structures. Ross. Fiziol. Zhurnal Im. I.M. Sechenova 2013, 99, 273–280. [Google Scholar]
- Kim, J.S.; Yang, M.; Kim, S.H.; Shin, T.; Moon, C. Neurobiological toxicity of radiation in hippocampal cells. Histol. Histopathol. 2013, 28, 301–310. [Google Scholar] [CrossRef]
- Krukowski, K.; Jones, T.; Campbell-Beachler, M.; Nelson, G.; Rosi, S. Peripheral T cells as a biomarker for oxygen-ion-radiation-induced social impairments. Radiat. Res. 2018, 190, 186–193. [Google Scholar] [CrossRef]
- Lonart, G.; Parris, B.; Johnson, A.M.; Miles, S.; Sanford, L.D.; Singletary, S.J.; Britten, R.A. Executive function in rats is impaired by low (20 cGy) doses of 1 GeV/u 56Fe particles. Radiat. Res. 2012, 178, 289–294. [Google Scholar] [CrossRef] [PubMed]
- Parihar, V.K.; Allen, B.D.; Caressi, C.; Kwok, S.; Chu, E.; Tran, K.K.; Chmielewski, N.N.; Giedzinski, E.; Acharya, M.M.; Britten, R.A.; et al. Cosmic radiation exposure and persistent cognitive dysfunction. Sci. Rep. 2016, 6, 34774. [Google Scholar] [CrossRef] [PubMed]
- Whitman, K.; Norbury, J.W.; Lee, K.; Slaba, T.C.; Badavi, F.F. Comparison of space radiation GCR models to AMS heavy ion data. Life Sci. Space Res. 2019, 22, 76–88. [Google Scholar] [CrossRef] [PubMed]
- Raber, J.; Torres, E.R.S.; Akinyeke, T.; Lee, J.; Weber Boutros, S.J.; Turker, M.S.; Kronenberg, A. Detrimental Effects of Helium Ion Irradiation on Cognitive Performance and Cortical Levels of MAP-2 in B6D2F1 Mice. Int. J. Mol. Sci. 2018, 19, 1247. [Google Scholar] [CrossRef]
- Cucinotta, F.A. Space radiation risks for astronauts on multiple International Space Station missions. PLoS ONE 2014, 9, e96099. [Google Scholar] [CrossRef]
- Nelson, G.A. Space Radiation and Human Exposures, A Primer. Radiat. Res. 2016, 185, 349–358. [Google Scholar] [CrossRef]
- Krukowski, K.; Feng, X.; Paladini, M.S.; Chou, A.; Sacramento, K.; Grue, K.; Riparip, L.K.; Jones, T.; Campbell-Beachler, M.; Nelson, G.; et al. Temporary microglia-depletion after cosmic radiation modifies phagocytic activity and prevents cognitive deficits. Sci. Rep. 2018, 8, 785783. [Google Scholar]
- Kiffer, F.; Boerma, M.; Allen, A. Behavioral effects of space radiation: A comprehensive review of animal studies. Life Sci. Space Res. 2019, 21, 1–21. [Google Scholar] [CrossRef]
- Krukowski, K.; Grue, K.; Becker, M.; Elizarraras, E.; Frias, E.S.; Halvorsen, A.; Koenig-Zanoff, M.; Frattini, V.; Nimmagadda, H.; Feng, X.; et al. The impact of deep space radiation on cognitive performance: From biological sex to biomarkers to countermeasures. Sci. Adv. 2021, 7, eabg6702. [Google Scholar] [CrossRef]
- Zwart, S.R.; Mulavara, A.P.; Williams, T.J.; George, K.; Smith, S.M. The role of nutrition in space exploration: Implications for sensorimotor, cognition, behavior and the cerebral changes due to the exposure to radiation, altered gravity, and isolation/confinement hazards of spaceflight. Neurosci. Biobehav. Rev. 2021, 127, 307–331. [Google Scholar] [CrossRef]
Rank | Keyword | Occurrences | Links | Total Link Strength |
---|---|---|---|---|
1 | Cells | 39 | 65 | 162 |
2 | Nuclear matrix | 27 | 46 | 144 |
3 | Sites | 27 | 43 | 126 |
4 | Genes | 27 | 49 | 113 |
5 | Proteins | 26 | 46 | 85 |
6 | Identification | 24 | 43 | 92 |
7 | Radiation | 24 | 25 | 48 |
8 | DNA | 23 | 50 | 93 |
9 | Expression | 21 | 44 | 84 |
10 | Murine model | 20 | 39 | 59 |
Rank | Keyword | Occurrences | Links | Total Link Strength |
---|---|---|---|---|
1 | Radiation | 94 | 140 | 361 |
2 | Cells | 76 | 126 | 357 |
3 | Mars | 65 | 83 | 165 |
4 | Expression | 60 | 103 | 255 |
5 | Proteins | 59 | 89 | 189 |
6 | Gene expression | 54 | 102 | 257 |
7 | Ionizing radiation | 49 | 97 | 259 |
8 | Nuclear matrix | 44 | 60 | 191 |
9 | Spaceflight | 43 | 76 | 148 |
10 | Murine model | 42 | 95 | 161 |
Rank | Keyword | Occurrences | Links | Total Link Strength |
---|---|---|---|---|
1 | Radiation | 200 | 324 | 979 |
2 | Mars | 199 | 271 | 862 |
3 | Ionizing radiation | 123 | 203 | 717 |
4 | Model | 112 | 248 | 470 |
5 | Spaceflight | 109 | 202 | 574 |
6 | Space radiation | 101 | 185 | 624 |
7 | Microgravity | 92 | 181 | 518 |
8 | Space | 92 | 194 | 477 |
9 | Exposure | 85 | 212 | 476 |
10 | Cells | 84 | 158 | 451 |
Rank | Keyword | Occurrences | Links | Total Link Strength |
---|---|---|---|---|
1 | Mars | 202 | 291 | 932 |
2 | Radiation | 187 | 327 | 937 |
3 | Microgravity | 116 | 221 | 724 |
4 | Spaceflight | 106 | 195 | 601 |
5 | Space radiation | 94 | 184 | 535 |
6 | Space | 94 | 230 | 532 |
7 | Exposure | 80 | 192 | 470 |
8 | Ionizing radiation | 78 | 171 | 484 |
9 | Model | 78 | 187 | 365 |
10 | Risks | 74 | 190 | 364 |
Rank | Keyword | Occurrences | Links | Total Link Strength |
---|---|---|---|---|
1 | Murine model | 69 | 61 | 165 |
2 | Cells | 40 | 54 | 115 |
3 | Expression | 31 | 43 | 119 |
4 | Radiation | 30 | 23 | 47 |
5 | Transgenic mice | 27 | 37 | 133 |
6 | MAR (matrix attachment region) | 26 | 38 | 153 |
7 | Nuclear matrix | 23 | 34 | 116 |
8 | Proteins | 20 | 30 | 53 |
9 | In vitro | 18 | 33 | 49 |
10 | mRNA | 18 | 30 | 49 |
Rank | Keyword | Occurrences | Links | Total Link Strength |
---|---|---|---|---|
1 | Murine model | 165 | 156 | 662 |
2 | Radiation | 54 | 94 | 217 |
3 | Cells | 51 | 106 | 247 |
4 | Expression | 39 | 79 | 163 |
5 | Gene expression | 39 | 78 | 178 |
6 | Nuclear matrix | 36 | 48 | 160 |
7 | In vivo | 35 | 70 | 130 |
8 | Ionizing radiation | 32 | 63 | 165 |
9 | Oxidative stress | 27 | 48 | 124 |
10 | Spaceflight | 27 | 53 | 159 |
Rank | Keyword | Occurrences | Links | Total Link Strength |
---|---|---|---|---|
1 | Murine model | 200 | 237 | 1011 |
2 | Radiation | 167 | 225 | 964 |
3 | Ionizing radiation | 88 | 169 | 552 |
4 | Expression | 80 | 180 | 442 |
5 | Space radiation | 77 | 153 | 524 |
6 | Cells | 71 | 156 | 379 |
7 | Exposure | 70 | 150 | 445 |
8 | In vivo | 69 | 138 | 307 |
9 | Oxidative stress | 66 | 160 | 439 |
10 | Spaceflight | 54 | 110 | 322 |
Rank | Keyword | Occurrences | Links | Total Link Strength |
---|---|---|---|---|
1 | Murine model | 103 | 127 | 423 |
2 | Radiation | 96 | 128 | 496 |
3 | Space radiation | 75 | 116 | 433 |
4 | Ionizing radiation | 56 | 100 | 303 |
5 | Exposure | 48 | 97 | 300 |
6 | Expression | 46 | 88 | 199 |
7 | Oxidative stress | 42 | 94 | 237 |
8 | Cells | 41 | 84 | 175 |
9 | Spaceflight | 33 | 67 | 153 |
10 | Inflammation | 24 | 55 | 78 |
Rank | 1990–1999 | 2000–2009 | 2010–2019 | 2020–2023 | 1990–2023 |
---|---|---|---|---|---|
1 | Cells | Radiation | Radiation | Mars | Radiation |
2 | Nuclear matrix | Cells | Mars | Radiation | Mars |
3 | Sites | Mars | Ionizing radiation | Microgravity | Spaceflight |
4 | Genes | Expression | Model | Spaceflight | Ionizing radiation |
5 | Proteins | Proteins | Spaceflight | Space radiation | Cells |
6 | Identification | Gene expression | Space radiation | Space | Microgravity |
7 | Radiation | Ionizing radiation | Microgravity | Exposure | Model |
8 | DNA | Nuclear matrix | Space | Ionizing radiation | Space |
9 | Expression | Spaceflight | Exposure | Model | Space radiation |
10 | Murine model | Murine model | Cells | Risks | Exposure |
Rank | Country | Publications | Times Cited |
---|---|---|---|
1990–1999 | |||
1 | USA | 200 | 12,895 |
2 | Germany | 47 | 4866 |
3 | France | 36 | 1990 |
4 | England | 30 | 1399 |
5 | Japan | 26 | 913 |
2000–2009 | |||
1 | USA | 506 | 29,436 |
2 | England | 121 | 8335 |
3 | Germany | 118 | 7841 |
4 | Japan | 86 | 3224 |
5 | Italy | 67 | 2871 |
2010–2019 | |||
1 | USA | 923 | 30,349 |
2 | Germany | 244 | 9661 |
3 | China | 229 | 7083 |
4 | Italy | 150 | 4257 |
5 | England | 129 | 5792 |
2020–2023 | |||
1 | USA | 657 | 6179 |
2 | China | 337 | 4077 |
3 | Germany | 215 | 2155 |
4 | Italy | 179 | 1360 |
5 | England | 149 | 1443 |
Rank | Country | Publications | Times Cited |
---|---|---|---|
1990–1999 | |||
1 | USA | 136 | 8024 |
2 | Japan | 33 | 840 |
3 | Germany | 29 | 1800 |
4 | England | 25 | 1264 |
5 | France | 17 | 671 |
2000–2009 | |||
1 | USA | 250 | 13,008 |
2 | Japan | 73 | 2687 |
3 | Germany | 43 | 2380 |
4 | England | 35 | 1278 |
5 | Italy | 28 | 1242 |
2010–2019 | |||
1 | USA | 411 | 13,076 |
2 | China | 105 | 2066 |
3 | Japan | 44 | 1162 |
4 | England | 40 | 1957 |
5 | Germany | 39 | 2224 |
2020–2023 | |||
1 | USA | 227 | 1462 |
2 | China | 85 | 477 |
3 | Japan | 37 | 227 |
4 | England | 28 | 218 |
5 | France | 24 | 201 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Simmons, P.; Swinton, C.; Simmons, S.; McElroy, T.; Allen, A.R. A Bibliometric Analysis of Research Examining How Space Radiation Affects Human and Rodent Cognition, 1990–2023. Radiation 2025, 5, 1. https://doi.org/10.3390/radiation5010001
Simmons P, Swinton C, Simmons S, McElroy T, Allen AR. A Bibliometric Analysis of Research Examining How Space Radiation Affects Human and Rodent Cognition, 1990–2023. Radiation. 2025; 5(1):1. https://doi.org/10.3390/radiation5010001
Chicago/Turabian StyleSimmons, Pilar, Chase Swinton, Simeon Simmons, Taylor McElroy, and Antiño R Allen. 2025. "A Bibliometric Analysis of Research Examining How Space Radiation Affects Human and Rodent Cognition, 1990–2023" Radiation 5, no. 1: 1. https://doi.org/10.3390/radiation5010001
APA StyleSimmons, P., Swinton, C., Simmons, S., McElroy, T., & Allen, A. R. (2025). A Bibliometric Analysis of Research Examining How Space Radiation Affects Human and Rodent Cognition, 1990–2023. Radiation, 5(1), 1. https://doi.org/10.3390/radiation5010001