A Comparison of “Bottom-Up” and “Top-Down” Approaches to the Synthesis of Pt/C Electrocatalysts
<p>(<b>a</b>) XRD powder patterns of the Pt/C catalysts; (<b>b</b>) Particle size distribution of catalysts. The blue line refers to the catalyst prepared by the electrochemical dispersion pulsed alternating current technique (ED), the green curve is associated with commercial catalyst (JM), and the red curve is from the catalyst obtained by the polyol process (CH).</p> "> Figure 2
<p>(<b>a</b>)–(<b>c</b>) Transmission electron microscopy images and (<b>d</b>)–(<b>f</b>) platinum particle size distributions in the Pt/C electrocatalysts: ED (<b>a</b>,<b>d</b>), CH (<b>b</b>,<b>e</b>), and JM (<b>c</b>,<b>f</b>) samples; a comparison of Pt particle sizes (D<sub>111</sub>) evaluated via XRD and TEM (<b>h</b>); TGA of the ED, CH, and JM samples (<b>i</b>).</p> "> Figure 3
<p>(<b>a</b>) Н<sub>2</sub> adsorption/desorption range of cyclic voltammogram (CV) curves of Pt/C (sample CH) in 0.5 М H<sub>2</sub>SO<sub>4</sub>, N<sub>2</sub> atmosphere, potential ranges 0.03–1.3 V (1), 0.05–1.3 V vs. the reversible hydrogen electrode (RHE) (2); CO stripping on the Pt/C catalysts ED (<b>b</b>), CH (<b>c</b>), and JM (<b>d</b>) in electrolyte 0.5 M H<sub>2</sub>SO<sub>4</sub> with a scan rate of 20 mV s<sup>−1</sup>.</p> "> Figure 4
<p>Stability of the Pt/C electrocatalysts as a function of the cyclic potential range: (<b>a</b>) 0.05–1.3 V vs. RHE; (<b>b</b>) 0.6–1.0 V vs. RHE.</p> "> Figure 5
<p>CV curves of the ED, CH, and JM Pt/C catalysts in 0.5 M H<sub>2</sub>SO<sub>4</sub> + 0.5 M EtOH, scan rate 20 mV s<sup>−1</sup> (<b>a</b>,<b>b</b>); specific activity and mass activity during the ethanol oxidation reaction (EOR) processes versus the ECSA of Pt/C catalysts, black balls—ED sample, red balls—CH sample, green balls—ED sample (<b>c</b>); durability of the ED, CH, and JM Pt/C catalysts in 0.5 M H<sub>2</sub>SO<sub>4</sub> + 0.5 M EtOH (<b>d</b>).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Synthesis of Pt/C via the Polyol Process
2.3. Synthesis of Pt/C via EDPAC
2.4. Physical Characterization
2.5. Electrochemical Measurements
3. Results and Discussion
3.1. Physical Characterization of Pt/C Electrocatalysts
3.2. Electrochemical Measurements
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Lin, C.-Y.; Zhang, D.; Zhao, Z.; Xia, Z. Covalent Organic Framework Electrocatalysts for Clean Energy Conversion. Adv. Mater. 2017, 30, 1703646. [Google Scholar] [CrossRef]
- Jung, N.; Chung, D.Y.; Ryu, J.; Yoo, S.J.; Sung, Y.-E. Pt-Based nanoarchitecture and catalyst design for fuel cell applications. Nano Today 2014, 9, 433–456. [Google Scholar] [CrossRef]
- Antolini, E. Structural parameters of supported fuel cell catalysts: The effect of particle size, inter-particle distance and metal loading on catalytic activity and fuel cell performance. Appl. Catal. B Environ. 2016, 181, 298–313. [Google Scholar] [CrossRef]
- Park, Y.-C.; Tokiwa, H.; Kakinuma, K.; Watanabe, M.; Uchida, M. Effects of carbon supports on Pt distribution, ionomer coverage and cathode performance for polymer electrolyte fuel cells. J. Power Sour. 2016, 315, 179–191. [Google Scholar] [CrossRef] [Green Version]
- Sharma, S.; Pollet, B.G. Support materials for PEMFC and DMFC electrocatalysts—A review. J. Power Sour. 2012, 208, 96–119. [Google Scholar] [CrossRef]
- Han, B.C.; Miranda, C.R.; Ceder, G. Effect of particle size and surface structure on adsorption of O and OH on platinum nanoparticles: A first-principles study. Phys. Rev. B 2008, 77, 075410. [Google Scholar] [CrossRef] [Green Version]
- Chen, Q.-S.; Vidal-Iglesias, F.J.; Solla-Gullón, J.; Sun, S.-G.; Feliu, J.M. Role of surface defect sites: From Pt model surfaces to shape-controlled nanoparticles. Chem. Sci. 2012, 3, 136–147. [Google Scholar] [CrossRef]
- Chen, Z.; Higgins, D.; Yu, A.; Zhang, L.; Zhang, J. A review on non-precious metal electrocatalysts for PEM fuel cells. Energy Environ. Sci. 2011, 4, 3167–3192. [Google Scholar] [CrossRef]
- Brouzgou, A.; Song, S.; Tsiakaras, P. Low and non-platinum electrocatalysts for PEMFCs: Current status, challenges and prospects. Appl. Catal. B Environ. 2012, 127, 371–388. [Google Scholar] [CrossRef]
- Pryadchenko, V.V.; Srabionyan, V.V.; Kurzin, A.A.; Bulat, N.V.; Shemet, D.B.; Avakyan, L.A.; Belenov, S.V.; Volochaev, V.A.; Zizak, I.; Guterman, V.E.; et al. Bimetallic PtCu core-shell nanoparticles in PtCu/C electrocatalysts: Structural and electrochemical characterization. Appl. Catal. A Gen. 2016, 525, 226–236. [Google Scholar] [CrossRef]
- Yang, H. Platinum-Based Electrocatalysts with Core-Shell Nanostructures. Angew. Chem. Int. Ed. 2011, 50, 2674–2676. [Google Scholar] [CrossRef] [PubMed]
- Zou, J.; Wu, M.; Ning, S.; Huang, L.; Kanga, X.; Chen, S. Ru@Pt Core-Shell Nanoparticles: Impact of the Atomic Ordering of the Ru Metal Core on the Electrocatalytic Activity of the Pt Shell. ACS Sustain. Chem. Eng. 2019, 7, 9007–9016. [Google Scholar] [CrossRef]
- Sharma, G.; Kumar, D.; Kumar, A.; Al-Muhtaseb, A.H.; Pathania, D.; Naushad, M.; Mola, G.T. Revolution from monometallic to trimetallic nanoparticle composites, various synthesis methods and their applications: A review. Mater. Sci. Eng. C 2017, 71, 1216–1230. [Google Scholar] [CrossRef] [PubMed]
- Jamkhande, P.G.; Ghule, N.W.; Bamer, A.H.; Kalaskar, M.G. Metal nanoparticles synthesis: An overview on methods of preparation, advantages and disadvantages, and applications. J. Drug Deliv. Sci. Technol. 2019, 53, 101174. [Google Scholar] [CrossRef]
- Alegre, C.; Gálvez, M.E.; Moliner, R.; Baglio, V.; Aricò, A.; Lázaro, M.J.; Gresa, C.A. Towards an optimal synthesis route for the preparation of highly mesoporous carbon xerogel-supported Pt catalysts for the oxygen reduction reaction. Appl. Catal. B Environ. 2014, 147, 947–957. [Google Scholar] [CrossRef] [Green Version]
- Hernández-Fernández, P.; Rojas, S.; Ocón, P.; Gómez de la Fuente, J.L.; San Fabian, J.; Sanza, J.; Peña, M.A.; Garcia-Garcia, F.J.; Terreros, P.; Fierro, J.L.G. Influence of the Preparation Route of Bimetallic Pt-Au Nanoparticle Electrocatalysts for the Oxygen Reduction Reaction. J. Phys. Chem. C 2007, 111, 2913–2923. [Google Scholar] [CrossRef]
- Leontyev, I.; Kuriganova, A.; Kudryavtsev, Y.; Dkhil, B.; Smirnova, N. New life of a forgotten method: Electrochemical route toward highly efficient Pt/C catalysts for low-temperature fuel cells. Appl. Catal. A Gen. 2012, 431, 120–125. [Google Scholar] [CrossRef]
- Shinohara, K.; Ohma, A.; Iiyama, A.; Yoshida, T.; Daimaru, A. Membrane and Catalyst Performance Targets for Automotive Fuel Cells by FCCJ Membrane, Catalyst, MEA WG. ECS Meet. Abstr. 2011, 41, 775–784. [Google Scholar] [CrossRef]
- Zhang, S.; Yuan, X.-Z.; Hin, J.N.C.; Wang, H.; Friedrich, K.A.; Schulze, M. A review of platinum-based catalyst layer degradation in proton exchange membrane fuel cells. J. Power Sour. 2009, 194, 588–600. [Google Scholar] [CrossRef]
- Leontyev, I.N.; Kuriganova, A.B.; Leontyev, N.G.; Hennet, L.; Rakhmatullin, A.; Smirnova, N.V.; Dmitriev, V. Size dependence of the lattice parameters of carbon supported platinum nanoparticles: X-Ray diffraction analysis and theoretical considerations. RSC Adv. 2014, 4, 35959–35965. [Google Scholar] [CrossRef]
- Leontyev, I.N.; Belenov, S.V.; Guterman, V.E.; Haghi-Ashtiani, P.; Shaganov, A.P.; Dkhil, B. Catalytic Activity of Carbon-Supported Pt Nanoelectrocatalysts. Why Reducing the Size of Pt Nanoparticles is Not Always Beneficial. J. Phys. Chem. C 2011, 115, 5429–5434. [Google Scholar] [CrossRef]
- Leontyev, I.N.; Kuriganova, A.B.; Allix, M.; Rakhmatullin, A.; Timoshenko, P.E.; Maslova, O.A.; Mikheykin, A.S.; Smirnova, N.V. On the Evaluation of the Average Crystalline Size and Surface Area of Platinum Catalyst Nanoparticles. Phys. Status Solidi B 2018, 255. [Google Scholar] [CrossRef]
- Yanson, A.I.; Rodriguez, P.; Garcia-Araez, N.; Mom, R.V.; Tichelaar, F.D.; Koper, M.T.M. Cathodic Corrosion: A Quick, Clean, and Versatile Method for the Synthesis of Metallic Nanoparticles. Angew. Chem. Int. Ed. 2011, 50, 6346–6350. [Google Scholar] [CrossRef] [PubMed]
- Doronkin, D.E.; Kuriganova, A.B.; Leontyev, I.N.; Baier, S.; Lichtenberg, H.; Smirnova, N.V.; Grunwaldt, J.-D. Electrochemically Synthesized Pt/Al2O3 Oxidation Catalysts. Catal. Lett. 2015, 146, 452–463. [Google Scholar] [CrossRef]
- Novikova, K.; Kuriganova, A.; Leontyev, I.; Gerasimova, E.; Maslova, O.; Rakhmatullin, A.; Smirnova, N.V.; Dobrovolsky, Y. Influence of Carbon Support on Catalytic Layer Performance of Proton Exchange Membrane Fuel Cells. Electrocatalysis 2017, 9, 22–30. [Google Scholar] [CrossRef]
- Cherevko, S.; Topalov, A.A.; Zeradjanin, A.R.; Katsounaros, I.; Mayrhofer, K.J.J. Gold dissolution: Towards understanding of noble metal corrosion. RSC Adv. 2013, 3, 16516. [Google Scholar] [CrossRef]
- Cherevko, S.; Zeradjanin, A.R.; Topalov, A.A.; Kulyk, N.; Katsounaros, I.; Mayrhofer, K.J.J. Dissolution of Noble Metals during Oxygen Evolution in Acidic Media. ChemCatChem 2014, 6, 2219–2223. [Google Scholar] [CrossRef]
- Katsounaros, I.; Meier, J.C.; Klemm, S.O.; Topalov, A.A.; Biedermann, P.U.; Auinger, M.; Mayrhofer, K.J.J. The effective surface pH during reactions at the solid–liquid interface. Electrochem. Commun. 2011, 13, 634–637. [Google Scholar] [CrossRef]
- Klemm, S.O.; Karschin, A.; Schuppert, A.K.; Topalov, A.A.; Mingers, A.M.; Katsounaros, I.; Mayrhofer, K.J.J. Time and potential resolved dissolution analysis of rhodium using a microelectrochemical flow cell coupled to an ICP-MS. J. Electroanal. Chem. 2012, 677, 50–55. [Google Scholar] [CrossRef]
- Topalov, A.A.; Cherevko, S.; Zeradjanin, A.R.; Meier, J.C.; Katsounaros, I.; Mayrhofer, K.J.J. Towards a comprehensive understanding of platinum dissolution in acidic media. Chem. Sci. 2014, 5, 631–638. [Google Scholar] [CrossRef] [Green Version]
- Topalov, A.A.; Katsounaros, I.; Auinger, M.; Cherevko, S.; Meier, J.C.; Klemm, S.O.; Mayrhofer, K. Dissolution of Platinum: Limits for the Deployment of Electrochemical Energy Conversion? Angew. Chem. Int. Ed. 2012, 51, 12613–12615. [Google Scholar] [CrossRef] [Green Version]
- Kasatkin, V.E.; Tytik, D.L.; Revina, A.A.; Busev, S.A.; Abaturov, M.A.; Vysotskii, V.V.; Roldugin, V.I.; Kazanskii, L.P.; Kuz’Min, V.I.; Gadzaov, A.; et al. Electrochemical synthesis of iron and platinum nanoparticles in deionized water. Prot. Met. Phys. Chem. Surf. 2015, 51, 973–979. [Google Scholar] [CrossRef]
- Chen, J.; Jiang, C.; Yang, X.; Feng, L.; Gallogly, E.B.; Wang, R. Studies on how to obtain the best catalytic activity of Pt/C catalyst by three reduction routes for methanol electro-oxidation. Electrochem. Commun. 2011, 13, 314–316. [Google Scholar] [CrossRef]
- Qi, J.; Jiang, L.; Jing, M.; Tang, Q.; Sun, G. Preparation of Pt/C via a polyol process—Investigation on carbon support adding sequence. Int. J. Hydrogen Energy 2011, 36, 10490–10501. [Google Scholar] [CrossRef]
- Comignani, V.; Sieben, J.M.; Sanchez, M.D.; Duarte, M.M.E. Influence of carbon support properties on the electrocatalytic activity of PtRuCu nanoparticles for methanol and ethanol oxidation. Int. J. Hydrogen Energy 2017, 42, 24785–24796. [Google Scholar] [CrossRef]
- Fraga, M.A.; Jordão, E.; Mendes, M.J.; Freitas, M.M.A.; Faria, J.L.; Figueiredo, J.L. Properties of Carbon-Supported Platinum Catalysts: Role of Carbon Surface Sites. J. Catal. 2002, 209, 355–364. [Google Scholar] [CrossRef]
- Gurrath, M.; Kuretzky, T.; Boehm, H.P.; Okhlopkova, L.B.; Lisitsyn, A.S.; Likholobov, V.A. Palladium catalysts on activated carbon supports. Carbon 2000, 38, 1241–1255. [Google Scholar] [CrossRef]
- López-Cudero, A.; Solla-Gullón, J.; Herrero, E.; Aldaz, A.; Feliu, J.M. CO electrooxidation on carbon supported platinum nanoparticles: Effect of aggregation. J. Electroanal. Chem. 2010, 644, 117–126. [Google Scholar] [CrossRef]
- Maillard, F.; Schreier, S.; Hanzlik, M.; Savinova, E.R.; Weinkauf, S.; Stimming, U. Influence of particle agglomeration on the catalytic activity of carbon-supported Pt nanoparticles in CO monolayer oxidation. Phys. Chem. Chem. Phys. 2005, 7, 385–393. [Google Scholar] [CrossRef]
- Brunauer, S.; Emmett, P.H.; Teller, E. Adsorption of Gases in Multimolecular Layers. J. Am. Chem. Soc. 1938, 60, 309–319. [Google Scholar] [CrossRef]
- Watt-Smith, M.J.; Friedrich, J.M.; Rigby, S.P.; Ralph, T.R.; Walsh, F.C. Determination of the electrochemically active surface area of Pt/C PEM fuel cell electrodes using different adsorbates. J. Phys. D Appl. Phys. 2008, 41, 174004. [Google Scholar] [CrossRef]
- Li, W.; Lane, A.M. Resolving the HUPD and HOPD by DEMS to determine the ECSA of Pt electrodes in PEM fuel cells. Electrochem. Commun. 2011, 13, 913–916. [Google Scholar] [CrossRef]
- Thomas, J.M. Handbook of Heterogeneous Catalysis, 2nd Completely Revised and Enlarged Edition; Ertl, G., Knözinger, H., Schüth, F., Weitkamp, J., Eds.; Wiley: Hoboken, NJ, USA, 2008; Volume 8. [Google Scholar]
- Abe, K.; Uchida, H.; Inukai, J. Electro-Oxidation of CO Saturated in 0.1 M HClO4 on Basal and Stepped Pt Single-Crystal Electrodes at Room Temperature Accompanied by Surface Reconstruction. Surfaces 2019, 2, 315–325. [Google Scholar] [CrossRef] [Green Version]
- Arenz, M.; Mayrhofer, K.J.J.; Stamenković, V.; Blizanac, B.B.; Tomoyuki, T.; Ross, P.N.; Marković, N.M. The Effect of the Particle Size on the Kinetics of CO Electrooxidation on High Surface Area Pt Catalysts. J. Am. Chem. Soc. 2005, 127, 6819–6829. [Google Scholar] [CrossRef]
- Farias, M.J.S.; Busó-Rogero, C.; Vidal-Iglesias, F.J.; Solla-Gullón, J.; Camara, G.A.; Feliu, J.M. Mobility and Oxidation of Adsorbed CO on Shape-Controlled Pt Nanoparticles in Acidic Medium. Langmuir 2017, 33, 865–871. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.; Duan, Z.; Henkelman, G. Computational design of CO-tolerant Pt3M anode electrocatalysts for proton-exchange membrane fuel cells. Phys. Chem. Chem. Phys. 2019, 21, 4046–4052. [Google Scholar] [CrossRef] [PubMed]
- Maillard, F.; Savinova, E.R.; Stimming, U. CO monolayer oxidation on Pt nanoparticles: Further insights into the particle size effects. J. Electroanal. Chem. 2007, 599, 221–232. [Google Scholar] [CrossRef]
- Lafforgue, C.; Zadick, A.; Dubau, L.; Maillard, F.; Chatenet, M. Selected Review of the Degradation of Pt and Pd-based Carbon-supported Electrocatalysts for Alkaline Fuel Cells: Towards Mechanisms of Degradation. Fuel Cells 2018, 18, 229–238. [Google Scholar] [CrossRef]
- Weber, P.; Werheid, M.; Janssen, M.; Oezaslan, M. Fundamental Insights in Degradation Mechanisms of Pt/C Nanoparticles for the ORR. ECS. Transactions 2018, 86, 433–445. [Google Scholar]
- Kuriganova, A.; Leontyeva, D.V.; Smirnova, N. On the mechanism of electrochemical dispersion of platinum under the action of alternating current. Russ. Chem. Bull. 2015, 64, 2769–2775. [Google Scholar] [CrossRef]
- Zhang, C.; Hu, J.; Wang, X.; Zhang, X.; Toyoda, H.; Nagatsu, M.; Meng, Y. High performance of carbon nanowall supported Pt catalyst for methanol electro-oxidation. Carbon 2012, 50, 3731–3738. [Google Scholar] [CrossRef]
- Wang, X.X.; Tan, Z.H.; Zeng, M.; Wang, J.N. Carbon nanocages: A new support material for Pt catalyst with remarkably high durability. Sci. Rep. 2014, 4, 4437. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Z.; Wang, Y.; Wang, X. Nanoporous bimetallic Pt-Au alloy nanocomposites with superior catalytic activity towards electro-oxidation of methanol and formic acid. Nanoscale 2011, 3, 1663–1674. [Google Scholar] [CrossRef]
- Garsany, Y.; Singer, I.L.; Swider-Lyons, K.E. Impact of film drying procedures on RDE characterization of Pt/VC electrocatalysts. J. Electroanal. Chem. 2011, 662, 396–406. [Google Scholar] [CrossRef]
- Basu, D.; Basu, S. Synthesis and characterization of Pt-Au/C catalyst for glucose electro-oxidation for the application in direct glucose fuel cell. Int. J. Hydrogen Energy 2011, 36, 14923–14929. [Google Scholar] [CrossRef]
- Fu, T.; Fang, J.; Wang, C.; Zhao, J. Hollow porous nanoparticles with Pt skin on a Ag-Pt alloy structure as a highly active electrocatalyst for the oxygen reduction reaction. J. Mater. Chem. A 2016, 4, 8803–8811. [Google Scholar] [CrossRef]
- Saleh, F.S.; Easton, E.B. Assessment of the ethanol oxidation activity and durability of Pt catalysts with or without a carbon support using Electrochemical Impedance Spectroscopy. J. Power Sour. 2014, 246, 392–401. [Google Scholar] [CrossRef]
- Sohn, H.; Xiao, Q.; Seubsai, A.; Ye, Y.; Lee, J.; Han, H.; Park, S.; Chen, G.; Lu, Y. Thermally Robust Porous Bimetallic (NixPt1–x) Alloy Mesocrystals within Carbon Framework: High-Performance Catalysts for Oxygen Reduction and Hydrogenation Reactions. ACS Appl. Mater. Interfaces 2019, 11, 21435–21444. [Google Scholar] [CrossRef]
- Jiang, Z.-J.; Jiang, Z.-J.; Meng, Y. High catalytic performance of Pt nanoparticles on plasma treated carbon nanotubes for electrooxidation of ethanol in a basic solution. Appl. Surf. Sci. 2011, 257, 2923–2928. [Google Scholar] [CrossRef]
- Jung, J.H.; Park, H.J.; Kim, J.; Hur, S.H. Highly durable Pt/graphene oxide and Pt/C hybrid catalyst for polymer electrolyte membrane fuel cell. J. Power Sour. 2014, 248, 1156–1162. [Google Scholar] [CrossRef]
- Zeng, M.; Wang, X.X.; Tan, Z.H.; Huang, X.X.; Wang, J.N. Remarkable durability of Pt-Ir alloy catalysts supported on graphitic carbon nanocages. J. Power Sour. 2014, 264, 272–281. [Google Scholar] [CrossRef]
- Sakthivel, M.; Drillet, J.-F. An extensive study about influence of the carbon support morphology on Pt activity and stability for oxygen reduction reaction. Appl. Catal. B Environ. 2018, 231, 62–72. [Google Scholar] [CrossRef]
- Song, J.; Li, G.; Qiao, J. Ultrafine porous carbon fiber and its supported platinum catalyst for enhancing performance of proton exchange membrane fuel cells. Electrochim. Acta 2015, 177, 174–180. [Google Scholar] [CrossRef]
- Naidoo, Q.-L.; Naidoo, S.; Petrik, L.; Nechaev, A.; Ndungu, P. The influence of carbon based supports and the role of synthesis procedures on the formation of platinum and platinum-ruthenium clusters and nanoparticles for the development of highly active fuel cell catalysts. Int. J. Hydrogen Energy 2012, 37, 9459–9469. [Google Scholar] [CrossRef]
- Liu, Z.; Hong, L.; Tham, M.P.; Lim, T.H.; Jiang, H. Nanostructured Pt/C and Pd/C catalysts for direct formic acid fuel cells. J. Power Sour. 2006, 161, 831–835. [Google Scholar] [CrossRef]
- Alekseenko, A.A.; Guterman, V.E.; Volochaev, V.A.; Belenov, S.V.; Vladimir, G. Effect of wet synthesis conditions on the microstructure and active surface area of Pt/C catalysts. Inorg. Mater. 2015, 51, 1258–1263. [Google Scholar] [CrossRef]
- Zhou, Z.; Wang, S.; Zhou, W.; Wang, G.; Jiang, L.; Li, W.; Song, S.; Liu, J.; Sun, G.; Xin, Q. Novel synthesis of highly active Pt/C cathode electrocatalyst for direct methanol fuel cell. Chem. Commun. 2003, 394–395. [Google Scholar] [CrossRef] [PubMed]
- Lebègue, E.; Baranton, S.; Coutanceau, C. Polyol synthesis of nanosized Pt/C electrocatalysts assisted by pulse microwave activation. J. Power Sour. 2011, 196, 920–927. [Google Scholar] [CrossRef]
- Gu, Z.; Balbuena, P.B. Absorption of Atomic Oxygen into Subsurfaces of Pt(100) and Pt(111): Density Functional Theory Study. J. Phys. Chem. C 2007, 111, 9877–9883. [Google Scholar] [CrossRef]
Parameter | Accelerated Ageing, Mode 1 | Soft Ageing, Mode 2 |
---|---|---|
Number of cycles | 1500 | 5000 |
Electrolyte | 0.5 М H2SO4 | 0.5 М H2SO4 |
Temperature (°C) | 22–23 | 22–23 |
Potential range (V) | 0.05–1.35 | 0.6–1.0 |
Potential sweep rate (mV s−1) | 50 | 100 |
ECSA measurement | Every 100 cycles | Every 500 cycles |
Sample | ED | CH | JM |
---|---|---|---|
Dav (nm) | 4.74 | 2.55 | 2.48 |
ΔDav | 0.86 | 0.5 | 0.2 |
D111 (nm) | 6.68 | 2.76 | 2.70 |
D200 (nm) | 4.71 | 2.08 | 2.01 |
D200/D111 | 0.78 | 0.77 | 0.83 |
<D> (nm) | 5.56 | 2.69 | 2.68 |
σ (nm) | 3.49 | 1.63 | 1.69 |
Sgeom (m2 g−1) | 28.13 | 59.96 | 58.14 |
a (Å) | 3.9153 | 3.9133 | 3.9151 |
Sample Preparation Method | Particle Size, nm | ECSA (m2 g−1)/Technique | Ref. |
---|---|---|---|
JM (40 wt % Pt/C) | 3.0 | 50.9/HUPD | [52] |
3.5 | 46.4/HUPD | [53] | |
- | 39.4/HUPD | [54] | |
3.1 | 49 ± 1/HUPD | [55] | |
4.6 | 60.8/HUPD | [56] | |
3.0 | 74.5/CO stripping | [57] | |
3.5 | 29.0/HUPD | [58] | |
- | 63.9/HUPD | [59] | |
3.09 | 43.9/HUPD | [60] | |
3.0 | 54.21/HUPD | [61] | |
3.0 | 46.4/HUPD | [62] | |
5.1 | 18.17/HUPD | [63] | |
3.4 | 36.3/HUPD | [64] | |
3.76 | 190.0/HUPD | [65] | |
3.5 | 18.0 ± 0.1/HUPD 1 | This work | |
22.0 ± 0.2/HUPD 2 | This work | ||
26.0 ± 0.5/CO stripping 3 | This work | ||
30 wt % Pt/C/polyol process | 3.6 | - | [66] |
19 wt % Pt/C/polyol process | 2.0 | 99.0 ± 10/HUPD | [67] |
40 wt % Pt/C/polyol process | 2.9 | - | [68] |
40 wt % Pt/C/microwave-assisted polyol synthesis | 2.6 ± 0.7 | - | [69] |
40 wt % Pt/C/polyol synthesis | 3.1 | 58.6/HUPD | [49] |
40 wt % Pt/C/polyol synthesis | 2.9 | 53.0/HUPD | [34] |
CH (40 wt % Pt/C)/polyol synthesis | 2.55 (XRD) | 13.0 ± 0.1/HUPD 1 | This work |
15.0 ± 0.2/HUPD 2 | This work | ||
22.0 ± 0.2/CO stripping 3 | This work |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuriganova, A.; Faddeev, N.; Gorshenkov, M.; Kuznetsov, D.; Leontyev, I.; Smirnova, N. A Comparison of “Bottom-Up” and “Top-Down” Approaches to the Synthesis of Pt/C Electrocatalysts. Processes 2020, 8, 947. https://doi.org/10.3390/pr8080947
Kuriganova A, Faddeev N, Gorshenkov M, Kuznetsov D, Leontyev I, Smirnova N. A Comparison of “Bottom-Up” and “Top-Down” Approaches to the Synthesis of Pt/C Electrocatalysts. Processes. 2020; 8(8):947. https://doi.org/10.3390/pr8080947
Chicago/Turabian StyleKuriganova, Alexandra, Nikita Faddeev, Mikhail Gorshenkov, Dmitri Kuznetsov, Igor Leontyev, and Nina Smirnova. 2020. "A Comparison of “Bottom-Up” and “Top-Down” Approaches to the Synthesis of Pt/C Electrocatalysts" Processes 8, no. 8: 947. https://doi.org/10.3390/pr8080947
APA StyleKuriganova, A., Faddeev, N., Gorshenkov, M., Kuznetsov, D., Leontyev, I., & Smirnova, N. (2020). A Comparison of “Bottom-Up” and “Top-Down” Approaches to the Synthesis of Pt/C Electrocatalysts. Processes, 8(8), 947. https://doi.org/10.3390/pr8080947