A Review of Transparent Sensors for Photoacoustic Imaging Applications
<p>(<b>a</b>) Schematic of FP sensor head (upper left), photograph of sensor head (lower left), and FP sensor frequency response (right). Adapted with permission from ref. [<a href="#B42-photonics-08-00324" class="html-bibr">42</a>]. Copyright 2008 Optical Society of America; (<b>b</b>) The configuration of FP interferometers (upper left), the glancing angle deposited nanostructured film (GLAD) FP US sensor (upper right), GLAD- FP US sensor frequency response (bottom). Adapted with permission from ref. [<a href="#B51-photonics-08-00324" class="html-bibr">51</a>]. Copyright 2013 Optical Society of America; (<b>c</b>) Schematic of FP US sensor head (top), predicted normalized frequency response characteristics of 40 µm parylene and 75 µm PET sensors (bottom). PET: Polyethylene terephthalate, PMMA: polymethylmethacrylate. Adapted with permission from ref. [<a href="#B52-photonics-08-00324" class="html-bibr">52</a>]. Copyright 2005 Institute of Electrical and Electronics Engineers; (<b>d</b>) Schematic of the FPI sensing structure deposited at the tip of the optical fiber (left), measured frequency responses of three typical fiber-optic hydrophones (right). Adapted with permission from ref. [<a href="#B53-photonics-08-00324" class="html-bibr">53</a>]. Copyright 2009 Acoustical Society of America; (<b>e</b>) Scanning electron images of Micro-ring resonator (top), the detected US signals by MRR US sensor (bottom). Adapted with permission from ref. [<a href="#B54-photonics-08-00324" class="html-bibr">54</a>]. Copyright 2017 Society of Photo-Optical Instrumentation Engineers; (<b>f</b>) Illustration of MRR detection of laser-induced PA waves (left); a representative transmission spectrum exhibits a pronounced resonance dip under the critical coupling condition and its corresponding Lorenz fitting (middle); time-resolved PA pulse signal measured by the MRR US detector (upper right); its corresponding power spectrum shows an ultrabroadband frequency response (lower right). Adapted with permission from ref. [<a href="#B20-photonics-08-00324" class="html-bibr">20</a>]. Copyright 2015 Optical Society of America; (<b>g</b>) Experimental setup for ultrasound detection with a fiber laser sensor (top), record signals in response to spherical ultrasound waves (middle), measure and calculated frequency responses (bottom). PD: Photodetector, L: Lens, WDM: Wavelength-division multiplexer. Adapted with permission from ref. [<a href="#B23-photonics-08-00324" class="html-bibr">23</a>]. Copyright 2017 Optical Society of America; (<b>h</b>) A SWED read-out system (upper left), schematic of a single SWED (lower left), long-term detection stability of the SWED (lower middle), and spectral responses of SWEDs (right). SWED: point-like silicon waveguide-etalon detector, BOX indicates the silicon-oxide substrate of the silicon waveguide. Adapted with permission from ref. [<a href="#B25-photonics-08-00324" class="html-bibr">25</a>]. Copyright 2020 Nature Publishing Group.</p> "> Figure 2
<p>Transparent piezoelectric-based US sensors: (<b>a</b>) Schematic (upper left), photography (upper right), pulse-echo waveform (lower left), and spectrum (lower right) of a 24 MHz PVDF focused transparent sensor design. PVDF: Poly(vinylidene fluoride), ITO: Indium tin oxide. Adapted with permission from ref. [<a href="#B26-photonics-08-00324" class="html-bibr">26</a>]. Copyright 2020 Institute of Electrical and Electronics Engineers; (<b>b</b>) Schematic cross section (upper left), photograph (upper right), light attenuation occurring after penetrating each acoustic layer (lower left), and pulse-echo response and its frequency spectrum (lower right) of a 11.2 MHz LN optically transparent focused US sensor. Adapted from ref. [<a href="#B60-photonics-08-00324" class="html-bibr">60</a>]; (<b>c</b>) Design cross section (upper left), photograph (upper right), optical transmittance (lower left), and pulse-echo response and its frequency spectrum (lower right) of a 37 MHz LN high-frequency transparent US sensor. Adapted with permission from ref. [<a href="#B31-photonics-08-00324" class="html-bibr">31</a>]. Copyright 2020 Institute of Electrical and Electronics Engineers; (<b>d</b>) Schematic (upper left), photograph (lower left), pulse echo responses of DC poled (upper right) and AC poled (lower right) PMN-PT US sensors (14 MHz). Adapted with permission from ref. [<a href="#B61-photonics-08-00324" class="html-bibr">61</a>]. Copyright 2010 Woodhead Publishing; (<b>e</b>) Schematic layer-by-layer illustration (upper left), photograph (upper right), light transmittance (lower left), and pulse echo response and frequency spectra (lower right) of a dual center frequencies (~7.5 and ~31.5 MHz) transparent LN US sensor. PC: personal computer, AL: acoustic lens, LNO: lithium niobite, AgNWs: silver nanowires, BL: backing layer, IH: inner housing, IE: insulation epoxy, OH: outer housing, TUT: transparent ultrasound transducer. Adapted with permission from ref. [<a href="#B32-photonics-08-00324" class="html-bibr">32</a>]. Copyright 2021 Proceedings of the National Academy of Sciences of the United States of America; (<b>f</b>) A 14.5 MHz transparent PMN-PT US sensor: Picture of an optically transparent LN substrate coated with ITO (upper left), picture of a 2.5 mm × 2.5 mm sensor integrated with an optical fiber (upper right), optical transparency of the ITO-coated LN (lower left), and pulse-echo response of the sensor. Adapted with permission from ref. [<a href="#B30-photonics-08-00324" class="html-bibr">30</a>]. Copyright 2019 Optical Society of America.</p> "> Figure 3
<p>Transparent CMUT arrays: (<b>a</b>) Fabrication process flow (upper left), photos and 3D drawing (upper right), transparency (lower left), receive sensitivity versus bias voltage (lower middle), and frequency response (lower right) of a transparent CMUT array with 64 channels. ITO: Indium Tin Oxide, BCB: benzocyclobutene. Adapted with permission from ref. [<a href="#B34-photonics-08-00324" class="html-bibr">34</a>]. Copyright 2020 Optical Society of America; (<b>b</b>) Cross-sectional structural drawing (upper left), photo (upper right), transparency demonstration by a camera resolution test (middle), acoustic pressure generated with a single element (lower left), and frequency response (lower right) of a 9 MHz transparent CMUT linear array with 128 elements. Adapted with permission from ref. [<a href="#B33-photonics-08-00324" class="html-bibr">33</a>]. Copyright 2021 Optical Society of America.</p> "> Figure 4
<p>(<b>a</b>) Backward-mode multiwavelength PA scanner with a FP US sensor. CW: continuous wave, DSO: digitizing oscilloscope, OPO: optical parametric oscillator. Reprinted with permission from ref. [<a href="#B42-photonics-08-00324" class="html-bibr">42</a>]. Copyright 2008 Optical Society of America; (<b>b</b>) The experimental setup used for testing a GLAD-FP US sensor. Two separate setups are shown. Setup 1 is used for PAI. Setup 2 is used to test the receive sensitivity using an external ultrasound transducer. PD: photodiode, OL: objective lens, SMF: single mode fiber, FG: function generator, FLD: fiber laser driver. Adapted with permission from ref. [<a href="#B51-photonics-08-00324" class="html-bibr">51</a>]. Copyright 2013 Optical Society of America; (<b>c</b>) PAI setup with a MRR US sensor. Adapted with permission from ref. [<a href="#B44-photonics-08-00324" class="html-bibr">44</a>]. Copyright American Chemical Society; (<b>d</b>) Test setup for characterizing the optical and acoustic properties of focused transparent transducer. Reprinted with permission from ref. [<a href="#B26-photonics-08-00324" class="html-bibr">26</a>]. Copyright 2020 Institute of Electrical and Electronics Engineers; (<b>e</b>) Schematic diagrams of a seamlessly integrated quadruple fusion imaging system using a TUT: USI, OCT, and FLI. Overall schematic (left), magnified schematic of the imaging head module (right). PC: personal computer, RF: radio frequency, M: mirror, FM: flipping mirror, ND: neutral density filter, C: collimator, CorL: correction lens. Reprinted with permission from ref. [<a href="#B32-photonics-08-00324" class="html-bibr">32</a>]. Copyright 2021 Proceedings of the National Academy of Sciences of the United States of America.</p> "> Figure 5
<p>Estimated sensitivity of transparent US sensors and their bandwidth. FP1 [<a href="#B40-photonics-08-00324" class="html-bibr">40</a>], FP2 [<a href="#B42-photonics-08-00324" class="html-bibr">42</a>], MRR [<a href="#B22-photonics-08-00324" class="html-bibr">22</a>], Piezo-PVDF [<a href="#B26-photonics-08-00324" class="html-bibr">26</a>], Piezo-LN1 [<a href="#B31-photonics-08-00324" class="html-bibr">31</a>], Piezo-LN2 [<a href="#B60-photonics-08-00324" class="html-bibr">60</a>], Piezo-PMN-PT [<a href="#B61-photonics-08-00324" class="html-bibr">61</a>], CMUT1 [<a href="#B34-photonics-08-00324" class="html-bibr">34</a>], CMUT2 [<a href="#B33-photonics-08-00324" class="html-bibr">33</a>].</p> ">
Abstract
:1. Introduction
2. Transparent Optics-Based US Sensors
- The use of sub-millimeter size MRR can achieve high-sensitivity US wave detection because the effective optical path length of the system is amplified by several orders of magnitude through strong optical resonance, which can minimize the interference to the optical path of the optical microscope system;
- MRR provides a wider US wave detection bandwidth, therefore improving the saturation limit and axial resolution of functional PAI. The optical frequency is much higher than the US frequency, so the MRR can still provide a significantly wider detection bandwidth compared with conventional piezoelectric-based sensors;
3. Transparent Piezoelectric-Based US Sensors
4. Transparent Capacitive Micromachined Ultrasonic Transducers
5. PAI Applications with Transparent US Sensors
6. Discussions and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhao, T.; Desjardins, A.E.; Ourselin, S.; Vercauteren, T.; Xia, W. Minimally invasive photoacoustic imaging: Current status and future perspectives. Photoacoustics 2019, 16, 100146. [Google Scholar] [CrossRef] [PubMed]
- Attia, A.B.E.; Balasundaram, G.; Moothanchery, M.; Dinish, U.S.; Bi, R.Z.; Ntziachristos, V.; Olivo, M. A review of clinical photoacoustic imaging: Current and future trends. Photoacoustics 2019, 16, 18. [Google Scholar] [CrossRef] [PubMed]
- Heijblom, M.; Piras, D.; Brinkhuis, M.; van Hespen, J.C.; van den Engh, F.M.; van der Schaaf, M.; Klaase, J.M.; van Leeuwen, T.G.; Steenbergen, W.; Manohar, S. Photoacoustic image patterns of breast carcinoma and comparisons with Magnetic Resonance Imaging and vascular stained histopathology. Sci. Rep. 2015, 5, 11778. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- La Zerda, A.D.; Liu, Z.; Bodapati, S.; Teed, R.; Vaithilingam, S.; Khuriyakub, B.T.; Chen, X.; Dai, H.; Gambhir, S.S. Ultrahigh Sensitivity Carbon Nanotube Agents for Photoacoustic Molecular Imaging in Living Mice. Nano Lett. 2010, 10, 2168–2172. [Google Scholar] [CrossRef] [Green Version]
- Lin, L.; Hu, P.; Shi, J.; Appleton, C.M.; Maslov, K.; Li, L.; Zhang, R.; Wang, L.V. Single-breath-hold photoacoustic computed tomography of the breast. Nat. Commun. 2018, 9, 2352. [Google Scholar] [CrossRef]
- Mallidi, S.; Luke, G.P.; Emelianov, S. Photoacoustic imaging in cancer detection, diagnosis, and treatment guidance. Trends Biotechnol. 2011, 29, 213–221. [Google Scholar] [CrossRef] [Green Version]
- Toi, M.; Asao, Y.; Matsumoto, Y.; Sekiguchi, H.; Yoshikawa, A.; Takada, M.; Kataoka, M.; Endo, T.; Kawaguchi-Sakita, N.; Kawashima, M.; et al. Visualization of tumor-related blood vessels in human breast by photoacoustic imaging system with a hemispherical detector array. Sci. Rep. 2017, 7, 41970. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Nyayapathi, N.; Kilian, H.I.; Xia, J.; Lovell, J.F.; Yao, J. Sound Out the Deep Colors: Photoacoustic Molecular Imaging at New Depths. Mol. Imaging 2020, 19. [Google Scholar] [CrossRef]
- Strohm, E.M.; Moore, M.J.; Kolios, M.C. Single Cell Photoacoustic Microscopy: A Review. IEEE J. Sel. Top. Quantum Electron. 2016, 22, 137–151. [Google Scholar] [CrossRef]
- Weber, J.; Beard, P.C.; Bohndiek, S.E. Contrast agents for molecular photoacoustic imaging. Nat. Methods 2016, 13, 639–650. [Google Scholar] [CrossRef] [Green Version]
- Yao, J.; Wang, L.V. Sensitivity of photoacoustic microscopy. Photoacoustics 2014, 2, 87–101. [Google Scholar] [CrossRef] [Green Version]
- Fatima, A.; Kratkiewicz, K.; Manwar, R.; Zafar, M.; Zhang, R.; Huang, B.; Dadashzadeh, N.; Xia, J.; Avanaki, K.M. Review of cost reduction methods in photoacoustic computed tomography. Photoacoustics 2019, 15, 100137. [Google Scholar] [CrossRef]
- Lan, B.; Liu, W.; Wang, Y.C.; Shi, J.; Li, Y.; Xu, S.; Sheng, H.; Zhou, Q.; Zou, J.; Hoffmann, U.; et al. High-speed widefield photoacoustic microscopy of small-animal hemodynamics. Biomed. Opt. Express 2018, 9, 4689–4701. [Google Scholar] [CrossRef]
- Yao, J.; Wang, L.; Yang, J.M.; Maslov, K.I.; Wong, T.T.; Li, L.; Huang, C.H.; Zou, J.; Wang, L.V. High-speed label-free functional photoacoustic microscopy of mouse brain in action. Nat. Methods 2015, 12, 407–410. [Google Scholar] [CrossRef]
- Wang, T.; Sun, N.; Cao, R.; Ning, B.; Chen, R.; Zhou, Q.; Hu, S. Multiparametric photoacoustic microscopy of the mouse brain with 300-kHz A-line rate. Neurophotonics 2016, 3, 045006. [Google Scholar] [CrossRef]
- Wong, T.T.W.; Zhang, R.; Zhang, C.; Hsu, H.-C.; Maslov, K.I.; Wang, L.; Shi, J.; Chen, R.; Shung, K.K.; Zhou, Q.; et al. Label-free automated three-dimensional imaging of whole organs by microtomy-assisted photoacoustic microscopy. Nat. Commun. 2017, 8, 1386. [Google Scholar] [CrossRef]
- Ansari, R.; Zhang, E.; Desjardins, A.E.; Beard, P.C. All-optical endoscopic probe for high resolution 3D photoacoustic tomography. Photons Plus Ultrasound Imaging Sens. 2017, 10064. [Google Scholar] [CrossRef] [Green Version]
- Zhang, E.; Beard, P. Broadband ultrasound field mapping system using a wavelength tuned, optically scanned focused laser beam to address a Fabry Perot polymer film sensor. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2006, 53, 1330–1338. [Google Scholar] [CrossRef]
- Chen, S.-L.; Ling, T.; Baac, H.W.; Guo, L.J. Photoacoustic endoscopy using polymer microring resonators. Photons Plus Ultrasound Imaging Sens. 2011, 2011, 7899. [Google Scholar]
- Dong, B.; Li, H.; Zhang, Z.; Zhang, K.; Chen, S.; Sun, C.; Zhang, H.F. Isometric multimodal photoacoustic microscopy based on optically transparent micro-ring ultrasonic detection. Optica 2015, 2, 169–176. [Google Scholar] [CrossRef]
- Li, H.; Dong, B.; Zhang, X.; Shu, X.; Chen, X.; Hai, R.; Czaplewski, D.A.; Zhang, H.F.; Sun, C. Disposable ultrasound-sensing chronic cranial window by soft nanoimprinting lithography. Nat. Commun. 2019, 10, 4277. [Google Scholar] [CrossRef]
- Li, H.; Dong, B.; Zhang, Z.; Zhang, H.F.; Sun, C. A transparent broadband ultrasonic detector based on an optical micro-ring resonator for photoacoustic microscopy. Sci. Rep. 2014, 4, 4496. [Google Scholar] [CrossRef]
- Bai, X.; Liang, Y.; Sun, H.; Jin, L.; Ma, J.; Guan, B.O.; Wang, L. Sensitivity characteristics of broadband fiber-laser-based ultrasound sensors for photoacoustic microscopy. Opt. Express 2017, 25, 17616–17626. [Google Scholar] [CrossRef]
- Bai, X.; Ma, J.; Li, X.; Jin, L.; Guan, B.-O. Focus-tunable fiber-laser ultrasound sensor for high-resolution linear-scanning photoacoustic computed tomography. Appl. Phys. Lett. 2020, 116, 153701. [Google Scholar] [CrossRef]
- Shnaiderman, R.; Wissmeyer, G.; Ülgen, O.; Mustafa, Q.; Chmyrov, A.; Ntziachristos, V. A submicrometre silicon-on-insulator resonator for ultrasound detection. Nature 2020, 585, 372–378. [Google Scholar] [CrossRef]
- Fang, C.; Hu, H.; Zou, J. A Focused Optically Transparent PVDF Transducer for Photoacoustic Microscopy. IEEE Sens. J. 2020, 20, 2313–2319. [Google Scholar] [CrossRef]
- Niederhauser, J.J.; Jaeger, M.; Hejazi, M.; Keppner, H.; Frenz, M. Transparent ITO coated PVDF transducer for optoacoustic depth profiling. Opt. Commun. 2005, 253, 401–406. [Google Scholar] [CrossRef]
- Brodie, G.W.; Qiu, Y.; Cochran, S.; Spalding, G.C.; MacDonald, M.P. Optically transparent piezoelectric transducer for ultrasonic particle manipulation. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2014, 61, 389–391. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.Y.; Agrawal, S.; Dangi, A.; Wible, C.; Osman, M.; Abune, L.; Jia, H.Z.; Rossi, R.; Wang, Y.; Kothapalli, S.R. Optical-Resolution Photoacoustic Microscopy Using Transparent Ultrasound Transducer. Sensors 2019, 19, 5470. [Google Scholar] [CrossRef] [Green Version]
- Dangi, A.; Agrawal, S.; Kothapalli, S.R. Lithium niobate-based transparent ultrasound transducers for photoacoustic imaging. Opt. Lett. 2019, 44, 5326–5329. [Google Scholar] [CrossRef]
- Chen, R.M.; He, Y.; Shi, J.H.; Yung, C.; Hwang, J.; Wang, L.V.; Zhou, Q.F. Transparent High-Frequency Ultrasonic Transducer for Photoacoustic Microscopy Application. IEEE Trans. Ultrason.s Ferroelectr. Freq. Control 2020, 67, 1848–1853. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Park, B.; Kim, T.Y.; Jung, S.; Choi, W.J.; Ahn, J.; Yoon, D.H.; Kim, J.; Jeon, S.; Lee, D.; et al. Quadruple ultrasound, photoacoustic, optical coherence, and fluorescence fusion imaging with a transparent ultrasound transducer. Proc. Natl. Acad. Sci. USA 2021, 118, e1920879118. [Google Scholar] [CrossRef] [PubMed]
- Ilkhechi, A.K.; Ceroici, C.; Dew, E.; Zemp, R. Transparent capacitive micromachined ultrasound transducer linear arrays for combined realtime optical and ultrasonic imaging. Opt. Lett. 2021, 46, 1542–1545. [Google Scholar] [CrossRef] [PubMed]
- Ilkhechi, A.K.; Ceroici, C.; Li, Z.H.; Zemp, R. Transparent capacitive micromachined ultrasonic transducer (CMUT) arrays for real-time photoacoustic applications. Opt. Express 2020, 28, 13750–13760. [Google Scholar] [CrossRef]
- Li, Z.H.; Na, S.; Chen, A.I.H.; Wong, L.L.P.; Sun, Z.D.; Liu, P.; Yeow, J.T.W. Optimization on benzocyclobutene-based CMUT fabrication with an inverse structure. Sens. Actuators A Phys. 2018, 281, 1–8. [Google Scholar] [CrossRef]
- Dong, B.; Sun, C.; Zhang, H.F. Optical Detection of Ultrasound in Photoacoustic Imaging. IEEE Trans. Biomed. Eng. 2017, 64, 4–15. [Google Scholar] [CrossRef]
- Wissmeyer, G.; Pleitez, M.A.; Rosenthal, A.; Ntziachristos, V. Looking at sound: Optoacoustics with all-optical ultrasound detection. Light Sci. Appl. 2018, 7, 53. [Google Scholar] [CrossRef]
- Manwar, R.; Kratkiewicz, K.; Avanaki, K. Overview of Ultrasound Detection Technologies for Photoacoustic Imaging. Micromachines 2020, 11, 692. [Google Scholar] [CrossRef]
- Alles, E.J.; Heo, J.; Noimark, S.; Colchester, R.J.; Parkin, I.P.; Baac, H.W.; Desjardins, A.E. Acoustical Characterisation of Carbon Nanotube-Loaded Polydimethylsiloxane Used for Optical Ultrasound Generation. In Proceedings of the 2017 IEEE International Ultrasonics Symposium, Washington, DC, USA, 6–9 September 2017. [Google Scholar]
- Ashkenazi, S.; Buma, T.; O’Donnell, M. High Frequency ultrasound detection using Fabry-Perot optical etalon. In Proceedings of the 2004 IEEE Ultrasonics Symposium, Montreal, QC, Canada, 23–27 August 2004; pp. 68–71. [Google Scholar]
- Pham, K.; Noimark, S.; Huynh, N.; Zhang, E.; Kuklis, F.; Jaros, J.; Desjardins, A.; Cox, B.; Beard, P. Broadband All-Optical Plane-Wave Ultrasound Imaging System Based on a Fabry-Perot Scanner. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2021, 68, 1007–1016. [Google Scholar] [CrossRef]
- Zhang, E.; Laufer, J.; Beard, P. Backward-mode multiwavelength photoacoustic scanner using a planar Fabry-Perot polymer film ultrasound sensor for high-resolution three-dimensional imaging of biological tissues. Appl. Opt. 2008, 47, 561–577. [Google Scholar] [CrossRef]
- Chao, C.-Y.; Ashkenazi, S.; Huang, S.-W.; O’Donnell, M.; Guo, L.J. High-frequency ultrasound sensors using polymer microring resonators. IEEE Transact. Ultrason. Ferroelectr. Freq. Control 2007, 54, 957–965. [Google Scholar] [CrossRef]
- Zhang, C.; Ling, T.; Chen, S.-L.; Guo, L.J. Ultrabroad Bandwidth and Highly Sensitive Optical Ultrasonic Detector for Photoacoustic Imaging. ACS Photon. 2014, 1, 1093–1098. [Google Scholar] [CrossRef]
- Rao, Y.-J. Recent progress in fiber-optic extrinsic Fabry–Perot interferometric sensors. Opt. Fiber Technol. 2006, 12, 227–237. [Google Scholar] [CrossRef]
- Zhang, E.; Beard, P. Ultrahigh-Sensitivity Wideband Fabry-Perot Ultrasound Sensors as an Alternative to Piezoelectric PVDF Transducers for Biomedical Photoacoustic Detection; SPIE: San Jose, CA, USA, 2004; Volume 5320. [Google Scholar]
- Zhang, S.; Chen, J.; He, S. Novel ultrasound detector based on small slot micro-ring resonator with ultrahigh Q factor. Opt. Commun. 2017, 382, 113–118. [Google Scholar] [CrossRef]
- Thathachary, S.V.; Ashkenazi, S. Toward a highly sensitive polymer waveguide fiber Fabry–Pérot ultrasound detector. J. Biomed. Opt. 2018, 23, 106008. [Google Scholar]
- Tseng, S.-M.; Chen, C.-L. Optical fiber Fabry-Perot sensors. Appl. Opt. 1988, 27, 547–551. [Google Scholar] [CrossRef]
- Ma, C.; Dong, B.; Lally, E.M.; Wang, A. Optimization of Single-/Multi-/Single-Mode Intrinsic Fabry–Perot Fiber Sensors. J. Lightw. Technol. 2012, 30, 2281–2288. [Google Scholar]
- Hajireza, P.; Krause, K.; Brett, M.; Zemp, R. Glancing angle deposited nanostructured film Fabry-Perot etalons for optical detection of ultrasound. Opt. Express 2013, 21, 6391–6400. [Google Scholar] [CrossRef]
- Beard, P.C. Two-dimensional ultrasound receive army using an angle-tuned Fabry-Perot polymer film sensor for transducer field characterization and transmission ultrasound imaging. IEEE Transact. Ultrason. Ferroelectr. Freq. Control 2005, 52, 1002–1012. [Google Scholar] [CrossRef] [Green Version]
- Morris, P.; Hurrell, A.; Shaw, A.; Zhang, E.; Beard, P. A Fabry-Perot fiber-optic ultrasonic hydrophone for the simultaneous measurement of temperature and acoustic pressure. J. Acoust. Soc. Am. 2009, 125, 3611–3622. [Google Scholar] [CrossRef] [Green Version]
- Wei, H.M.; Krishnaswamy, S. Direct Laser Writing of Polymer Micro-ring Resonator Ultrasonic Sensors. In Proceedings of the Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2017, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring, Portland, OR, USA, 12 April 2017; Volume 10168. [Google Scholar] [CrossRef]
- Dhiman, D.; Arunima, S.; Praveenbalaji, R.; Manojit, P. Another decade of photoacoustic imaging. Phys. Med. Biol. 2021, 66, 05TR01. [Google Scholar]
- Liang, Y.; Jin, L.; Wang, L.; Bai, X.; Cheng, L.; Guan, B.-O. Fiber-Laser-Based Ultrasound Sensor for Photoacoustic Imaging. Sci. Rep. 2017, 7, 40849. [Google Scholar]
- Blumenrother, E.; Melchert, O.; Kanngiesser, J.; Wollweber, M.; Roth, B. Single Transparent Piezoelectric Detector for Optoacoustic Sensing-Design and Signal Processing. Sensors 2019, 19, 2195. [Google Scholar] [CrossRef] [Green Version]
- Kawai, H. The Piezoelectricity of Poly (vinylidene Fluoride). Jpn. J. Appl. Phys. 1969, 8, 975–976. [Google Scholar] [CrossRef]
- Snook, K.A.; Zhao, J.Z.; Alves, C.H.; Cannata, J.M.; Chen, W.H.; Meyer, R.J., Jr.; Ritter, T.A.; Shung, K.K. Design, fabrication, and evaluation of high frequency, single-element transducers incorporating different materials. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2002, 49, 169–176. [Google Scholar] [CrossRef]
- Park, S.; Kang, S.; Chang, J.H. Optically Transparent Focused Transducers for Combined Photoacoustic and Ultrasound Microscopy. J. Med. Biol. Eng. 2020, 40, 707–718. [Google Scholar] [CrossRef]
- Chen, H.; Osman, M.; Mirg, S.; Agrawal, S.; Cai, J.; Dangi, A.; Kothapalli, S.-R. Transparent Ultrasound Transducers for Multiscale Photoacoustic Imaging. In Proceedings of the SPIE 11642, Photons Plus Ultrasound: Imaging and Sensing 2021, SPIE BiOS, Online, 5 March 2021; Volume 11642. [Google Scholar] [CrossRef]
- Chua, S.J.; Li, B. Optical Switches: Materials and Design; Elsevier Science, Woodhead Publishing: Cambridge, UK, 2010. [Google Scholar]
- Cannata, J.M.; Ritter, T.A.; Chen, W.H.; Silverman, R.H.; Shung, K.K. Design of efficient, broadband single-element (20–80 MHz) ultrasonic transducers for medical imaging applications. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2003, 50, 1548–1557. [Google Scholar] [CrossRef]
- Zhang, Y.; Song, Z.; Lv, M.; Yang, B.; Wang, L.; Chen, C.; Feng, L. Comparison of PMN-PT transparent ceramics processed by three different sintering methods. J. Mater. Sci. Mater. Electron. 2017, 28, 15612–15617. [Google Scholar] [CrossRef]
- Li, K.; Sun, E.; Zhang, Y.; Song, Z.; Qi, X.; Sun, Y.; Li, J.; Yang, B.; Liu, J.; Cao, W. High piezoelectricity of Eu3+-doped Pb(Mg1/3Nb2/3)O3–0.25PbTiO3 transparent ceramics. J. Mater. Chem. C 2021, 9, 2426–2436. [Google Scholar] [CrossRef]
- Qiu, C.R.; Wang, B.; Zhang, N.; Zhang, S.J.; Liu, J.F.; Walker, D.; Wang, Y.; Tian, H.; Shrout, T.R.; Xu, Z.; et al. Transparent ferroelectric crystals with ultrahigh piezoelectricity. Nature 2020, 577, 350. [Google Scholar] [CrossRef]
- Lopes, A.C.; Gutiérrez, J.; Barandiarán, J.M. Direct fabrication of a 3D-shape film of polyvinylidene fluoride (PVDF) in the piezoelectric β-phase for sensor and actuator applications. Eur. Polym. J. 2018, 99, 111–116. [Google Scholar] [CrossRef]
- Li, Q.; Ke, W.; Chang, T.; Hu, Z. A molecular ferroelectrics induced electroactive β-phase in solution processed PVDF films for flexible piezoelectric sensors. J. Mater. Chem. C 2019, 7, 1532–1543. [Google Scholar] [CrossRef]
- Cardoso, V.F.; Marques-Almeida, T.; Rodrigues-Marinho, T.; Minas, G.; Rebouta, L.; Lanceros-Mendez, S. Layer-by-layer fabrication of highly transparent polymer based piezoelectric transducers. Mater. Res. Express 2018, 5. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Fang, M.; Tian, B.; Xiang, P.; Zhong, N.; Lin, H.; Luo, C.; Peng, H.; Duan, C.-G. Transparent PVDF-TrFE/Graphene Oxide Ultrathin Films with Enhanced Energy Harvesting Performance. ChemistrySelect 2017, 2, 7951–7955. [Google Scholar] [CrossRef]
- Shin, H.W.; Son, J.Y. Asymmetric ferroelectric switching characteristics of ferroelectric poly(vinylidene fluoride-ran-trifluoroethylene) thin films grown on highly-oriented pyrolytic graphite substrates. Org. Electron. 2017, 51, 458–462. [Google Scholar] [CrossRef]
- Kaneko, R.; Froemel, J.; Tanaka, S. Development of PVDF-TrFE/SiO2 composite film bulk acoustic resonator. Sens. Actuators A Phys. 2018, 284, 120–128. [Google Scholar] [CrossRef]
- Mimura, K.-i.; Hiramatsu, K.; Sakamoto, W.; Yogo, T. Ferroelectric properties of alkoxy-derived transparent BaTiO3 nanoparticle/polymer hybrid. Mater. Lett. 2012, 89, 40–42. [Google Scholar] [CrossRef]
- Iwase, K.; Kasuga, S.; Kawai, T.; Matsushima, Y. A water-soluble precursor of BaTiO3 and transparent BaTiO3 thin-films prepared from the solution by a water-based dip-coating technique. J. Sol-Gel Sci. Technol. 2012, 64, 170–177. [Google Scholar] [CrossRef]
- Tripathi, A.K.; Goel, T.C. Preparation and Characterization of Donor (La3+) and Acceptor (Fe3+) Modified BaTiO3 Transparent Films. J. Mater. Sci. Lett. 1998, 17, 729–731. [Google Scholar] [CrossRef]
- Ueda, K.; Kweon, S.-H.; Hida, H.; Mukouyama, Y.; Kanno, I. Transparent piezoelectric thin-film devices: Pb(Zr, Ti)O3 thin films on glass substrates. Sens. Actuators A Phys. 2021, 327, 112786. [Google Scholar] [CrossRef]
- Choi, J.-J.; Jang, J.-H.; Park, D.-S.; Hahn, B.-D.; Yoon, W.-H.; Park, C. Preparation of Pb(Zr, Ti)O3 Thick Film Using a Mixture of Highly Concentrated Sol and Nanopowder Dispersed in Nitric Acid. Jpn. J. Appl. Phys. 2007, 46, 3549–3555. [Google Scholar] [CrossRef]
- Chen, X.; Chen, R.; Chen, Z.; Chen, J.; Shung, K.K.; Zhou, Q. Transparent lead lanthanum zirconate titanate (PLZT) ceramic fibers for high-frequency ultrasonic transducer applications. Ceram. Int. 2016, 42, 18554–18559. [Google Scholar] [CrossRef]
- Huang, C.; Xu, J.; Fang, Z.; Ai, D.; Zhou, W.; Zhao, L.; Sun, J.; Wang, Q. Effect of preparation process on properties of PLZT (9/65/35) transparent ceramics. J. Alloys Compd. 2017, 723, 602–610. [Google Scholar] [CrossRef]
- Zhao, X.; Chao, X.; Wu, D.; Liang, P.; Yang, Z. Simultaneous realization of high transparency and piezoelectricity in low symmetry KNN-based ceramics. J. Am. Ceram. Soc. 2019, 102, 3498–3509. [Google Scholar] [CrossRef]
- Rahman, A.; Park, S.; Min, Y.; Hwang, G.T.; Choi, J.J.; Hahn, B.D.; Cho, K.H.; Nahm, S.; Ahn, C.W. An easy approach to obtain large piezoelectric constant in high-quality transparent ceramics by normal sintering process in modified potassium sodium niobate ceramics. J. Eur. Ceram. Soc. 2020, 40, 2989–2995. [Google Scholar] [CrossRef]
- Hmood, F.J.; Guenster, J.; Heinrich, J.G. Sintering and piezoelectric properties of K0.5Na0.5NbO3 glass microspheres. J. Eur. Ceram. Soc. 2015, 35, 4143–4151. [Google Scholar] [CrossRef]
- Alberta, E.F.; Bhalla, A.S. Piezoelectric and dielectric properties of transparent Pb(Ni1/3Nb2/3)1−x−yZrxTiyO3 ceramics prepared by hot isostatic pressing. Int. J. Inorg. Mater. 2001, 3, 987–995. [Google Scholar] [CrossRef]
- Chen, F.; Kong, L.; Song, W.; Jiang, C.; Tian, S.; Yu, F.; Qin, L.; Wang, C.; Zhao, X. The electromechanical features of LiNbO3 crystal for potential high temperature piezoelectric applications. J. Materiom. 2019, 5, 73–80. [Google Scholar] [CrossRef]
- Thalhammer, G.; McDougall, C.; MacDonald, M.P.; Ritsch-Marte, M. Acoustic force mapping in a hybrid acoustic-optical micromanipulation device supporting high resolution optical imaging. Lab Chip 2016, 16, 1523–1532. [Google Scholar] [CrossRef] [Green Version]
- Bornand, V.; Papet, P. Reliability and effectiveness of LiNbO3 ferroelectric films sputtered on ITO-based conductive electrode. Mater. Chem. Phys. 2005, 92, 424–430. [Google Scholar] [CrossRef]
- Fujii, I.; Nakashima, S.; Wada, T. Fabrication of 0.24Pb(In1/2Nb1/2)O3-0.42Pb(Mg1/3Nb2/3)O3-0.34PbTiO3 transparent ceramics by conventional sintering technique. J. Am. Ceram. Soc. 2019, 102, 1240–1248. [Google Scholar] [CrossRef]
- Gelly, J.F.; Lanteri, F. Comparison of piezoelectric (thickness mode) and MEMS transducers. In Proceedings of the IEEE Symposium on Ultrasonics 2003, Honolulu, HI, USA, 5–8 October 2003; pp. 1965–1974. [Google Scholar] [CrossRef]
- Gurun, G.; Tekes, C.; Zahorian, J.; Xu, T.; Satir, S.; Karaman, M.; Hasler, J.; Degertekin, F.L. Single-Chip CMUT-on-CMOS Front-End System for Real-Time Volumetric IVUS and ICE Imaging. IEEE Transact. Ultrason. Ferroelectr. Freq. Control 2014, 61, 239–250. [Google Scholar] [CrossRef] [Green Version]
- Torndahl, M.; Almqvist, M.; Wallman, L.; Persson, H.W.; Lindstrom, K. Characterisation and comparison of a cMUT versus a piezoelectric transducer for air applications. In Proceedings of the 2002 IEEE Ultrasonics Symposium, Munich, Germany, 8–11 October 2002; pp. 1023–1026. [Google Scholar]
- Zahorian, J.; Hochman, M.; Xu, T.; Satir, S.; Gurun, G.; Karaman, M.; Degertekin, F.L. Monolithic CMUT-on-CMOS Integration for Intravascular Ultrasound Applications. IEEE Transact. Ultrason. Ferroelectr. Freq. Control 2011, 58, 2659–2667. [Google Scholar] [CrossRef] [Green Version]
- Gerardo, C.D.; Cretu, E.; Rohling, R. Fabrication and testing of polymer-based capacitive micromachined ultrasound transducers for medical imaging. Microsyst. Nanoeng. 2018, 4, 1–12. [Google Scholar] [CrossRef]
- Ergun, A.S.; Huang, Y.L.; Zhuang, X.F.; Oralkan, O.; Yaralioglu, G.G.; Khuri-Yakub, B.T. Capacitive micromachined ultrasonic transducers: Fabrication technology. IEEE Transact. Ultrason. Ferroelectr. Freq. Control 2005, 52, 2242–2258. [Google Scholar]
- Chee, R.K.W.; Zhang, P.; Maadi, M.; Zemp, R.J. Multifrequency Interlaced CMUTs for Photoacoustic Imaging. IEEE Transact. Ultrason. Ferroelectr. Freq. Control 2017, 64, 391–401. [Google Scholar] [CrossRef]
- Greenlay, B.A.; Zemp, R.J. Fabrication of Linear Array and Top-Orthogonal-to-Bottom Electrode CMUT Arrays with a Sacrificial Release Process. IEEE Transact. Ultrason. Ferroelectr. Freq. Control 2017, 64, 93–107. [Google Scholar] [CrossRef]
- Zhang, Q.; Cicek, P.V.; Allidina, K.; Nabki, F.; El-Gamal, M.N. Surface-Micromachined CMUT Using Low-Temperature Deposited Silicon Carbide Membranes for Above-IC Integration. J. Microelectromech. Syst. 2014, 23, 482–493. [Google Scholar] [CrossRef]
- Chan, J.; Zheng, Z.; Bell, K.; Le, M.; Reza, P.H.; Yeow, J.T.W. Photoacoustic Imaging with Capacitive Micromachined Ultrasound Transducers: Principles and Developments. Sensors 2019, 19, 3617. [Google Scholar] [CrossRef] [Green Version]
- Beard, P. Biomedical photoacoustic imaging. Interface Focus 2011, 1, 602–631. [Google Scholar] [CrossRef]
- Mazur, M.; Kaczmarek, D.; Domaradzki, J.; Wojcieszak, D.; Song, S.; Placido, F. Influence of thickness on transparency and sheet resistance of ITO thin films. In Proceedings of the Eighth International Conference on Advanced Semiconductor Devices and Microsystems, Smolenice, Slovakia, 25–27 October 2010; pp. 65–68. [Google Scholar]
Material | Type | (°C) | Reference | |||||
---|---|---|---|---|---|---|---|---|
PVDF | Polymer | 27 | <122 | 0.16 | >50 | >9 | 130.12 | [27,67,68] |
P(VDF-TrFE) | Copolymer | 34 | 240 | 0.21 | 10.2 | 16 | 117 | [69,70,71,72] |
BaTiO3 | Ceramic | 3 | N/A | N/A | 1.66 | 3500 | N/A | [73,74,75] |
PZT | Ceramic | N/A | N/A | N/A | 6.81, >20 | 144–885 | N/A | [76,77] |
PLZT | Ceramic | 108 | 3.1 | 0.52 | 22.5 | 2340, 3895 | N/A | [78,79] |
KNN | Ceramic | 27, 101, 125 | 16.3–5.7 | 0.15 | >10 | 700–2000 | 280 | [80,81,82] |
PNNZT | Ceramic | 810 | 14.7 | 0.56 0.8 | 33.3 | 4200 | 141.4 | [83] |
LN | Single crystal | <40 | 30.3 | 0.47 | 18 | 29.4 | 1150 | [63,84,85,86] |
PMN-PT | Single crystal | 850, 2100 | 41 (DC-poled) 30.4 (AC-poled) | 0.94 | >25 | 5800 ± 120 (DC-poled) 7800 ± 230 (AC-poled) | 132 ± 2 | [65,66] |
PIN-PMN-PT | Single crystal | 420 | 13.1 | 0.52 | 23 | 3620 | 222 | [87] |
Transducer Type | Materials | Inner Structure | Size | Transmittance | Performance | Reference |
---|---|---|---|---|---|---|
Optics-based (FP sensor) | Parylene C | Matching layer: CNT-PDMS Backing: N/A Electrodes/Mirror: Highly reflecting dichroic mirror Focusing Technique: N/A | 64 μm | N/A | Impedance: N/A Center frequency: N/A Bandwidth: 22 MHz(−6 dB) Received Voltage (): N/A Sensitivity (NEP, estimated): N/A | [41] |
Optics-based (FP sensor) | SU-8 photoresist | Matching layer: N/A Backing: Polymer Electrodes/Mirror: Gold layer Focusing Technique: N/A | 10 μm thick | N/A | Impedance: N/A Center frequency: 50 MHz Bandwidth: 100 MHz Received Voltage (): N/A Sensitivity (NEP, estimated): 200 | [40] |
Optics-based (FP sensor) | Parylene C | Matching layer: PMMA Backing: N/A Electrodes/Mirror: N/A Focusing Technique: N/A | 50 μm thick | N/A | Impedance: N/A Center frequency: N/A Bandwidth: 22 MHz (−3 dB) Received Voltage (): N/A Sensitivity (NEP, estimated): 47 | [42] |
Optics-based (MRR sensor) | SU-8 | Matching layer: N/A Backing: N/A Electrodes/Mirror: N/A Focusing Technique: N/A | 250 μm thick | N/A | Impedance: N/A Center frequency: N/A Bandwidth: 140 MHz Received Voltage (): N/A Sensitivity (NEP, estimated): 0.57 | [22] |
Piezoelectric-based | PVDF | Matching layer: Epoxy Backing: Epoxy Electrodes/Mirror: ITO Focusing Technique: Concave glass lens | 6 mm diameter | ~60% at 532 nm | Impedance: N/A Center frequency: 24 MHz Bandwidth: 26 MHz (−3 dB) Received Voltage (): N/A Sensitivity (NEP, estimated): 32 | [26] |
Piezoelectric-based | LN | Matching layer: Parylene C Backing: Epoxy Electrodes/Mirror: ITO Focusing Technique: N/A | 15 mm diameter | up to 90% in the visible wavelength range | Impedance: 161–258 Ω Center frequency: 36.9 MHz Bandwidth: 33.9% (−6 dB) Received Voltage (): 0.45 V Sensitivity (NEP, estimated): 18 | [31] |
Piezoelectric-based | LN | Matching layer: Epoxy Backing: Epoxy Electrodes/Mirror: ITO Focusing Technique: Acoustic lens | 14 mm diameter | Avg. 66% at 690–910 nm range | Impedance: 245 Ω Center frequency: 11.2 MHz Bandwidth: 23% (−6 dB) Received Voltage (): N/A Sensitivity (NEP, estimated): 19 | [60] |
Piezoelectric-based | LN | Matching layer: Epoxy + Parylene C Backing: Epoxy Electrodes/Mirror: Silver Nanowires Focusing Technique: Acoustic lens | 9 mm diameter | peak transparency of 74% at 630 nm | Impedance: 53 Ω Center frequency: dual-center frequencies of 7.5 MHz and 31.5 MHz Bandwidth: N/A Received Voltage (): N/A Sensitivity (NEP, estimated): N/A | [32] |
Piezoelectric-based | PMN-PT (AC-poled) | Matching layer: Parylene C Backing: Epoxy Electrodes/Mirror: ITO Focusing Technique: N/A | 3 mm square | >80% between 450 nm and 1500 nm | Impedance: ~50 Ω Center frequency: 13.3 MHz Bandwidth: ~30% (−6 dB) Received Voltage (): 1.19 V Sensitivity (NEP, estimated): 79 | [61] |
CMUT | Silicon | Matching layer: N/A Backing: N/A Electrodes/Mirror: ITO Focusing Technique: N/A | ~19 μm radius | up to 90% in the visible and NIR range | Impedance: N/A Center frequency: 8 MHz Bandwidth: 75% (−6 dB) Sensitivity (NEP): 10.4 with a bias voltage of 250 V | [34] |
CMUT | Silicon | Matching layer: N/A Backing: N/A Electrodes/Mirror: ITO Focusing Technique: N/A | 17.75 μm radius and 1 μm thick | up to 90% in the visible and NIR range | Impedance: N/A Center frequency: 9 MHz Bandwidth: 150% (−6 dB) Sensitivity: 37.5 with a bias voltage of 100 V or 10.4 with a bias voltage of 250 V | [33] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ren, D.; Sun, Y.; Shi, J.; Chen, R. A Review of Transparent Sensors for Photoacoustic Imaging Applications. Photonics 2021, 8, 324. https://doi.org/10.3390/photonics8080324
Ren D, Sun Y, Shi J, Chen R. A Review of Transparent Sensors for Photoacoustic Imaging Applications. Photonics. 2021; 8(8):324. https://doi.org/10.3390/photonics8080324
Chicago/Turabian StyleRen, Danyang, Yizhe Sun, Junhui Shi, and Ruimin Chen. 2021. "A Review of Transparent Sensors for Photoacoustic Imaging Applications" Photonics 8, no. 8: 324. https://doi.org/10.3390/photonics8080324
APA StyleRen, D., Sun, Y., Shi, J., & Chen, R. (2021). A Review of Transparent Sensors for Photoacoustic Imaging Applications. Photonics, 8(8), 324. https://doi.org/10.3390/photonics8080324