Stability and Photothermal Properties of Fe3O4-H2O Magnetic Nanofluids
<p>Comparison of the mixing technique in the second step, (<b>a</b>) the traditional liquid–liquid mixing technique and (<b>b</b>) the droplet–droplet mixing technique.</p> "> Figure 2
<p>Characterization diagram of Fe<sub>3</sub>O<sub>4</sub> nanoparticles. (<b>a</b>) XRD pattern; (<b>b</b>) SEM pattern; and (<b>c</b>) size distributions of Fe<sub>3</sub>O<sub>4</sub> nanoparticles with different sizes.</p> "> Figure 3
<p>Stability of magnetic nanofluids. (<b>a</b>) The magnetic nanofluids with different volume fractions and (<b>b</b>) zeta potential versus time for magnetic nanofluids.</p> "> Figure 4
<p>Effects of the magnetic field on the distribution of magnetic particles (<b>a</b>) without the magnetic field and (<b>b</b>) with the magnetic field; <span class="html-italic">l</span> is the length of the chain-like aggregate, and <span class="html-italic">w</span> refers to the width of the chain-like aggregate.</p> "> Figure 5
<p>(<b>a</b>) The schematic diagram for measuring the photothermal property and (<b>b</b>) the cross-section of the test tube. One probe is located at 7 mm, and another probe is located at 22 mm.</p> "> Figure 6
<p>Influence of the magnetic field on the effective thermal conductivity of the Fe<sub>3</sub>O<sub>4</sub>-H<sub>2</sub>O magnetic nanofluids for various fractions.</p> "> Figure 7
<p>Theoretical results for the temperature of the magnetic nanofluids as a function of the applied magnetic field for (<b>a</b>) <span class="html-italic">f</span> = 0.2%, (<b>b</b>) <span class="html-italic">f</span> = 0.5%, and (<b>c</b>) <span class="html-italic">f</span> = 1.0%.</p> "> Figure 8
<p>Temperature of Fe<sub>3</sub>O<sub>4</sub> magnetic nanofluids with different volume fractions: (<b>a</b>) 0.2%, (<b>b</b>) 0.5%, and (<b>c</b>) 1.0% for <span class="html-italic">H</span> = 0 Gs, and (<b>d</b>) 0.2%, (<b>e</b>) 0.5%, and (<b>f</b>) 1.0% for <span class="html-italic">H</span> = 700 Gs.</p> "> Figure 9
<p>Experimental results on the temperature of magnetic nanofluids at <span class="html-italic">h</span> = 7 mm under different magnetic fields for (<b>a</b>) <span class="html-italic">f</span> = 0.2% and (<b>b</b>) <span class="html-italic">f</span> = 0.5%.</p> "> Figure 10
<p>The photothermal conversion efficiency of Fe<sub>3</sub>O<sub>4</sub>-H<sub>2</sub>O magnetic nanofluids with different volume fractions.</p> ">
Abstract
:1. Introduction
2. Experimental Setup
2.1. Preparation of Fe3O4-H2O Magnetic Nanofluids
2.2. XRD and SEM Pattern of the Sample
2.3. Stability of Fe3O4-H2O Magnetic Nanofluids
2.4. Response of Magnetic Nanofluids in the Presence of the Magnetic Field
2.5. Measurement of Thermal Properties and Photothermal Properties
3. Results and Discussion
3.1. Thermal Properties
3.2. Photothermal Properties
3.3. Sensitivity and Error Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alper, A.; Oguz, O. The role of renewable energy consumption in economic growth: Evidence from asymmetric causality. Renew. Sustain. Energy Rev. 2016, 60, 953–959. [Google Scholar] [CrossRef]
- Kabir, E.; Kumar, P.; Kumar, S.; Adelodun, A.A.; Kim, K.H. Solar energy: Potential and future prospects. Renew. Sustain. Energy Rev. 2018, 82, 894–900. [Google Scholar] [CrossRef]
- Mallah, A.R.; Zubir, M.N.M.; Alawi, O.A.; Newaz, K.M.S.; Badry, A.B.M. Plasmonic nanofluids for high photothermal conversion efficiency in direct absorption solar collectors: Fundamentals and applications. Sol. Energy Mater. Sol. Cells 2019, 201, 110084. [Google Scholar] [CrossRef]
- Sainz-Mañas, M.; Bataille, F.; Caliot, C.; Vossier, A.; Flamant, G. Direct absorption nanofluid-based solar collectors for low and medium temperatures. a review. Energy 2022, 260, 124916. [Google Scholar] [CrossRef]
- Alshuhail, L.A.; Shaik, F.; Sundar, L.S. Thermal efficiency enhancement of mono and hybrid nanofluids in solar thermal applications-a review. Alex. Eng. J. 2023, 68, 365–404. [Google Scholar] [CrossRef]
- Choi, S.U.S.; Eastman, J.A. Enhancing thermal conductivity of fluids with nanoparticles. In Proceedings of the ASME International Mechanical Engineering Congress and Exposition, San Francisco, CA, USA, 12–17 November 1995. [Google Scholar]
- Farooq, S.; Rativa, D.; Said, Z.; Araujo, R.E.D. High performance blended nanofluid based on gold nanorods chain for harvesting solar radiation. Appl. Therm. Eng. 2023, 218, 119212. [Google Scholar] [CrossRef]
- Gamal, M.; Radwan, M.S.; Elgizawy, I.G.; Shedid, M.H. Thermophysical characterization on water and ethylene glycol/water-based MgO and ZnO nanofluids at elevated temperatures: An experimental investigation. J. Mol. Liq. 2023, 369, 120867. [Google Scholar] [CrossRef]
- Philip, J. Magnetic nanofluids (ferrofluids): Recent advances, applications, challenges, and future directions. Adv. Colloid Interface Sci. 2023, 311, 102810. [Google Scholar] [CrossRef]
- Abbasov, H. Modeling of anisotropic thermal conductivity of ferrofluids. J. Dispersion Sci. Technol. 2019, 41, 1030–1036. [Google Scholar] [CrossRef]
- Zhu, H.T.; Zhang, C.Y.; Liu, S.Q.; Tang, Y.M.; Yin, Y.S. Effects of nanoparticle clustering and alignment on thermal conductivities of Fe3O4 aqueous nanofluids. Appl. Phys. Lett. 2006, 89, 023123. [Google Scholar] [CrossRef]
- Philip, J.; Shima, P.D.; Raj, B. Nanofluid with tunable thermal properties. Appl. Phys. Lett. 2008, 92, 043108. [Google Scholar] [CrossRef]
- Altan, C.L.; Elkatmis, A.; Yüksel, M.; Aslan, N.; Bucak, S. Enhancement of thermal conductivity upon application of magnetic field to Fe3O4 nanofluids. J. Appl. Phys. 2011, 110, 093917. [Google Scholar] [CrossRef]
- Ebrahimi, S.; Saghravani, S.F. Influence of magnetic field on the thermal conductivity of the water based mixed Fe3O4/CuO nanofluid. J. Magn. Magn. Mater. 2017, 441, 366–373. [Google Scholar] [CrossRef]
- Liu, Z.; Yan, Y.; Fu, R.; Alsaady, M. Enhancement of solar energy collection with magnetic nanofluids. Thermal Sci. Eng. Prog. 2018, 8, 130–135. [Google Scholar] [CrossRef]
- Wang, D.B.; Jia, Y.L.; He, Y.; Wang, L.L.; Xie, H.Q.; Yu, W. Photothermal efficiency enhancement of a nanofluid-based direct absorption solar collector utilizing magnetic nano-rotor. Energy Convers. Manag. 2019, 199, 111996. [Google Scholar] [CrossRef]
- Shin, Y.; Ham, J.; Boldoo, T.; Cho, H. Magnetic effect on the enhancement of photo-thermal energy conversion efficiency of MWCNT/Fe3O4 hybrid nanofluid. Sol. Energy Mater. Sol. Cells 2020, 215, 110635. [Google Scholar] [CrossRef]
- Shojaeizadeh, E.; Veysi, F.; Habibi, H.; Goodarzi, K.; Habibi, M. Thermal efficiency investigation of a ferrofluid-based cylindrical solar collector with a helical pipe receiver under the effect of magnetic field. Renew. Energy 2021, 176, 198–213. [Google Scholar] [CrossRef]
- Xing, M.B.; Jia, C.F.; Chen, H.B.; Wang, R.X.; Wang, L.X. Enhanced solar photo-thermal conversion performance by Fe3O4 decorated MWCNTs ferrofluid. Sol. Energy Mater. Sol. Cells 2022, 242, 111787. [Google Scholar] [CrossRef]
- Vékás, L.; Bica, D.; Avdeev, M.V. Magnetic nanoparticles and concentrated magnetic nanofluids: Synthesis, properties and some applications. Chin. Particuol. 2007, 5, 43–49. [Google Scholar] [CrossRef]
- Kumar, A.; Subudhi, S. Preparation, characteristics, convection and applications of magnetic nanofluids: A review. Heat Mass Transf. 2017, 54, 241–265. [Google Scholar] [CrossRef]
- Nabeel Rashin, M.; Hemalatha, J. Magnetic and ultrasonic investigations on magnetite nanofluids. Ultrasonics 2012, 52, 1024–1029. [Google Scholar] [CrossRef] [PubMed]
- Elsaid, K.; Olabi, A.G.; Wilberforce, T.; Abdelkareem, M.A.; Sayed, E.T. Environmental impacts of nanofluids: A review. Sci. Total Environ. 2021, 763, 144202. [Google Scholar] [CrossRef] [PubMed]
- Said, Z.; Sundar, L.S.; Tiwari, A.K.; Ali, H.M.; Sheikholeslami, M.; Bellos, E.; Babar, H. Recent advances on the fundamental physical phenomena behind stability, dynamic motion, thermophysical properties, heat transport, applications, and challenges of nanofluids. Phys. Rep. 2022, 946, 1–94. [Google Scholar] [CrossRef]
- Bagheli, S.; Fadafan, H.K.; Orimi, R.L.; Ghaemi, M. Synthesis and experimental investigation of the electrical conductivity of water based magnetite nanofluids. Powder Technol. 2015, 274, 426–430. [Google Scholar] [CrossRef]
- Wang, L.J.; Wang, Y.H.; Yan, X.H.; Wang, X.Y.; Feng, B. Investigation on viscosity of Fe3O4 nanofluid under magnetic field. Int. Commun. Heat Mass Transfer 2016, 72, 23–28. [Google Scholar] [CrossRef]
- Han, J.S.; An, G.S.; Park, B.G.; Choi, S.C. The Influence of Functionalization of the Fe3O4 Nanoparticle on its dispersion property. J. Korean Ceram. Soc. 2018, 55, 80–84. [Google Scholar] [CrossRef] [Green Version]
- Boldoo, T.; Ham, J.; Kim, E.; Cho, H. Review of the photothermal energy conversion performance of nanofluids, their applications, and recent advances. Energies 2020, 13, 5748. [Google Scholar] [CrossRef]
- Mehta, B.; Subhedar, D.; Panchal, H.; Said, Z. Synthesis, stability, thermophysical properties and heat transfer applications of nanofluid—A review. J. Mol. Liq. 2022, 364, 120034. [Google Scholar] [CrossRef]
- He, Q.B.; Wang, S.F.; Zeng, S.Q.; Zheng, Z.Z. Experimental investigation on photothermal properties of nanofluids for direct absorption solar thermal energy systems. Energy Convers. Manag. 2013, 73, 150–157. [Google Scholar] [CrossRef]
- Borode, A.; Tshephe, T.; Olubambi, P.; Sharifpur, M.; Meyer, J. Stability and thermophysical properties of GNP-Fe2O3 hybrid nanofluid: Effect of volume fraction and temperature. Nanomaterials 2023, 13, 1238. [Google Scholar] [CrossRef]
- Chakraborty, S.; Panigrahi, P.K. Stability of nanofluid: A review. Appl. Therm. Eng. 2020, 174, 115259. [Google Scholar] [CrossRef]
- Wang, X.M.; Zhang, C.N.; Chen, G.H. Study on the preparation and stability of water-based magnetic fluids. Chem. Eng. 2007, 9, 4–7. [Google Scholar]
- He, Y. Rapid thermal conductivity measurement with a hot disk sensor. Thermochim. Acta 2005, 436, 130–134. [Google Scholar] [CrossRef]
- Choy, T.C. Effective Medium Theory Principles and Applications, 2nd ed.; Oxford University Press: Oxford, UK, 2016; pp. 12–14. [Google Scholar]
- Fu, H.L.; Gao, L. Theory for anisotropic thermal conductivity of magnetic nanofluids. Phys. Lett. A 2011, 375, 3588–3592. [Google Scholar] [CrossRef]
- Reinecke, B.N.; Shan, J.W.; Suabedissen, K.K.; Cherkasova, A.S. On the anisotropic thermal conductivity of magnetorheological suspensions. J. Appl. Phys. 2008, 104, 023507. [Google Scholar] [CrossRef]
- Tyagi, H.; Phelan, P.; Prasher, R. Predicted efficiency of a low-temperature nanofluid- based direct absorption solar collector. J. Sol. Energy Eng. 2009, 131, 041004. [Google Scholar] [CrossRef]
- Otanicar, T.P.; Phelan, P.E.; Prasher, R.S.; Rosengarten, G.; Taylor, R.A. Nanofluid-based direct absorption solar collector. J. Renew. Sustain. Energy 2010, 2, 033102. [Google Scholar] [CrossRef] [Green Version]
- Yousefi, T.; Veysi, F.; Shojaeizadeh, E.; Zinadini, S. An experimental investigation on the effect of Al2O3-H2O nanofluid on the efficiency of flat-plate solar collectors. Renew. Energy 2012, 39, 293–298. [Google Scholar] [CrossRef]
- Moffat, R.J. Using uncertainty analysis in the planning of an experiment. J. Fluids Eng. 1985, 107, 173–178. [Google Scholar] [CrossRef]
- Chen, M.J.; He, Y.R.; Zhu, J.Q.; Shuai, Y.; Jiang, B.C.; Huang, Y.M. An experimental investigation on sunlight absorption characteristics of silver nanofluids. Sol. Energy 2015, 115, 85–94. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, C.; Gao, L.; Zhou, X.; Wu, X. Stability and Photothermal Properties of Fe3O4-H2O Magnetic Nanofluids. Nanomaterials 2023, 13, 1962. https://doi.org/10.3390/nano13131962
Zhang C, Gao L, Zhou X, Wu X. Stability and Photothermal Properties of Fe3O4-H2O Magnetic Nanofluids. Nanomaterials. 2023; 13(13):1962. https://doi.org/10.3390/nano13131962
Chicago/Turabian StyleZhang, Chengya, Lei Gao, Xiaofeng Zhou, and Xiaohu Wu. 2023. "Stability and Photothermal Properties of Fe3O4-H2O Magnetic Nanofluids" Nanomaterials 13, no. 13: 1962. https://doi.org/10.3390/nano13131962
APA StyleZhang, C., Gao, L., Zhou, X., & Wu, X. (2023). Stability and Photothermal Properties of Fe3O4-H2O Magnetic Nanofluids. Nanomaterials, 13(13), 1962. https://doi.org/10.3390/nano13131962